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4 Rotor Machines

General Description

Rotor machines are electromechanical devices that consist of several rotors
in series connection. Figure 1 gives an impression of the electric flow through
such a machine.
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Figure 1: Rotor machine circuit

With each input letter the rotors move in individual ways, some by
one position, some by several positions, some only after several steps. The
cryptographic security of a rotor machine depends on the number of rotors,
the multitude of different settings, and, in a crucial way, on the complexity

of the rotor movements.

Operating a Rotor Machine

The operator hits a key on the keyboard that corresponds to the next
plaintext letter. This action closes an electric circuit powering a light-
bulb that corresponds to the ciphertext letter. Or it powers a type bar
that prints the ciphertext letter. The rotors move according to their
control logic, in general before the circuit is closed. See the FAQ at
http://www.staff.uni-mainz.de/pommeren/Cryptology/FAQ.html.

Rotor machines are the state of the art in encryption during the period
from 1920 until 1970. The mystic and irregularly rotating wheelwork that
makes the desk tremble with each key hit looks very attractive and impresses
the general or diplomat who wants to buy security.

Mathematical Description

The following abstract model describes an idealized rotor machine. Concrete
historic machines each have their own peculiar details.

As before we identify the alphabet Σ with Z/nZ, the integers mod n. A
rotor machine has the following characteristic parameters:
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• A set R ⊆ S(Σ) of p = #R rotors. Each of these defines a primary
alphabet, that is a permutation ρi ∈ S(Σ) that corresponds to the
wiring of the rotor.

• A choice ρ = (ρ1, . . . , ρq) ∈ S(Σ)q of q different rotors ρi ∈ R. There
are p · (p − 1) · · · (p − q + 1) choices if we assume that all rotors are
differently wired (q ≤ p). This choice serves as “primary key” and is
usually fixed for several messages, say for an entire day.

• A state vector z = (z1, . . . , zq) ∈ (Z/nZ)q that describes the current
rotor positions. The initial state z(0) serves as “secondary key” that
usually changes with each message. The number of different initial
states is nq. Sometimes it is convenient to map the states to Z/nqZ,
the integers modnq, using the representation of integers in base n.
The state vector z = (z1, . . . , zq) ∈ (Z/nZ)q then corresponds to the
integer ζ = z1 · nq−1 + · · ·+ zq.

• A state-transition function

g : N× Σq −→ Σq

that transforms the state at time i, z(i), to the state at time i + 1,
z(i+1) = g(i, z(i)), where “time” is discrete and simply counts the
plaintext letters. This function g represents the control logic and is
realized for example by more or less complex gear drives. In most ro-
tor machines the state-transition function is independent of the time
i.

• The substitution in state z:

σz := ρ
(zq)
q ◦ · · · ◦ ρ(z1)1 where ρ

(zj)
j := τ zj ◦ ρj ◦ τ−zj

Ideally the map Σq −→ S(Σ), z �→ σz would be injective, that is each state
defines a different substitution. Unfortunately no useful general results seem
to exist beyond the case q = 1 treated in Subsection 2.

Perl programs for encryption and decryption by rotor machines
are in the web directory http://www.staff.uni-mainz.de/pommeren/

Cryptology/Classic/Perl/ as rotmach.pl and rotdecr.pl.

The Key Space

By the description above a key of our idealized rotor machine consists of

• a choice of rotors

• an initial state
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Therefore the key space K has

#K = nq · p!

(p− q)!

elements. In a typical example (Hebern machine) we have p = q = 5,
n = 26, #K = 120 · 265 = 712882560, and the effective key length is
d(F ) ≈ 29.4. That was good enough in 1920. Today, against an enemy
with a computer, this is much too little.

In fact the Hebern machine was not good enough even in 1920
because it allows attacks far more efficient than exhaustion.

Encryption and Decryption

The plaintext a = (a1, . . . , ar) ∈ Σr is encrypted by the formula

ci = σz(i)(ai)

At full length this formula reads

ci = τ z
(i)
q ◦ ρq ◦ τ z

(i)
q−1−z(i)q ◦ · · · ◦ τ z

(i)
1 −z(i)2 ◦ ρ1 ◦ τ−z(i)1 (ai)

Decryption follows the formula

ai = τ z
(i)
1 ◦ ρ(−1)

1 ◦ τ z
(i)
2 −z(i)1 ◦ · · · ◦ τ z

(i)
q −z(i)q−1 ◦ ρ(−1)

q ◦ τ−z(i)q (ci)

Technically for decryption we simply have to route the current through the
machine in the reverse direction, of course interchanging the keyboard and
lightbulbs. The sequence of states is identical for encryption and decryption.

The Rotor Machine as a Finite-State Automaton

Figure 2 shows an abstract model of a rotor machine.
Usually the state-transition function is independent of the step i. Then

it has the simpler form
g : Σq −→ Σq

This makes the states periodic as shown in the next subsection.

Periods of State Changes

Let M be a finite set with m = #M . We may think of the elements of M
as “states”. Consider a map (“state transition”)

g : M −→ M.
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Figure 2: Rotor machine as finite-state automaton
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Figure 3: Period and preperiod

For each element (“initial state”) x0 ∈ M we define a sequence (xi)i∈N
in M by the recursion formula xi = g(xi−1) for i ≥ 1. After a preperiod of
length µ this sequence becomes periodic with a period of ν, see Figure 3, an
explanation follows below.

Since M is finite there are smallest integers µ ≥ 0 and ν ≥ 1 such that
xµ+ν = xµ: Take for µ the smallest index such that the element xµ reappears
somewhere in the sequence, and for µ+ν the index where the first repetition
occurs. Then also

xi+ν = xi for i ≥ µ.

Obviously 0 ≤ µ ≤ m−1, 1 ≤ ν ≤ m, µ+ν ≤ m. The values x0, . . . , xµ+ν−1

are all distinct, and the values x0, . . . , xµ−1 never reappear in the sequence.

Definition: µ is called (length of the) preperiod, ν is called (length of
the) period.


