
K. Pommerening, Enigma 21

7 Wehrmacht Enigma and Known Plaintext

The Polish break into the Enigma relies on the way in which the German
operators handled the message keys. With the beginning of the war the
method of message keying changed and the pre-war cryptanalytic approaches
broke down.

Equations for Known Plaintext

Already the Polish cryptanalysts had exlored the idea of using known
plaintext—starting from the observation that the German military in their
messages used a lot of stereotypical phrases such as “Heil Hitler” or
“Oberkommando der Wehrmacht” (= Army’s High Command). Chunks
of known plaintext (called “cribs” by the british cryptanalysts) allow nar-
rowing down the exhaustive search to an amount that eventually may be
mastered with the help of some cleverly constructed electro-mechanical ma-
chines. Alan Turing largely and systematically expanded this approach.

Here is an example (Example 1, taken from [2] as virtually all authors
of cryptographic texts do). Let the ciphertext

ULOEB ZMGER FEWML KMTAW XTSWV UINZP R ...

be given. We suppose the message contains the phrase “Oberkommando der
Wehrmacht” near the beginning. A negative pattern search over the first 12
possible positions yields exactly one hit:

U L O E B Z M G E R F E W M L K M T A W X T S W V U I N Z P R

o b e r k o = m a n d o d e r w e h r m a c h t

o b = r k o m m a n d o d e r w e h r m a c h t

= b e r k o m m a n d o d e r w e h r m a c h t

o = e r k o m m a n d o d e r w e h r m a c h t

o b e r k o m m a n d o d e r = e h r m a c h t

===> o b e r k o m m a n d o d e r w e h r m a c h t

o b = = k o m = a n d o d e r w e h r m a c h t

o b e r k o = m a n d o d e r w e h r m a c h t

o b e r k o m m a n d o d e r = e h r m a c h

o b = r k o m = a n d o d e r w e h r m a c

o b e r k o = m = n d o d e r w e h r m a

o b e r = o m m a n d o d e r w e h r m

We assume the rotor wirings of all five rotors as known. The naive
approach—exhaustion by brute force and assuming that the ring settings
don’t interfere with the crib—would go through all 60 possible rotor orders,
all 263 = 17576 start positions, and all > 1014 plug configurations, each time
decrypt the ciphertext, and look if the known plaintext results. The huge
number of plug configurations makes this approach hopeless, the “virtual”



K. Pommerening, Enigma 22

keylength for this approach being about 67 bits (1023/262 ≈ 1.6·1020 ≈ 267).
(We first neglect the ring settings that have little impact on the cryptanal-
ysis.)

Fortunately, using known plaintext, we may find conditions that involve
only a single plug . Recall the general situation as shown in Figure 4.

Rotor No. R 3 2 1 P

✲

Plaintext aiãi

✻

✛

Ciphertext ci
c̃i

� �� �
Combined rotor
substitution ϕi

� �� �
Plugboard

substitution η

η−1

Figure 4: Enigma with plugboard

Assume a sequence a1 . . . am of known plaintext is given with correspond-
ing ciphertext c1 . . . cm, the respective combined rotor substitutions being
ϕ1, . . . ,ϕm and the “full” Enigma substitutions, ρi = η−1ϕiη. This gives the
equations

c1 = ρ1a1 = η−1 ϕ1 η a1
...

cm = ρmam = η−1 ϕm η am

or ηci = ϕiηai. Denoting the image of a letter under the (fixed but unknown)
plugboard substitution by a tilde we get:

Lemma 1 For a sequence a1 . . . am of known plaintext we have

c̃i = ϕi ãi and ãi = ϕi c̃i for i = 1, . . . ,m.

For the second equation we used the fact that the combined rotor sub-
stitutions ϕi are involutions.

Looking for Cycles

Returning to Example 1 we consider the special situation

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2

i = 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4

c_i = Z M G E R F E W M L K M T A W X T S W V U I N Z

a_i = O B E R K O M M A N D O D E R W E H R M A C H T



K. Pommerening, Enigma 23

From such a plaintext-ciphertext pair we extract the Turing graph:
The nodes correspond to the letters A . . . Z of the standard alphabet. For
each pair (ai, ci) of plaintext letter and corresponding ciphertext letter an
edge is drawn between these two letters, and this edge is labeled by the index
i. Due to the reciprocity between plaintext and ciphertext, the situation is
modeled by an undirected graph. An edge with label j between nodes s and
t means that t = ρjs and s = ρjt—or t̃ = ϕj s̃ and s̃ = ϕj t̃. Figure 5 shows
the Turing graph for Example 1.

L N H S

C I

K D TD

R

G

E A U

W M O Z

X V B F

10 23 18

22

11 13

4 14 21

8 12 1

5

15 19 7

16 20

�
�
�

��

17

�
�
�

��

9

❅
❅
❅

❅❅

2
❅

❅
❅

❅❅

6

❅❅
3

Figure 5: Turing graph for Example 1

Turings approach uses the cycles in this graph (“closures” in Turing’s
way of speaking). In the notation of Lemma 1 we find:

E = ρ7 M, M = ρ9 A, A = ρ14 E, and Ẽ = ϕ7 M̃, M̃ = ϕ9 Ã, Ã = ϕ14 Ẽ,

and combine these three equations into one cycle equation

E = ρ7 ρ9 ρ14 E. and Ẽ = ϕ7 ϕ9 ϕ14 Ẽ.

In general we have:



K. Pommerening, Enigma 24

Theorem 2 (Fixed Point Theorem of Rejewski/Turing) Let ρi be
the Enigma substitution in position i, and ϕi = ηρiη−1 be the substitution
without plugs. Then a letter a is a fixed point of a composition ρi1 · · · ρik if
and only if the plugged letter ã is a fixed point of ϕi1 · · ·ϕik .

Thus the fixed point property of a cycle is in a certain sense independent
of the plug connections.

Corollary 1 (Turing’s cycle condition) Each loop in the Turing
graph gives a necessary condition for the correct key of the Enigma encryp-
tion in the form

ã = ϕi1 . . . ϕik ã

for a letter a. In particular ã is a fixed point of the corresponding composition
of unplugged Enigma substitutions.

Although mathematically trivial this theorem and its corollary are the
keys to eliminating the complexity of the plugboard by a meet-in-the-middle
attack.

What is the benefit of Turing’s cycle condition? Suppose in Example 1
we try all 26 possible values for Ẽ = η E and all 263 possible rotor positions
for all 60 possible rotor orders, searching for fixed points of ϕ7 ϕ9 ϕ14—an
exhaustion of 60 × 264 = 27, 418, 560 cases. Then the probability that the
cycle condition is fulfilled is about 1/26. This rules out ≈ 25/26 ≈ 96% of
all cases and leaves us with ≈ 60× 263 cases—not really impressive, but it
could be a good start: Suppose we find two cycles involving E, then we are
left with ≈ 60 × 262 cases, for three cycles with ≈ 60 × 26 cases, for four
cycles with ≈ 60 cases, i. e. with the exhaustion of the possible rotor orders.
And the outcome of this search is:

• The correct initial rotor positions for our known plaintext

• The correct plugboard images for all letters that occur in one of the
cycles—a significant part of the complete plug configuration

Now in our Example 1 (that is in fact Deavour’s and Kruh’s) we see
two other cycles involving E:

Ẽ = ϕ4 R̃, R̃ = ϕ15 W̃, W̃ = ϕ8 M̃, M̃ = ϕ7 Ẽ,

and
Ẽ = ϕ4 R̃, R̃ = ϕ5 K̃, K̃ = ϕ11 D̃, D̃ = ϕ13 T̃, T̃ = ϕ17 Ẽ,

giving the two additional cycle conditions

Ẽ = ϕ4 ϕ15 ϕ8 ϕ7 Ẽ, Ẽ = ϕ4 ϕ5 ϕ11 ϕ13 ϕ17 Ẽ.

The complete cycle constellation may be visualized by Figure 6.



K. Pommerening, Enigma 25

ER

W M

A

TD

K

13

4

8

15 7

17

❍❍❍❍❍
14

✟✟✟✟✟
9

✟✟✟✟✟11

❍❍❍❍❍5

Figure 6: Turing cycles in Example 1

Evaluating the Cycle Conditions

In evaluating the cycle conditions one sets the rotors to start positions and
then steps Rotor 1 only. In lucky cases also in the real situation only Rotor 1
moves. In bad cases Rotor 2 moves, maybe even Rotor 3. Since the ring
setting is unknown, these stepping positions are unknown. Because in the
example all the cycles are between plaintext positions 4 and 17, the length
of the effectively used plaintext segment is 14, and the probability for a
stepping of Rotor 2 in between is 13/26 = 50%, a stepping that would
invalidate the approach, and a good argument for using rather short cribs.

Now assume that we have identified the correct rotor order and the
correct initial positions of all the rotors, and no interfering movement of
Rotors 2 and 3 occurs for the involved plaintext section a1 . . . am. Then
the combined rotor substitutions ϕ1, . . . ,ϕm are known, and the plug image
s̃ = ηs is known for all letters s that occur in the cycles. In the example we
know Ẽ = ηE and consequently

R̃ = ϕ4Ẽ, K̃ = ϕ5R̃, M̃ = ϕ7Ẽ, W̃ = ϕ8M̃, Ã = ϕ9M̃,

D̃ = ϕ11K̃, Õ = ϕ12M̃, T̃ = ϕ13D̃, X̃ = ϕ16W̃.

Furthermore we find F̃ = ϕ6Õ. Since η is an involution the inverse relations
might involve further letters. That is we know the plugboard substitutes of
at least 11 letters.

What is yet missing is

• The plugboard substitutes of the remaining letters

• The stepping position of Rotor 2



K. Pommerening, Enigma 26

To continue assume first that the remaining letters are unchanged by the
plugboard and decrypt cm+1, . . . As soon as the resulting plaintext is unread-
able either a new plugboard connection or the stepping position is detected.
If the crib occurred in the middle of the ciphertext, we run the same proce-
dure backwards to the beginning of the message.

Conclusion

The huge number of possible plug settings turns out to be an illusory com-
plication: The exhaustion used the plug connection of a single letter only. In
good cases where the procedure yields a unique solution of the cycle condi-
tions the effort was testing 26 plug connections with 263 start positions for
each of the 60 rotor orders, that is 27, 418, 560 ≈ 1.6 · 224 cases. In each case
we have to do some trial encryptions for the letters in the cycles plus some
house-keeping plus some finishing. So we may guess that the search space is
dropped to about 30 bits.

As soon as the daily key—rotor order, ring settings, plug connections,
initial positions of the rotors—is known, reading all further messages of
the day comes for almost no additional costs because all message keys are
encrypted with the same initial rotor positions.

A Note on the Technical Realization: Turing’s Bombe

Turing’s Bombe consisted of a battery of several Enigmas (without plug-
boards), called “scramblers” and in one-to-one correspondence with the
nodes of the Turing graph, synchronously stepping through all 263 ro-
tor positions. For each edge two scramblers were connected by a cable, and
set to start positions differing by the number that corresponded to the label
of the edge. Therefore the physical arrangement of the components was an
exact model of the graph. The cable had 26 wires, so all choices for the plug
connection of a selected letter (Ẽ in Example 1) could be tested in parallel.
The cycle conditions corresponded to closed electrical circuits that made
the bombe stop. Then the operator noted the actual rotor positions and
restarted the bombe with the next set of positions.

Using enough scramblers even all the sixty rotor orders could be tested
in parallel, dropping the effective search costs to 263, equivalent with a com-
plexity of 14 bits only. A complete run of the bombe took 11 minutes. (Today
a simulation on a PC without parallel execution takes about 5 minutes.)

Unfortunately in general the solution was far from unique, so the bombe
produced a huge number of “false positive” stops. An idea of Welchman
largely reduced the number of false positives by a clever add-on to the
bombe, see Section 8 below, and this was crucial for the success of the
British cryptanalysts against the Enigma.


