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1 General Description

For a general description of this German World War II cipher machine see
the web page http://www.staff.uni-mainz.de/pommeren/Cryptology/
Classic/6_Enigma/EnigmaDescr.html.
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Abbildung 1: Current flow through Enigma
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2 Mathematical Description

Here we give a mathematical description of the Enigma I (“Wehrmachts-Enigma”) with 5 selec-
table rotors denoted by the roman numerals I to V (whereas the arabic numerals 1 to 3 denote the
order in which three rotors are mounted). For a bit of mathematical background on permutations
we refer to Appendix A.

The Key Space

The key of an Enigma message has several components:

• The operator choses 3 rotors from a set of 5 and mounts them in a certain order. This gives
5!
2! = 60 different options (“Walzenlage”).

• He adjusts each of the 3 alphabet rings to one of 26 possible positions. This gives another
263 = 17576 options. Since the alphabet ring of the slow rotor has no effect on the
encryption, only 262 = 676 of these options contribute to the key space.

• He inserts 10 plugs into the plugboard. Each plug connects 2 letters. He has 26!
(210·10!·6!) =

150, 738, 274, 937, 250 ≈ 1.5 · 1014 ≈ 247 different choices. This formula is derived in
Appendix A. If the operator is allowed to use also less than the maximum 10 plugs this
number grows to about 2.1 · 1014.

• Finally he sets the rotors to their initial positions, another 263 = 17576 possibilities.

Multiplied together these numbers make up a key space of

60 · 676 · 150, 738, 274, 937, 250 · 17576 = 107, 458, 687, 327, 250, 619, 360, 000

≈ 1023 ≈ 1.4× 276

or a key length of 76 bits (in modern language). However it is not clear at all (and even hardly
likely) that all keys define different substitutions. Thereforewe can conclude only that the effective
key length is at most 76 bits. And 47 of these bits are due to the plug-board.

The Control Logic

The current flows through the three movable rotors first from right to left. Accordingly we denote
the fast rotor by 1, the middle one by 2, and the slow one by 3. Taking the irregularity in the
stepping of rotor 2 into account, and denoting the position of the notch that moves the next rotor
bymi, the formula for the state transition function is

g(z1, z2, z3) = (z1, z2 + λ1(z1) + λ1(z1)λ2(z2), z3 + λ1(z1)λ2(z2))

where λi(x) = δx,mi is the Kronecker symbol.
Due to the direction of the labeling of the rotors and the corresponding wiring between input

keys or output bulbs and rotors, the substitution by a single rotor in step i is ρ(i) = τ−i ◦ ρ ◦ τ i
where ρ is the rotor substitution and τ the alphabet shift, as explained in Chapter 5.1.
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The Enigma Substitution

The rotors being in the state z = (z1, z2, z3) the rotor substitution describes the effect of
transversing them from right to left:

σz := ρ
(z3)
3 ◦ ρ(z2)2 ◦ ρ(z1)1

The effect of the reflecting rotor is a proper involution π, no element is mapped to itself. The
plug-board also provides an involution, η. Together this gives the Enigma substitution in state
z:

ρz = η−1 ◦ σ−1z ◦ π ◦ σz ◦ η

or, with more details, the Enigma equation for encryption

ci = η−1τ−z1ρ−11 τ z1−z2ρ−12 τ z2−z3ρ−13 τ z3πτ−z3ρ3τ
z3−z2ρ2τ

z2−z1ρ1τ
z1η (ai)

Theorem 1 The Enigma substitution ρz in state z is a proper involution.

Proof. a) Involution:
ρ−1z = η−1 ◦ σ−1z ◦ π−1 ◦ σz ◦ η = ρz

since π−1 = π.
b) Proper: Assume ρz(s) = s for a letter s ∈ Σ. Then

σzη(s) = σzηρz(s) = πσzη(s)

hence π(t) = t for t = σzη(s) ∈ Σ. This contradicts the fact that π is a proper involution. 3

Note. The proof didn’t use the fact that η is an involution. This limitation of the plug-board
had purely practical reasons: It reduced errors in operation. Variable plugs between the
keyboard or light-bulbs and the first rotor would give more degrees of freedom. But this
would require 26 cables instead of the 10 double-plug cables.
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3 Cryptanalysis of Enigma: General Remarks

The number of variants of Enigma and of the corresponding appropriate approaches to crypt-
analysis is hardly manageable in an introductory text. For this reason we only treat three selected
topics:

1. The Enigma without plugboard

2. Message key analysis after Rejewski

3. Wehrmacht-Enigma and known plaintext

Special Features of Enigma

• Control logic: Because the middle rotor moves only after 26 steps, and the slow rotor
moves almost never, the ciphertext essentially consists of sections of length 26 where only
the fast rotor moves by one position with each step.

• The decomposition of a rotor permutation into cycles is not affected by the plugboard. The
substitution by the set of rotors is simply conjugated by the plugboard substitution.

– If the attacker has enough known plaintext she finds cycles, see Section 7.
– The diverse rotor orders differ by their cycle types [Rejewski’s catalogue, Turing’s

“classes”].
– In this way the attacker gets information on the rotor order.

• Negative pattern search allows to narrow down the position of known plaintext.

In World War II this last effect allowed for the detection of test messages by the Italians that
consisted only of LLL...LLL. This was a stroke of genius by the british cryptanalyst Mavis Lever
who noticed that several cipher messages didn’t contain any L. This observation turned out to be
an essential step in uncovering the wiring of newly introduced rotors.



K. Pommerening, Enigma 6

4 Cryptanalysis of the Enigma Without Plugboard

The Commercial Enigma

The types C and D of Enigma had a reflecting rotor but no plugboard. They were sold on the free
market and could be comprehensively analyzed by everyone.

In the Spanish civil war all parties used the Enigma D. All big powers broke it.
The substitution of the commercial Enigma simplifies to

ci = σ−1z πσz(ai)

where σz is the substitution by the three rotors in state z = (z1, z2, z3). The reflecting rotor was
fixed during encryption but could be inserted in any of 26 positions.

Searching for Isomorphs

In a section of the text where only rotor 1 moves, the two inner rotors together with the reflecting
rotor yield a constant involution π̃. If the plaintext for this section (say of length m) is known,
then we have equations

c1 =
[
ρ
(z1)
1

]−1
π̃ρ

(z1)
1 (a1)

c2 =
[
ρ
(z1+1)
1

]−1
π̃ρ

(z1+1)
1 (a2)

. . .

cm =
[
ρ
(z1+m−1)
1

]−1
π̃ρ

(z1+m−1)
1 (am)

Hence for i = 1, . . . ,m the intermediate text

c′i = ρ
(z1+i−1)
1 (ci) = π̃ρ

(z1+i−1)
1 (ai)

is the monoalphabetic image c′i = π̃(a′i) of the intermediate text

a′i = ρ
(z1+i−1)
1 (ai)

under the involution π̃.
Therefore pattern search identifies the fast rotor and its state by testing all rotors and all initial

states. For determining a′i from ai we have to test all three rotors with all 26 start positions,
and determine c′i from ci with the same rotor in the same position. This exhaustion comprises
3 × 26 = 78 different constellations, each of which has to be tested for a matching pattern.
Probably there are several false solutions in addition to the correct one.

The next sieving step uses the fact that π̃ is a fixed involution. If for a possible solution we
find a coincidence c′i = a′j with j 6= i, then we test for

a′i 7→ c′i = a′j 7→ c′j
?
= a′i
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Abbildung 2: Searching for isomorphs

If no, we discard the solution. If yes, we even identified a 2-cycle of π̃, reducing the number of
262 = 676 possible states of the two inner rotors. A useful tool for this is a precomputed table
of length 676 for each of the 6 different combinations of these two rotors that contains the cycle
decomposition of π̃ for all states, making a total of 6× 676 = 4056 involutions.

Precomputing the lookup table is easy: Let the cycles of π be (a1, b1), . . . , (a13, b13). Let
ξ = ρ

(z3)
3 ◦ ρ(z2)2 be the combined substitution by rotors 2 and 3. Then the cycle decomposition

of π̃ = ξ−1 ◦ π ◦ ξ is
π̃ = (ξ−1a1, ξ

−1b1), . . . , (ξ
−1a13, ξ

−1b13)

We only need to apply the fixed substitution ξ−1 to the string a1b1 . . . a13b13.
The location of known plaintext, if not known a priori, may be narrowed down by negative

pattern search.

Conclusion

The introduction of the reflecting rotor aimed at a significant gain for the security of Enigma
by doubling the number of rotor passages. This turned out to be an illusory complication. The
attack by isomorphs reduces the cryptanalysis to the exhaustion of position and state of three
rotors only, and even this is reduced in a substantial manner.

To prevent this attack the Wehrmacht (= army) introduced the plugboard when adopting the
Enigma.
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5 Example

Lacking a working simulation for the commercial Enigma we use a military Enigma I omitting
the plugboard. Further differences with the commercial Enigma D are

• The reflector is mounted in a fixed position. This will facilitate our task slightly compared
with a true Enigma D.

• The rotors (including the reflectors) are differentlywired.We consider thewiring as known.

• The input wiring is from keyboard-A to input-A etc., whereas the commercial Enigma had
the contacts wired in the order of the keys, i. e. keyboard-Q to input-A, keyboard-W to
input-B and so on. This makes no cryptanalytic difference because it amounts to a known
renaming of the standard alphabet.

• The notches that move the rotors are fixed at the alphabet rings instead of the rotor bodies,
allowing a displacement with respect to the rotor contacts, and thus effecting a slight
variablity in the stepping of the rotors. In our example we ignore this complication that is
irrelevant for the commercial Enigma.

The primary rotor alphabets are

Clear: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Rot I: E K M F L G D Q V Z N T O W Y H X U S P A I B R C J
Rot II: A J D K S I R U X B L H W T M C Q G Z N P Y F V O E
Rot III: B D F H J L C P R T X V Z N Y E I W G A K M U S Q O
Refl B: Y R U H Q S L D P X N G O K M I E B F Z C W V J A T

The cycle decomposition of the reflector is

(AY)(BR)(CU)(DH)(EQ)(FS)(GL)(IP)(JX)(KN)(MO)(TZ)(VW)

Now assume we got the ciphertext:

NMSHH EZJOU OEAJA IDCWS VVMFY IVZQO QWSYO KCEVE QSTLC YMJKT
PFVK

We suspect it to be in Spanish but we don’t use this conjecture. However it seems likely that it
begins with the probable word GENERAL. Negative pattern search yields no contradiction to this
assumed known plaintext, however also excludes only very few of other possible positions.

Now we test all three rotors in each possible position in the search for an isomorph. For
Rotor I we get 26 pairs of intermediate texts:

Pos A: PBURWXL Pos B: TNQULJH Pos C: WRNHVNR Pos D: JUJMBQY
XWFPJHW ===> FEXJQMI UTMQRGM QPWRZNP

Pos E: OHTGVDQ Pos F: IMANAIF Pos G: PGSOBCP Pos H: QNHWTJV
NMCZOOC JIWOKWH TSBKHLB AZCHDHI
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Pos I: YORLYKP Pos J: NWXHSSU Pos K: JLREOHV Pos L: GHWAADN
SRUDNEJ HGZNUAR ===> RQTUMKG XWPMBRC

Pos M: CEXKEAS Pos N: MAPRHWM Pos O: TKUJUGI Pos P: LROYZNU
RQBBLJZ WVFLRYV XWIRLIF POVLQOM

Pos Q: AJKITFY Pos R: KYWOAUB Pos S: QIAIBEO Pos T: KODNJKT
===> UTAQRIE ONURJNT KJBJOOD WVCOIGJ

Pos U: PIQOYEN Pos V: QNVGUJU Pos W: IOPLRKV Pos X: NGWFNCD
===> AZKIELD DCZEQFI QPVQUBJ VUSUXNB

Pos Y: HLXBXHS Pos Z: DFFNEBO
POOXKRG WVYKPUA

We find 4 isomorphs, all with the pattern 1234567. All four yield a contradiction with the
involutory property (a “crash”): For position B the letter Q crashes, for position K, R, for position
Q, T, for position U, I.

The analoguous result for Rotor II is:

Pos A: TPNTALS Pos B: VRCWPNF Pos C: YTUFHPG Pos D: HWHAWSO
LKVDRFK AZBRNAM NMQNFOO CBIFUKR

Pos E: CFIORBU Pos F: QAQKZWJ Pos G: MOWCSKB Pos H: EKLRYGQ
UTXUHCA HGSHWRV ===> IHAWOEJ QPTOBTF

Pos I: TCDEFYL Pos J: GRSTUNT Pos K: VENLCAM Pos L: NTVYEPS
===> WVZBCLX LKGCKYM DCVKQZZ ===> SRDQFHO

Pos M: ALOZGHZ Pos N: BYUHJUO Pos O: JZBNSVW Pos P: PHQCNDY
NMFFXNG VUHXMCT ONKMHUU UTTHPJC

Pos Q: ENYUBJA Pos R: WCAJXYD Pos S: LUCEPQM Pos T: GJFMEFH
BAOPIEI ===> QPCIOMX YXYOVFP AZQVKLE

Pos U: OEOFRAV Pos V: HMJLGIR Pos W: NFXSYBJ Pos X: ULTHLHY
CBFKSSZ FESSUHH ===> ONHUWPA JIZWZRG

Pos Y: JSLPMOL Pos Z: RHARUDA
XWMZITN TSNIDWC

We find 5 isomorphs, again all with the pattern 1234567. All five contradict an involution.
Finally for Rotor III:

Pos A: OAFNPWZ Pos B: PMSOMIS Pos C: QNBRJJB Pos D: TOUOGKC
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XWJRURV CBQUHOH FENHRRI ===> SRKRWEJ

Pos E: QRDRSNJ Pos F: TOEETKG Pos G: GRLOUND Pos H: QEITVAA
BAHWZOM UTTZMTJ DCUMVWM EDVVOJZ

Pos I: VOFWWKM Pos J: YTCJXPN Pos K: LWOSNSO Pos L: UJPLZFP
LKWOXSJ IHXXYLO FEYYFUR CBOFCVE

Pos M: NSQUAOQ Pos N: WLRVBHR Pos O: XUSCEQH Pos P: EVTZBRT
ONACZCN POBZWZG QPCWIWP RQFIJTQ

Pos Q: BCJWEYU Pos R: YZVTRVV Pos S: VWWFBSY Pos T: HTXGGPV
===> SRCJKFX TSFKLGU JISLMHR VUCMNIO

Pos U: IFAHJBY Pos V: JGXIWCL Pos W: KHAJFDV Pos X: LINKYEA
===> WVHNDJA XWKDPKB AZXPQAC ===> XWGQRMD

Pos Y: MJXAHFD Pos Z: CKCMIGQ
AZZRUNE NMIUROF

This time we find 4 isomorphs. Only the last one is compatible with an involution. It gives us
7 cycles of the involution π̃: (AD)(EM)(GN)(IW)(KQ)(LX)(RY), the letters BCFHJOPSTUVZ
remaining.

If our assumption on the probable word GENERAL was correct, then the fast rotor is Ro-
tor III with initial position X. Now we use the lookup table for the involution π̃ containing
all 2 × 262 = 1318 possibilities for Rotors I and II in each order and all initial positi-
ons. This is the file vReflB_tr.xls in the directory http://www.staff.uni-mainz.de
/pommeren/Cryptology/Classic/Files/. There is exactly one involution that contains the
obligatory cycles: The slow rotor 3 is Rotor I in initial position H, and the medium rotor is Rotor II
in initial position D. Trying these settings on the online simulation at http://enigmaco.de/
we obtain the plaintext

General Franco llegara a Sevilla en la noche. Notifica al
alcalde.

For successfully cryptanalyzing the Enigma without plugboard we only needed a short crypto-
gram (54 letters) and a few letters (only 7) of known plaintext. The attack by isomorphs is quite
strong.

Compared with the attack on a linearly ordered (“straight-through”) rotor machine the re-
flecting rotor reduces the workload because the involutory property excludes most isomorphs.
On the other hand stripping off the last rotor is easier with a straight-through machine. But in
summary the reflecting rotor turns out to be an illusory complication.

http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Files/vReflB_tr.xls
http://enigmaco.de/
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6 Message Key Analysis by Rejewski

The German Army adopted the Enigma in 1930 as Enigma I. In the first years this variant of the
Enigma also had three rotors only—as had the commercial Enigma—but had the rotors wired
in another way. Furthermore the additional plugboard, sitting between in/output and the rotors,
substantially increased the key space, see Section 2.

The crucial point for the first break-in by the Polish cryptanalysts was a weakness in key
handling:

• The key consisted of a daily basic setting and an individual message key.

• The daily basic setting consisted of the rotor order, the ring positions, and the plug
connections—first at most 6 plugs—as well as an initial position of the rotors. This setting
was valid for all messages of the day—in the first years even for several days. It was known
to all participants of the communication network.

• The message key consisted of the initial positions of the three rotors. These could be
changed quickly and were to be set by the operator in a randomway. This key changed with
every message and thereby precluded the alignment in depth of all the messages encrypted
with the same daily basic setting.

• The receiver of the message knew the basic setting but not the message key. Therefore the
operator encrypted the message key, consisting of three letters, with the basic setting and
prefixed this three-letter-cryptogram to the message. This is no diminution of security as
long as the keys are selected in a purely random way. In practice they were not.

• Because the radiocommunication was interference-prone, and a distorted key would garble
the entire message, the message key was encrypted twice. Thus the proper message had a
six-letter prefix.Adding redundancy to amessage is not good idea in classical cryptography.

The operator hence had to encrypt six letters, a repeated trigram, using the basic setting, then to
set the message key—the rotor positions—and then to encrypt the proper message.

The Polish intercepted the encrypted radio messages of the German Army but couldn’t read
them—until in 1932 they hired the mathematician Rejewski and his colleagues Różicky und
Zygalski.

We describe their approach following Bauer’s book [1] whose presentation relies on Re-
jewski’s own description. At first we disregard the obstruction of the analysis that is caused by
the (unknown) ring setting, that is, by the unknown stepping of the middle and maybe also the
slow rotor.

Some Intercepted Messages

Suppose the first six letters of each of 65 intercepted messages from a single day were (in
alphabetic order)
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AUQ AMN | IND JHU | PVJ FEG | SJM SPO | WTM RAO
BNH CHL | JWF MIC | QGA LYB | SJM SPO | WTM RAO
BCT CGJ | JWF MIC | QGA LYB | SLM SPO | WTM RAO
CIK BZT | KHB XJV | RJL WPX | SUG SMF | WKI RKK
DDB VDV | KHB XJV | RJL WPX | SUG SMF | XRS GNM
EJP IPS | LDR HDE | RJL WPX | TMN EBY | XRS GNM
FBR KLE | LDR HDE | RJL WPX | TMN EBY | XOI GUK
GPB ZSV | MAW UXP | RFC WQQ | TAA EXB | XYW GCP
HNO THD | MAW UXP | SYX SCW | USE NWH | YPC OSQ
HNO THD | NXD QTU | SYX SCW | VII PZK | YPC OSQ
HXV TTI | NXD QTU | SYX SCW | VII PZK | ZZY YRA
IKG JKF | NLU QFZ | SYX SCW | VQZ PVR | ZEF YOC
IKG JKF | OBU DLZ | SYX SCW | VQZ PVR | ZSJ YWG

Two observations catch the eye:

1. Frequently even different operators use the same message keys. This could hint at certain
stereotypes. Looking for different messages with the same six-letter prefix a coincidence
calculation shows that they in fact are encrypted with the same key.

2. The repetition of the three letters of the message key is obvious: If two messages coincide
in the first letters, then also their fourth letters coincide. For example a Z at position 1
implies a Y at position 4. The same holds for positions 2 and 5 (U implies M) and 3 and 6
(W implies P).

Therefore the handling of the message keys could be detected from the pure ciphertext, if it
was not known already. In any case the cryptanalyst has a lot of ciphertext in depth: The first
six letters of each message. If according to the operating instructions the message keys were
randomly selected, this observation wouldn’t be of much use. However, as it turned out, the
message keys were non-random!

Rejewski’s Approach

Rejewski started his analysis by looking at the repeated message keys. Suppose

• a1a2a3 is the message key, hence the plaintext starts with the six letters a1a2a3a1a2a3.

• The ciphertext starts with the six letters c1c2c3c4c5c6.

• The first six Enigma substitutions, starting with the basic setting (+ the first rotor stepping
before the first letter is encrypted), are ρ1, ρ2, ρ3, ρ4, ρ5, ρ6.

Then we have

c1 = ρ1a1, c4 = ρ4a1, a1 = ρ1c1, c4 = ρ4ρ1c1

c2 = ρ2a2, c5 = ρ5a2, a2 = ρ2c2, c5 = ρ5ρ2c2

c3 = ρ3a3, c6 = ρ6a3, a3 = ρ3c3, c6 = ρ6ρ3c3
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c2 c3c1 c4 c5 c6

a2 a3a1 a1 a2 a3

=

6

ρ1
?

ρ4
?

6

Abbildung 3: Repeated message key

Figure 3 illustrates this situation.
The combined permutations τ1 = ρ4ρ1, τ2 = ρ5ρ2, τ3 = ρ6ρ3 are known if we have enough

different message keys. In the example the 40 different six-letter groups completely determine
τ1:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
A C B V I K Z T J M X H U Q D F L W S E N P R G O Y

and τ2:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
X L G D O Q Y J Z P K F B H U S V N W A M E I T C R

and τ3:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
B V Q U H C F L K G T X O Y D S N E M J Z I P W A R

In Rejewski’s terminology the triple (τ1, τ2, τ3) was called the characteristic of the day.
However we are far from knowing ρ1, . . . , ρ6, and far from knowing the basic setting, or even

a single message key!
At first sight the plugboard makes trouble. But Rejewski as a mathematician knew that the

Enigma substitutions with or without plugboard differ only by conjugation with the plugboard
substitution η. Therefore there is an invariant immune to the effect of the plugboard: the cycle
type of the permutations τ1, τ2, τ3, see Appendix A. The cycle decompositions are

τ1 : (A)(BC)(DVPFKXGZYO)(EIJMUNQLHT)(RW)(S) of type [10, 10, 2, 2, 1, 1]

τ2 : (AXT)(BLFQVEOUM)(CGY)(D)(HJPSWIZRN)(K) of type [9, 9, 3, 3, 1, 1]

τ3 : (ABVIKTJGFCQNY)(DUZREHLXWPSMO) of type [13, 13]

From this point the analysis has two possible continuations:
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• Assume the rotor wirings are unknown. The cryptanalyst assumes that the message keys
are chosen in a stereotypic way—an assumption that in the case of the Wehrmacht-Enigma
turned out to be true, see below. This assumption and the material delivered be a German
spy and containing the basic settings for a few days including the plug connections enabled
Róṡicky to derive the wiring of the fast rotor. Since the basic settings changed, each rotor
sometimes occupied position 1, so eventually the wirings of all three rotors became known.

• Assume the wirings are known. Then the basic setting can be completely determined and
all the messages of the day can be decrypted.

These approaches lead to successes, but not always. Rejewski and his colleagues also found
some other attack methods, in particular using known plaintext. Here we omit this.

Determining the Enigma Substitution from the Characteristics of the Day

We return to our example and try to determine the first six Enigma substitutions in basic
setting, ρ1, . . . , ρ6, from the known products τ1 = ρ4ρ1, τ2 = ρ5ρ2, τ3 = ρ6ρ3 whose cycle
decomposition is given above. We start with the schema

(A) (BC) (DVPFKXGZYO)
(S) (WR) (THLQNUMJIE)

(D) (AXT) (BLFQVEOUM)
(K) (YGC) (NRZIWSPJH)

(ABVIKTJGFCQNY)
(OMSPWXLHERZUD)

see Appendix A. We immediately coinclude that ρ1 and ρ4 both have the 2-cycle (AS), and ρ2
and ρ5 both have the 2-cycle (DK). But even for the 2-cycles of τ1 we don’t get a unique solution:
ρ1 could have the cycles (BW)(CR) and ρ4 the cycles (BR)(CW), or conversely.

To get on we assume—following Rejewski—that aaa is the most popular message key with
the German operators. (If this would turn out as erroneous we would try some other stereotype.)
If we are right, then this corresponds to the encrypted message key SYX SCW that occurs five
times, and implies the cycles

(AS) in ρ1, (AS) in ρ4,

(AY) in ρ2, (AC) in ρ5,

(AX) in ρ3, (AW) in ρ6.

This is nothing new for ρ1 and ρ4. But for τ2 it means that the alignment of the 3-cycles is correct,
and we read off the 2-cycles

(AY)(XG)(TC) in ρ2, (AC)(GT)(XY) in ρ5.

For τ3 the correct alignment is
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(ABVIKTJGFCQNY)
(XLHERZUDOMSPW)

and we find the unique solution

ρ3 = (AX)(BL)(CM)(DG)(EI)(FO)(HV)(JU)(KR)(NP)(QS)(TZ)(WY)

ρ6 = (AW)(BX)(CO)(DF)(EK)(GU)(HI)(JZ)(LV)(MQ)(NS)(PY)(RT)

Now let’s look at other encrypted message keys. The first one in our table is AUQ AMN, partially
decrypting to the plaintext

s?s s?s

We suspect the stereotypical message key sss. If we are right, then ρ2 has the 2-cycle (SU), and
ρ5 has the 2-cycle (MS). This gives the correct alignment of the 9-cycles ot τ2:

(D) (AXT) (BLFQVEOUM)
(K) (YGC) (JHNRZIWSP)

and completely determines ρ2 and ρ5:

ρ2 = (AY)(BJ)(CT)(DK)(EI)(FN)(GX)(HL)(MP)(OW)(QR)(SU)(VZ)

ρ5 = (AC)(BP)(DK)(EZ)(FH)(GT)(IO)(JL)(MS)(NQ)(RV)(UW)(XY)

The encrypted message key RJL WPX occurs four times, and partially decrypts as

?bb ?bb

Again we are quite sure that this reveals a stereotypical message key: bbb. We conclude that ρ1
has the cycle (BR)—hence also the cycle (CW)—and ρ4 has the cycle (BW), hence also the cycle
(CR).

For the complete solution the only open problem left is the alignment of the two 10-cycles
of τ1. We look at the group LDR HDE and partially decrypt it as

?kk ?kk

We are quite sure of the message key kkk. Then ρ1 has the 2-cycle (KL), the correct alignment
is

(A) (BC) (DVPFKXGZYO)
(S) (RW) (IETHLQNUMJ)

and the complete solution is

ρ1 = (AS)(BR)(CW)(DI)(EV)(FH)(GN)(JO)(KL)(MY)(PT)(QX)(UZ)

ρ4 = (AS)(BW)(CR)(DJ)(EP)(FT)(GQ)(HK)(IV)(LX)(MO)(NZ)(UY)

Now we can decrypt all message keys for the actual basic setting. However we do not yet
know the basic setting itself, and we cannot decrypt a single message. In particular we do not
know the ring setting and the positions of the rotors corresponding to the message keys.
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Rejewski’s Catalogue

In our example the permutations τ1 = ρ4ρ1, τ2 = ρ5ρ2, and τ3 = ρ6ρ3 are completely determined
and their cycle types are the partitions

[10 10 2 2 1 1], [9 9 3 3 1 1], [13 13]

of the number 26. Now we ask how characteristic is this triple of partitions for the basic setting of
the Enigma. The plug connections are irrelevant for this problem. We consider the rotor order as
an element of the permutation group S3, and the initial positions of the three rotors as elements
of the cyclic group Z/26Z. If we disregard the plugboard and the ring settings, the possible basic
settings form the set S3 × (Z/26Z)3. On the other hand we have the set P13 consisting of all the
101 partitions of the number 13 (in bĳective correspondence with the partitions of the number
26 in pairwise equal parts), and we have a map

S3 × (Z/26Z)3 −→ (P13)3

We would like this map to be injective. This seems not unrealistic in view of the cardinalities:
105,456 different basic settings, 1013 = 1,030,301 different partitions.

To get the complete value table of this map Rejewski designed a simple Enigma simula-
tor called Cyclometer that run through all basic settings in about one year. The result, called
Rejewski’s Catalogue, got lost. But there is a recent reconstruction in the paper

Alex Kuhl: Rejewski’s Catalog. Cryptologia 31 (2007), 326–331.

It turned out that the above map is not injective, but “almost” so: Many triples of partitions have
a unique preimage, most have only a few ones. However a few triples occur quite frequently, the
top ten being

Triple of partitions Frequency
[13 13] [13 13] [13 13] 1771
[12 12 1 1] [13 13] [13 13] 898
[13 13] [13 13] [12 12 1 1] 866
[13 13] [12 12 1 1] [13 13] 854
[11 11 2 2] [13 13] [13 13] 509
[13 13] [12 12 1 1] [12 12 1 1] 494
[13 13] [13 13] [11 11 2 2] 480
[12 12 1 1] [13 13] [12 12 1 1] 479
[13 13] [11 11 2 2] [13 13] 469
[12 12 1 1] [12 12 1 1] [13 13] 466

All in all there are 21230 different triples in the image of the map. 19604 of these, that is
92%, occur at most ten times, the numbers of these rare triples are

Pre-Im 1 2 3 4 5 6 7 8 9 10
Freq 11466 3381 1658 958 660 456 343 265 234 183
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Using the catalogue the Polish cryptanalysts usually found the correct basic setting in at most
20 minutes. It is unknown what they did in the exceptional situations where there are too many
false positives. Certainly some other useful details could be used. In any case we may assume
that the method was successful for at least 92% of all triples, corresponding to roughly 50% of
all cases.

We neglected the effect of the ring setting. This causes a rotor movement because the stepping
mechanism is connected with the alphabet ring. Now, what could happen? As long as only the
fast rotor moves we are in a situation included in the catalogue. The analysis is hampered if the
middle rotor moves between two of the first six letters. The chances are 5 of 26 ring settings, that
is about 19%. This lowers the total probability of success from 50% to about 40%.

There is even more potential for drawing conclusions from the collected message keys. For
example the moving of the middle rotor gives information about the ring setting of the first rotor.
An approach to determining the plugboard connections uses the fact that in the first years at
most six letter pairs were interchanged. If the cryptanalysts assume that there are no plugs at
all, then some true plaintext shows through the tentatively decrypted text. This enables them to
reconstruct the plugboard connections.

Epilogue

The plugboard turns out to be an illusory complication: It slows the cryptanalyst down a bit,
but not as much as the increase in keylength from 29 to 76 bits—expressed in terms of today—
suggested. The main cost of the cryptanalysis is exhausting the rotor order and positions, and this
could be made efficient by compiling lookup tables.

By the way the decrypted 40 different message keys from the list of 65 above are:

AUQ AMN : sss | IKG JKF : ddd | QGA LYB : xxx | VQZ PVR : ert
BNH CHL : rfv | IND JHU : dfg | RJL WPX : bbb | WTM RAO : ccc
BCT CGJ : rtz | JWF MIC : ooo | RFC WQQ : bnm | WKI RKK : cde
CIK BZT : wer | KHB XJV : lll | SYX SCW : aaa | XRS GNM : qqq
DDB VDV : ikl | LDR HDE : kkk | SJM SPO : abc | XOI GUK : qwe
EJP IPS : vbn | MAW UXP : yyy | SUG SMF : asd | XYW GCP : qay
FBR KLE : hjk | NXD QTU : ggg | TMN EBY : ppp | YPC OSQ : mmm
GPB ZSV : nml | NLU QFZ : ghj | TAA EXB : pyx | ZZY YRA : uvw
HNO THD : fff | OBU DLZ : jjj | USE NWH : zui | ZEF YOC : uio
HXV TTI : fgh | PVJ FEG : tzu | VII PZK : eee | ZSJ YWG : uuu

The astonishingly naive habits of the German cipher operators become obvious by looking at the
keyboard layout of Enigma:

Q W E R T Z U I O
A S D F G H J K

P Y X C V B N M L

All message keys belong to one of three groups of stereotypes

• iterated letters: sss, fff, ddd, ooo, . . .
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• three consecutive keys: rfv, rtz, wer, ikl, . . .

• three letters in alphabetic order: abc, uvw

BeforeWorldWar II the British cryptanalysts failed with the cryptanalysis of Enigma because
they tried to determine the wiring between in-/output and first rotor. The commercial Enigma D
connected Q with A, W with B, E with C and so on in the order of the keyboard. Assuming this
for Enigma I didn’t work. Rejewski who knew the Germans since he was a student at Göttingen
simply assumed that the wiring in any case should follow a simple scheme, and succeeded with
the assumption “A is connected to A, B to B etc.”

The point: Enigma C also had had this simple wiring, and this information could be found in
the patent file in the British Patent Office . . .

For later attacks (from 1938 on) of the Polish cryptanalysts against the Enigma, including a
complete example, see the paper

David Link, Resurrecting Bomba Kryptologiczna: Archeology of Algorithmic Ar-
tefacts, I. Cryptologia 33 (2009), 166–182.
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7 Wehrmacht Enigma and Known Plaintext

The Polish break into the Enigma relies on the way in which the German operators handled the
message keys. With the beginning of the war the method of message keying changed and the
pre-war cryptanalytic approaches broke down.

Equations for Known Plaintext

Already the Polish cryptanalysts had exlored the idea of using known plaintext—starting from the
observation that the German military in their messages used a lot of stereotypical phrases such
as “Heil Hitler” or “Oberkommando der Wehrmacht” (= Army’s High Command). Chunks of
known plaintext (called “cribs” by the british cryptanalysts) allow narrowing down the exhaustive
search to an amount that eventually may be mastered with the help of some cleverly constructed
electro-mechanical machines. Alan Turing largely and systematically expanded this approach.

Here is an example (Example 1, taken from [2] as virtually all authors of cryptographic texts
do). Let the ciphertext

ULOEB ZMGER FEWML KMTAW XTSWV UINZP R ...

be given. We suppose the message contains the phrase “Oberkommando der Wehrmacht” near
the beginning. A negative pattern search over the first 12 possible positions yields exactly one
hit:

U L O E B Z M G E R F E W M L K M T A W X T S W V U I N Z P R
o b e r k o = m a n d o d e r w e h r m a c h t
o b = r k o m m a n d o d e r w e h r m a c h t
= b e r k o m m a n d o d e r w e h r m a c h t
o = e r k o m m a n d o d e r w e h r m a c h t
o b e r k o m m a n d o d e r = e h r m a c h t

===> o b e r k o m m a n d o d e r w e h r m a c h t
o b = = k o m = a n d o d e r w e h r m a c h t
o b e r k o = m a n d o d e r w e h r m a c h t
o b e r k o m m a n d o d e r = e h r m a c h
o b = r k o m = a n d o d e r w e h r m a c
o b e r k o = m = n d o d e r w e h r m a
o b e r = o m m a n d o d e r w e h r m

We assume the rotor wirings of all five rotors as known. The naive approach—exhaustion by
brute force and assuming that the ring settings don’t interfere with the crib—would go through
all 60 possible rotor orders, all 263 = 17576 start positions, and all > 1014 plug configurations,
each time decrypt the ciphertext, and look if the known plaintext results. The huge number of
plug configurations makes this approach hopeless, the “virtual” keylength for this approach being
about 67 bits (1023/262 ≈ 1.6 · 1020 ≈ 267). (We first neglect the ring settings that have little
impact on the cryptanalysis.)

Fortunately, using known plaintext, we may find conditions that involve only a single plug .
Recall the general situation as shown in Figure 4.
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Rotor No. R 3 2 1 P
-

Plaintext aiãi

6
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Ciphertext ci
c̃i

︸ ︷︷ ︸
Combined rotor
substitution ϕi

︸ ︷︷ ︸
Plugboard

substitution η

η−1

Abbildung 4: Enigma with plugboard

Assume a sequence a1 . . . am of known plaintext is given with corresponding ciphertext
c1 . . . cm, the respective combined rotor substitutions being ϕ1, . . . , ϕm and the “full” Enigma
substitutions, ρi = η−1ϕiη. This gives the equations

c1 = ρ1a1 = η−1 ϕ1 η a1
...

cm = ρmam = η−1 ϕm η am

or ηci = ϕiηai. Denoting the image of a letter under the (fixed but unknown) plugboard
substitution by a tilde we get:

Lemma 1 For a sequence a1 . . . am of known plaintext we have

c̃i = ϕi ãi and ãi = ϕi c̃i for i = 1, . . . ,m.

For the second equation we used the fact that the combined rotor substitutions ϕi are involu-
tions.

Looking for Cycles

Returning to Example 1 we consider the special situation

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2
i = 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4
c_i = Z M G E R F E W M L K M T A W X T S W V U I N Z
a_i = O B E R K O M M A N D O D E R W E H R M A C H T

From such a plaintext-ciphertext pair we extract the Turing graph: The nodes correspond
to the letters A . . . Z of the standard alphabet. For each pair (ai, ci) of plaintext letter and
corresponding ciphertext letter an edge is drawn between these two letters, and this edge is
labeled by the index i. Due to the reciprocity between plaintext and ciphertext, the situation is
modeled by an undirected graph. An edge with label j between nodes s and tmeans that t = ρjs
and s = ρjt—or t̃ = ϕj s̃ and s̃ = ϕj t̃. Figure 5 shows the Turing graph for Example 1.
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Abbildung 5: Turing graph for Example 1
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Turings approach uses the cycles in this graph (“closures” in Turing’s way of speaking).
In the notation of Lemma 1 we find:

E = ρ7 M, M = ρ9 A, A = ρ14 E, and Ẽ = ϕ7 M̃, M̃ = ϕ9 Ã, Ã = ϕ14 Ẽ,

and combine these three equations into one cycle equation

E = ρ7 ρ9 ρ14 E. and Ẽ = ϕ7 ϕ9 ϕ14 Ẽ.

In general we have:

Theorem 2 (Fixed Point Theorem of Rejewski/Turing) Let ρi be the Enigma substitution in
position i, and ϕi = ηρiη

−1 be the substitution without plugs. Then a letter a is a fixed point of
a composition ρi1 · · · ρik if and only if the plugged letter ã is a fixed point of ϕi1 · · ·ϕik .

Thus the fixed point property of a cycle is in a certain sense independent of the plug
connections.

Corollary 1 (Turing’s cycle condition) Each loop in the Turing graph gives a necessary con-
dition for the correct key of the Enigma encryption in the form

ã = ϕi1 . . . ϕik ã

for a letter a. In particular ã is a fixed point of the corresponding composition of unplugged
Enigma substitutions.

Although mathematically trivial this theorem and its corollary are the keys to eliminating the
complexity of the plugboard by a meet-in-the-middle attack.

What is the benefit of Turing’s cycle condition? Suppose in Example 1 we try all 26 possible
values for Ẽ = η E and all 263 possible rotor positions for all 60 possible rotor orders, searching for
fixed points of ϕ7 ϕ9 ϕ14—an exhaustion of 60×264 = 27, 418, 560 cases. Then the probability
that the cycle condition is fulfilled is about 1/26. This rules out≈ 25/26 ≈ 96% of all cases and
leaves us with ≈ 60 × 263 cases—not really impressive, but it could be a good start: Suppose
we find two cycles involving E, then we are left with ≈ 60 × 262 cases, for three cycles with
≈ 60× 26 cases, for four cycles with ≈ 60 cases, i. e. with the exhaustion of the possible rotor
orders. And the outcome of this search is:

• The correct initial rotor positions for our known plaintext

• The correct plugboard images for all letters that occur in one of the cycles—a significant
part of the complete plug configuration

Now in our Example 1 (that is in fact Deavour’s and Kruh’s) we see two other cycles
involving E:

Ẽ = ϕ4 R̃, R̃ = ϕ15 W̃, W̃ = ϕ8 M̃, M̃ = ϕ7 Ẽ,

and
Ẽ = ϕ4 R̃, R̃ = ϕ5 K̃, K̃ = ϕ11 D̃, D̃ = ϕ13 T̃, T̃ = ϕ17 Ẽ,

giving the two additional cycle conditions

Ẽ = ϕ4 ϕ15 ϕ8 ϕ7 Ẽ, Ẽ = ϕ4 ϕ5 ϕ11 ϕ13 ϕ17 Ẽ.

The complete cycle constellation may be visualized by Figure 6.
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Abbildung 6: Turing cycles in Example 1

Evaluating the Cycle Conditions

In evaluating the cycle conditions one sets the rotors to start positions and then steps Rotor 1
only. In lucky cases also in the real situation only Rotor 1 moves. In bad cases Rotor 2 moves,
maybe even Rotor 3. Since the ring setting is unknown, these stepping positions are unknown.
Because in the example all the cycles are between plaintext positions 4 and 17, the length of the
effectively used plaintext segment is 14, and the probability for a stepping of Rotor 2 in between
is 13/26 = 50%, a stepping that would invalidate the approach, and a good argument for using
rather short cribs.

Now assume that we have identified the correct rotor order and the correct initial positions
of all the rotors, and no interfering movement of Rotors 2 and 3 occurs for the involved plaintext
section a1 . . . am. Then the combined rotor substitutions ϕ1, . . . , ϕm are known, and the plug
image s̃ = ηs is known for all letters s that occur in the cycles. In the example we know Ẽ = ηE
and consequently

R̃ = ϕ4Ẽ, K̃ = ϕ5R̃, M̃ = ϕ7Ẽ, W̃ = ϕ8M̃, Ã = ϕ9M̃,

D̃ = ϕ11K̃, Õ = ϕ12M̃, T̃ = ϕ13D̃, X̃ = ϕ16W̃.

Furthermore we find F̃ = ϕ6Õ. Since η is an involution the inverse relations might involve further
letters. That is we know the plugboard substitutes of at least 11 letters.

What is yet missing is

• The plugboard substitutes of the remaining letters

• The stepping position of Rotor 2

To continue assume first that the remaining letters are unchanged by the plugboard and decrypt
cm+1, . . . As soon as the resulting plaintext is unreadable either a new plugboard connection or
the stepping position is detected. If the crib occurred in the middle of the ciphertext, we run the
same procedure backwards to the beginning of the message.
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Conclusion

The huge number of possible plug settings turns out to be an illusory complication: The exhaustion
used the plug connection of a single letter only. In good cases where the procedure yields a unique
solution of the cycle conditions the effort was testing 26 plug connections with 263 start positions
for each of the 60 rotor orders, that is 27, 418, 560 ≈ 1.6 · 224 cases. In each case we have to do
some trial encryptions for the letters in the cycles plus some house-keeping plus some finishing.
So we may guess that the search space is dropped to about 30 bits.

As soon as the daily key—rotor order, ring settings, plug connections, initial positions of the
rotors—is known, reading all further messages of the day comes for almost no additional costs
because all message keys are encrypted with the same initial rotor positions.

A Note on the Technical Realization: Turing’s Bombe

Turing’s Bombe consisted of a battery of several Enigmas (without plugboards), called “scram-
blers” and in one-to-one correspondence with the nodes of the Turing graph, synchronously
stepping through all 263 rotor positions. For each edge two scramblers were connected by a
cable, and set to start positions differing by the number that corresponded to the label of the edge.
Therefore the physical arrangement of the components was an exact model of the graph. The
cable had 26 wires, so all choices for the plug connection of a selected letter (Ẽ in Example 1)
could be tested in parallel. The cycle conditions corresponded to closed electrical circuits that
made the bombe stop. Then the operator noted the actual rotor positions and restarted the bombe
with the next set of positions.

Using enough scramblers even all the sixty rotor orders could be tested in parallel, dropping
the effective search costs to 263, equivalent with a complexity of 14 bits only. A complete run of
the bombe took 11 minutes. (Today a simulation on a PC without parallel execution takes about
5 minutes.)

Unfortunately in general the solution was far from unique, so the bombe produced a huge
number of “false positive” stops. An idea of Welchman largely reduced the number of false
positives by a clever add-on to the bombe, see Section 8 below, and this was crucial for the
success of the British cryptanalysts against the Enigma.
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8 Example 2

Now we go through an example step by step and produce a complete solution for the ciphertext

ZIDPV USABH HEABG RZMOP UWVJD MLPCS PFTSH ISJMR RFSKU KHUAT
SFDNB GWTAN CSZZW HPHNP DDSAX GTRGY OZPKO EAGRG YSGQD KKNIT
DWFZZ INSYH UTSZR KJDVJ JLJIJ MQHCB RINYI

Aligning Known Plaintext

We believe the plaintext contains “Oberleutnant zur See” as the rank of the sender, that is we
assume a crib near the end of the message, and assume that at most 20 letters follow, containing
the name. The scheme

RGYSGQDKKNITDWFZZINSYHUTSZRKJDVJJLJIJMQHCBRINYI
[ 89] xstopxoberleutnantxzurxseex
[ 90] xstopxoberleutnantxzurx=eex
[ 91] x=topxoberleutna=txz=rxseex
[ 92] xstopxoberleutnantxzurxseex
[ 93] xstopxoberleut=antxzurxseex
[ 94] xstopxoberleutnantxzu=xseex
[ 95] xstopxoberleutnan=x=urxseex
[ 96] xstopxoberleutnantxzurxseex
[ 97] xstopxoberleutnantxzurxseex
[ 98] xs=opxoberleutnantxzurxseex
[ 99] xstopxoberle==nantxzurxseex
[100] xstopxoberleutnantxzurxseex
[101] xstopxoberleutnantxzurxseex
[102] xstopxoberleutnantxzurxseex
[103] xstopxoberleutnantxzurxseex
[104] xstopxoberleutnantxzurxseex
[105] xstopxoberleutnantxzurxseex
[106] xstopxobe=leutnantxzurxseex
[107] x=topxoberleutnantxzurxseex
[108] xstopxoberleutnantxzurxseex
[109] xstopxoberleutnantxzurxseex

RGYSGQDKKNITDWFZZINSYHUTSZRKJDVJJLJIJMQHCBRINYI

gives 12 hits for the negative pattern search among the 21 considered positions: 89, 92, 96, 97,
100, 101, 102, 103, 104, 105, 108, 109—at least a slight reduction for manual cryptanalysis.

Constructing a Turing Graph

Somewhere along the way we test position 103 and consider the crib
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FZZINSYHUTSZRKJDVJJLJIJMQHC
xstopxoberleutnantxzurxseex

We derive the cycle diagram in Figure 7.
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Abbildung 7: Turing cycles for Example 2

Therefore as “menu”—the chunk of known plaintext to be examined—we use the sequence
of length 20 starting from position 104 (that corresponds to the edge with label 2):

ZZINSYHUTSZRKJDVJJLJ
STOPXOBERLEUTNANTXZU

To exhaust all the rotor orders, starting positions, and plug connections for this chunk of
known plaintext we use Jean-François Bouchaudy’s Turing Bombe Simulator, to be found
at http://cryptocellar.web.cern.ch /cryptocellar/simula/jfb/BP12.zip.

In a virtual machine on a 2.93 GHz Intel Core-i7 processor it needed 5 minutes for
all 60 rotor orders and produced exactly one solution in “Welchman mode” (the
diagonal board, see later).

Using only the rotors I, II, and III and disabling the diagonal board—that we haven’t introduced
yet—we get 6 “solutions” in a few seconds

(1) I II III KFX
(2) I II III WHV
(3) II I III ZYN
(4) III I II JXS

http://cryptocellar.web.cern.ch/cryptocellar/simula/jfb/BP12.zip
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(5) III II I IES
(6) III II I QSV

Exploring Solution (1)

Let us try the first proposed solution. We begin by decrypting the ciphertext with a ring setting
that causes no stepping of themiddle rotor for the next 20 positions, and no plugs in the plugboard.
Missing plugs will be detected by the following considerations.

The assumption on the ring setting is somewhat optimistic. It it fails for all of the
solutions, we have to try harder, experimenting with shorter cribs or guessing the
ring setting of the fast rotor.

We use the rotor order I (slow), II (middle), III (fast), and the start positions KFX. This gives the
trial decryption

ZZINSYHUTSZRKJDVJJLJIJMQHCBRINYI
XPMEJJXPGQBMIVVUKRSISPTNFVAZEQTG

This doesn’t look like plaintext, but we have not yet explored the plugs. We start with the plug
connection Z̃ of Z, the letter with the maximum number of edges in the graph. We try all 26
possible connections, see Table 1

Only line X is compatible with the cycle, giving Z̃ = X. For a manual check of the other
cycles we use the complete description of the combined rotor substitutions ϕ2, . . . , ϕ21 given in
Table 2. The “plugged” cycles fit “unplugged” ones:

Z̃
3−→ T̃ 10−→ R̃ 13−→ Ũ 9−→ Ẽ 12−→ Z̃ fits X

3−→ I 10−→ Y 13−→ F 9−→ L 12−→ X

Z̃
2−→ S̃ 6−→ X̃ 19−→ J̃ 21−→ Ũ 9−→ Ẽ 12−→ Z̃ fits

X
2−→ Z 6−→ F 19−→ N 21−→ F 9−→ L 12−→ X

T̃
10−→ R̃ 13−→ Ũ 21−→ J̃ 18−→ T̃ fits I

10−→ Y 13−→ F 21−→ N 18−→ I

Therefore the cycle conditions hold indeed.
However we didn’t need to check them because reading off the plug connections from the

first loop, row “X” in Table 1, we get Z̃ = X, S̃ = Z, and this already is a contradiction.
Therefore solution (1) was a false alarm. This observation leads to Welchman’s plug

condition expressing the fact that the plug substitution is an involution:

If ã = b, then also b̃ = a for each pair of letters a, b ∈ Σ.

Exploring Solution (2)

We try the second proposed solution. As before we begin by decrypting the ciphertext, starting
from position 103, rotor order I, II, III. Because V is the turnover point of Rotor III we have to turn
Rotor II back by one position in order to get the correct start positions WGV. The trial decryption
gives
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Z̃
2−→ S̃

11−→ L̃
20−→ Z̃

A C V W
B L H G
C A M B
D F N R
E G K U
F D Z E
G E T A
H O R N
I V C P
J M A T
K U W V
L B I F
M J P C
N S Q J
O H L S
P R O Y
Q Y X D
R P J Q
S N F I
T W U K
U K G H
V I B M
W T E Z
X Z D X
Y Q S L
Z X Y O

Tabelle 1: Example 2—Possible plug connections for the first cycle
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Substition in Substitution table
rotor position A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

ϕ2: KFX C L A F G D E O V M U B J S H R Y P N W K I T Z Q X
ϕ3: KFY D C B A Y S L J X H O G N M K Z R Q F V W T U I E P
ϕ4: KFZ N X E F C D P S M Q U Y I A V G J T H R K O Z B L W
ϕ5: KFA B A X V N Y K Q O Z G M L E I U H T W R P D S C F J
ϕ5: KFB U D L B M Z O Y V S T C E Q G W N X J K A I P R H F
ϕ5: KFC Z U O T X H L F P Y Q G V S C I K W N D B M R E J A
ϕ5: KFD J D U B Y Q R X S A T P O Z M L F G I K C W V H E N
ϕ5: KFE R C B W H L O E J I M F K S G U T A N Q P X D V Z Y
ϕ10: KFF M Z H X W P T C Y R O U A Q K F N J V G L S E D I B
ϕ11: KFG M I V Z T N K L B P G H A F R J S O Q E W C U Y X D
ϕ12: KFH F Z R W V A T I H Y O X N M K U S C Q G P E D L J B
ϕ13: KFI J S U G W Y D K L A H I R P Q N O M B V C T E Z F X
ϕ14: KFJ V Y O W F E H G K S I P T R C L U N J M Q A D Z B X
ϕ15: KFK F R W K Y A M P X V D N G L Q H O B U Z S J C I E T
ϕ16: KFL B A I V J S H G C E Q O N M L T K U F P R D Z Y X W
ϕ17: KFM R J I O K Y M X C B E P G Q D L N A Z W V U T H F S
ϕ18: KFN R Q S P U H L F N K J G T I Z D B A C M E W V Y Z O
ϕ19: KFO W V E K C N X Z O R D Y P F I M S J Q U T B A G L H
ϕ20: KFP T M P X Z I H G F Q U S B R Y C J N L A K W V D O E
ϕ21: KFQ C T A V M N Y Z J I Q O E F L X K W U B S D R P G H

Tabelle 2: Example 2—Combined rotor substitutions for rotor order I, II, III without turnover of
Rotor II. Calculated using the online Enigma simulation at http://enigmaco.de/.
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ZZINSYHUTSZRKJDVJJLJIJMQHCBRINYI
STOPXOBERLEUTNANTXZURXSEEXJAEGER

—a perfect result. We see that indeed V is the true turnover point of Rotor III, that means that
the ring setting of this rotor is A. Moreover all letters except F and W occur, proving that they are
unplugged, and the only possible plug connection could be between F and W.

From position 103 we go back for 26 positions and start with the rotor setting WFV. We get

RGYOZPKOEAGRGYSGQDKKNITDWF
ISTXLEUCHTTONNEXKNULLNEUNX

This proves that also F and W are unplugged. The only key element yet unknown is the ring setting
of rotor II.

We go back for another 26 letters and start with the rotor positions WEV. This gives the trial
decryption

FDNBGWTANCSZZWHPHNPDDSAXGT
SHKTDFEEFXMAMPPGAGRJIXKMXN

and the end rotor positions XFV instead of WFV. Something must have happened in between, and
this could only be the stepping of Rotor I. The position of Rotor II then must have been E. Because
of the double stepping of Rotor II the rotor start positions for this section of text must be VDV.
Let’s try this:

FDNBGWTANCSZZWHPHNPDDSAXGT
XHDREIZEHNXSTOPXERLOSCHENX

This is correct plaintext and proves that Rotor II has turnover point E, corresponding to ring
setting A.

We conclude that the rotor start positions for the complete text are VCW, and get the decryption

ZIDPVUSABHHEABGRZMOPUWVJDMLPCSPFTSHISJMRRFSKUKHUATS
MELDUNGXVONXFREGATTEXGERMANIAXSTOPXPLANQUADRATXQELF

FDNBGWTANCSZZWHPHNPDDSAXGTRGYOZPKOEAGRGYSGQDKKNITDWF
XHDREIZEHNXSTOPXERLOSCHENXISTXLEUCHTTONNEXKNULLNEUNX

ZZINSYHUTSZRKJDVJJLJIJMQHCBRINYI
STOPXOBERLEUTNANTXZURXSEEXJAEGER

or, written in a more readable form,

Meldung X von X Fregatte X Germania X Stop X Planquadrat X Qelf X Hdreizehn
X Stop X Erloschen X ist X Leuchttonne X Knullneun X Stop X Oberleutnant X zur
X See X Jaeger
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A Note on the Technical Realization:Welchman’s Diagonal Board

To systematically explore Welchman’s plug conditions we consider the connected component
of the Turing graph that we used. Assume it consists of the set M = {s1, . . . , sr} of letters.
When the bombe stops it also provides the plug connection of the selected letter, say s1 with s̃1,
and allows to derive the set of plug connections M̃ = {s̃1, . . . , s̃r}.

For the false “solution” (1) we had M = {E,J,L,R,S,T,U,X,Z}, and the provided or
derived plug connections

Ẽ = L, J̃ = N, L̃ = D, R̃ = Y, S̃ = Z, T̃ = I, Ũ = F, X̃ = F, Z̃ = X.

We observe two kinds of contradictions:

1. Ũ = F, X̃ = F: Two letters inM cannot be connected to the same letter in M̃ .

2. Ẽ = L, L̃ = D, hence ηE = Ẽ ∈ M ∩ M̃ and η2E 6= E. In the same way S̃ = Z, Z̃ = X,
η2S 6= S, and Z̃ = X, X̃ = F, η2Z 6= Z.

Checking for these contradictions in software is easy.Welchman’s ingenious ideawas to imagine
and construct a simple device, the diagonal board, that was attached to the bombe and prevented
stops in situations that contained contradictions to the plug conditions.

The improved bombe, called Turing-Welchman Bombe, provided only very few false
positives. Moreover it not only used the letters in the cycles but also “non-cycle” letters connected
to a cycle, in other words, a complete connected component of the Turing graph. In fact it even
worked when the graph didn’t have any cycles.
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9 Example 3

Since Example 2 turned out to be quite simple, we analyze one more example. The ciphertext is

CZSTQ GJYNF ZYOLR TLXBR YXJCE MONAS XIPHU CXSAD BGEEQ ROBPI
QMUDP LWYDD GRCMC MJLGW TWBDK BHCPM UMEIB TMCUR DOVPU XNGBZ
QRBKD RPCKL XQKYM CSLGP NHIGD LOHBM PYPNV MTZVU EBDCZ AZLSX
OSZHL GSSZN MBBWS FDTUW IAXEH HLQGR LXMVA MXLWF QGOOA RZXUH
VUAWM KQDXH ZOIJI AMXCI TQNUM ZTZIW CKSBH HRZBH HRNZE WZCGV
BQ

and we are quite sure that the plaintext begins with “Befehl X des X Fuehrers X Stop X”. We
align this with the ciphertext:

CZSTQ GJYNF ZYOLR TLXBR YXJCE
BEFEH LXDES XFUEH RERSX STOPX

Negative pattern search yields no contradiction. From positions 1 to 20 we derive the Turing
graph whose largest connected component is shown in Figure 8. It has three cycles that overlap,
two of them of length 2. Running the Bombe Simulator in “Turingmode” for these three cycles
yields about 1500 ≈ 60 · 26 solutions, as expected. The (lexicographically) first of them is

Rotor order I II III
Start position ZPB

Table 3 describes the transformations ϕ2, . . . , ϕ20.

X JZ

TEL

N

G R H Q
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164
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18 20
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�
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��
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Abbildung 8: Turing graph for Example 3, largest connected component

Now we consider the E-L-E cycle and the E-Z-X-R-T-E cycle, see Table 4. The L-E cycle
has 6 compatible plug connections for E and L. The E-Z-X-R-T-E cycle boils this number down
to 1. The third cycle, X-R-X, fits into the picture, because ϕ20X̃ = ϕ20I = B = R̃.

Again the Welchman conditions rule out this solution because of the contradiction in the
first row: L̃ = B in column 2, R̃ = B in column 6. And indeed, running the Bombe Simulator in
“Welchman mode” yields a unique solution:
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Substition in Substitution table
rotor position A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

ϕ2: ZPB N G E S C I B R F W X U O A M Y Z H D V L T J K P Q
ϕ3: ZPC M J S H Q O K D W B G V A U F Z E Y C X N L I T R P
ϕ4: ZPD F L H N I A T C E R X B Y D Z Q P J V G W S U K M O
ϕ5: ZPE V D G B J T C K U E H Y W Z S R X P O F I A M Q L N
ϕ6: ZPF P T I U J Z Q M C E Y S H W X A G V L B D R N O K F
ϕ7: ZPG R D I B M Q U V C Y O T E X K Z F A W L G H S N J P
ϕ8: ZPH Q L F T K C P R Z S E B X W U G A H J D O Y N M V I
ϕ9: ZPI D X J A L Q I S G C U E W R Z V F N H Y K P M B T O
ϕ10: ZPJ S W X L R U Q T O M Y D J Z I V G E A H F P B C K N
ϕ11: ZPK P E O H B Z Q D N R W Y U I C A G J X V M T K S L F
ϕ12: ZPL R M S Y L U T Q P X Z E B V W I H A C G F N O J D K
ϕ13: ZPM J P S G Y N D Z Q A T U V F X B I W C K L M R O E H
ϕ14: ZPN B A Z W Y R I O G T U X Q V H S M F P J K N D L E C
ϕ15: ZPO H M S Y O R L A T U P G B X E K W F C I J Z Q N D V
ϕ16: ZPP K F D C R B S T U N A P V J Z L X E G H I M Y Q W O
ϕ17: ZPQ B A V L Y S U O K M I D J P H N Z X F W G C T R E Q
ϕ18: ZPR N I J Q T U M W B C V S G A Y X D Z L E F K H P O R
ϕ19: ZPS Q P K R U J Z N L F C I W H T B A D Y O E X M V S G
ϕ20: ZPT V I G L Z P C M B N S D H J Y F X U K W R A T Q O E

Tabelle 3: Example 3—Combined rotor substitutions for rotor order I, II, III without turnover of
Rotor II. Calculated using the online Enigma simulation at http://enigmaco.de/.

http://enigmaco.de/
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Ẽ
14−→ L̃

17−→ Ẽ
2−→ Z̃

11−→ X̃
18−→ R̃

16−→ T̃
4−→ Ẽ

A B A N I B F A
B A B G Q D C H
C Z Q †
D W T †
E Y E C O Y W U
F R X †
G I K †
H O H R J C D N
I G U †
J T W †
K U G †
L X R †
M Q Z †
N V C †
O H O M U F B L
P S F †
Q M J †
R F S †
S P N †
T J M †
U K I †
V N P †
W D L †
X L D †
Y E Y P A N J R
Z C V †

Tabelle 4: Example 3—Possible plug connections for the first two loops
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Rotor order III II I
Start position BMX

with the plugs A-Z, C-X, E-V. A trial decryption with these plugs and ring settings AAA shows
parts, but not all of the known plaintext:

EUEHLXHECXGFEHRERLXZTOPX
* * * ** * *

(B)EFEHLXDESXFUEHRERSXSTOPX

To get on we use a second connected component of the Turing graph, see Figure 9.

C B S Y D

F

1 19 21 8

3 10
@
@

@
@
@

12

Abbildung 9: Turing graph for Example 3, second connected component

Trying the cycle S-F-S with ϕ3 and ϕ10 using all the plugs for S that are yet free gives two
possible solutions: S-U-S and U-S-U. The second one violates the Welchman condition for S.
The first one yields the plugs S-S and F-U. Furthermore we get Ỹ = ϕ12F̃ = ϕ12U = B, and
D̃ = ϕ8Ỹ = ϕ8B = W.

Up to now we identified the plugs A-Z, B-Y, C-X, D-W, E-V, F-U. Trial decryption yields the
perfect plaintext

EFEHLXDESXFUEHRERSXSTOPX

So we try to decrypt the complete ciphertext with the rotor order III II I, the ring settings AAA,
the plugs A-Z, B-Y, C-X, D-W, E-V, F-U, and the start positions BMW, and get

BEFEH LXDES XFUEH RERSX STOPX IMXFA LLEXZ XZTXU NWAHR SQEIN
LIQEN XFRAN ZOESI SQENX ANGRI FFSXS INDXD IEXWE STBEF ESTIG
UNGEN XJEDE RXZAH LENMA ESSIG ENXUE BERLE GENHE ITXZU MXTRO
TZXZU XHALT ENXST OPXFU EHRUN GXUND XTRUP PEXMU ESSEN XVONX
DIESE RXEHR ENPFL IQTXD URQDR UNGEN XSEIN XSTOP XHEIL XHITL
ER
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Befehl des Fuehrers STOP Im Falle z. Zt. unwahrscheinlichen franzoesischen An-
griffs sind die Westbefestigungen jeder zahlenmaessigen Ueberlegenheit zum Trotz
zu halten STOP Fuehrung und Truppe muessen von dieser Ehrenpflicht durchdrun-
gen sein STOP Heil Hitler

We observe that the slow rotor didn’t step during this decryption. In general the a priori
probability for its stepping was 257 letters of text divided by 676 possible positions of the other
two rotors ≈ 0.38.
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10 Discussion

• Turing’s attack against the cycles of the graph also works for non-involutory rotor machi-
nes. Then the graph model is a directed graph and the attacker has to find directed cycles.
These are quite rare, therefore the attack loses most of its power.

• Exercise. Find the directed cycles in Figures 5, 7, 8, 9.

• The Turing-Welchman Bombe used the involutary characters of the complete Enigma
substitution as well as of the plugboard. The inventors of both of these “features” apparently
didn’t see the weaknesses.

• Nevertheless the addition of the plugboardmade the machine much stronger. The isomorph
attack worked by paper and pencil. Attacking the Wehrmacht Enigma only worked with
the help of heavy machinery.
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