6 Autokey Ciphers

The first one to propose autokey ciphers was BELLASO in 1564. Also this cipher is often attributed to VIGENÈRE.

Encryption and Decryption

The alphabet Σ is equipped with a group operation *. As key chose a string $k \in \Sigma^l$ of length l. For encrypting a plaintext $a \in \Sigma^r$ one concatenates k and a and truncates this string to r letters. This truncated string then serves as keytext for a running-key encryption:

Plaintext:	a_0	a_1	 a_{l-1}	a_l	 a_{r-1}
Keytext:	k_0	k_1	 k_{l-1}	a_0	 a_{r-l-1}
Ciphertext:	c_0	c_1	 c_{l-1}	c_l	 c_{r-1}

The formula for encryption is

$$c_{i} = \begin{cases} a_{i} * k_{i} & \text{for } i = 0, \dots l - 1, \\ a_{i} * a_{i-l} & \text{for } i = l, \dots r - 1. \end{cases}$$

Example, $\Sigma = \{A, ..., Z\}, l = 2, k = XY:$

Ρ	L	А	Ι	Ν	Т	Е	Х	Т
Х	Y	Ρ	L	А	Ι	N	Т	Е
М	J	Ρ	Т	Ν	В	R	Q	Х

Remark: Instead of the standard alphabet (or the TRITHEMIUS table) one could also use a permuted primary alphabet.

Here is the formula for decryption

$$a_{i} = \begin{cases} c_{i} * k_{i}^{-1} & \text{for } i = 0, \dots l - 1, \\ c_{i} * a_{i-l}^{-1} & \text{for } i = l, \dots r - 1. \end{cases}$$

A Perl program is **autokey.pl** in the web directory http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Perl/.

Approaches to Cryptanalysis

The four most promising approaches are:

- Exhaustion for small *l*.
- Interpretation as running-key cipher from position l, in case of a key word or phrase from the plaintext language even from the beginning of the ciphertext:

- Probable word and zigzag exhaustion
- Frequent word fragments
- Frequency analysis
- Frequent letter combinations

The repetition of the plaintext in the key makes the task considerably easier.

- Similarity with the TRITHEMIUS-BELLASO cipher, see Section 8 below
- Algebraic cryptanalysis (for known plaintext): Solving equations. We describe this for a commutative group, the group operation written as addition, that is, we consider Σ , Σ^r , and Σ^{r+l} as \mathbb{Z} -modules.

We interpret the encryption formula as a system of linear equations with an $r \times (r+l)$ coefficient matrix:

$$\begin{pmatrix} c_0 \\ c_1 \\ \vdots \\ c_{l-1} \\ c_l \\ \vdots \\ c_{r-1} \end{pmatrix} = \begin{pmatrix} 1 & 0 & \dots & 1 & & \\ & 1 & 0 & \dots & 1 & \\ & & \ddots & \ddots & & \ddots & \\ & & & 1 & 0 & \dots & 1 \end{pmatrix} \begin{pmatrix} k_0 \\ k_1 \\ \vdots \\ k_{l-1} \\ a_0 \\ \vdots \\ a_{r-1} \end{pmatrix}$$

This is a system of r linear equations with the r + l unknowns (the components of) $k \in \Sigma^l$ and $a \in \Sigma^r$. "In general" such a system is solvable as soon as l of the unknowns are guessed, that means known plaintext of length l (not necessarily connected). Since the involved \mathbb{Z} -modules are (in most interesting cases) not vector spaces, solving linear equations is a bit intricate but feasible. This is comprehensively treated in the next chapter.

Ciphertext Autokey

Using ciphertext instead of plaintext as extension of the l-letter key is a useless variant, but also proposed by VIGENÈRE. We only describe it by an example:

Example, $\Sigma = \{A, \dots, Z\}, l = 2, k = XY$:

Exercise. Give a formal description of this cipher. Why is cryptanalysis almost trivial? Work out an algorithm for cryptanalysis.

Exercise. Apply your algorithm to the cryptogram

IHTYE VNQEW KOGIV MZVPM WRIXD OSDIX FKJRM HZBVR TLKMS FEUKE VSIVK GZNUX KMWEP OQEDV RARBX NUJJX BTMQB ZT

Remark: Using a nonstandard alphabet makes this cipher a bit stronger.