
PID Generator

Manual

Markus Wagner, Jutta Moormann

Institute for Medical Biometry, Epidemiology and Informatics

University of Mainz

moormann@imbei.uni-mainz.de

January 7, 2005



1 Introduction

The PID Generator is an application designed for the transformation, encipherment,
and matching of personal data as well as for the generation and assignment of
Personal Identifiers (PIDs) to individuals that belongs to a bounded population. It
is especially capable to deal with sensitive data, e. g. in the case of patient data,
and with data which may be unsure or incomplete.

The software provides for many different tasks, ranging from simple transformations
on single records up to complex transformations performed in batch mode. These
include decomposition of names, generation of phonetics, the encipherment with
IDEA or AES, and the generation of control numbers using the MD5 algorithm.
The core facility however is the management of a PID database and the capability
to process PID requests.

The PID Generator is highly customizable to meet the requirements of different
environments. This is due to extensive configuration options in the configuration
and specification files. The latter includes the format specification which defines
the structure of the records that are processed, the result specification which defines
the set of possible match results and arbitrary messages to be presented to the end
user, and the matching specification describing the overall algorithmic behavior of
the matching procedure.

Portability The software is implemented in pure C. The source code is designed
to be independent of the underlying operating system as much as possible. It should
therefore compile on any UNIX system. The code was also compiled on other plat-
forms such as Windows NT without any serious problems. However, the software
depends on several libraries that should be installed before the software may be
compiled. These include the native libraries of PostgreSQL and the OpenLDAP
libraries. Though the database system may be nearly freely chosen it is left to the
system administrator to deal with any specialities of his local installation.

1



2 1 Introduction



2 Installation

2.1 Installation on UNIX Systems

The software package uses the GNU autotools to increase source code portability.

The first thing to do is to unpack the distributed package psx-xxx.tar.gz where
xxx must be replaced with the actual release number. After that one should change
into the newly created directory psx-xxx and run the configure script. The latter
will perform a variety of tests on the availability, location, and properties of several
libraries installed on the system in order to generate the final Makefiles that will be
used for compilation and linkage. One can use the option --help to find out about
special configuration options. Finally, the make command must be invoked to build
the project and to create the executable.

The installation can be tested by executing the command psx h in the src directory.

Known pitfalls On some systems one may encounter problems when building
with shared libraries enabled. In this case, the make command should be called
with the option --enable-shared=no to prevent libtool from generating a wrapper
script rather than building a binary. Refer to the GNU software documentation or
to dedicated literature for further information [?].

The software uses some third-party algorithms, which were not modified and left in
their original version. However, there are problems with the code for the genera-
tion of phonetics that may cause a segmentation fault on some systems or with
some compilers. The problem is caused by a write access to strings that are
defined as constant. The simple solution for the GNU compiler uses the option
-fwritable-strings. The configuration files contain all of the necessary instruc-
tions. If you want to build a new project from scratch by simply adding the source
files, you are on your own.

tar -xzvf psx-xxx.tar.gz // unpack package

cd psx-xxx // change directory

./configure // create Makefile

make // build project

...

cd src // change directory

psx h // test installation

2.2 Installation on Windows Systems

to be written

3



4 2 Installation

2.3 Database System

Currently, the only database system that is directly supported with its native inter-
face is PostgreSQL. In addition, one common database access standard is supported
as a driver, namely ODBC. However, each of the existing database access methods
requires some preliminary preparation.

In general, the database system should be properly installed in such a way that
the software is able to access it. Therefore, the user account under which the
PID Generator is intended to run should be provided with the necessary rights to
communicate with the database server. Moreover, the database server should be
configured to accept connections from the machine the PID Generator will run on.

If the database system of choice is PostgreSQL one should make sure that the post-
master process is running and accepting TCP/IP connection from clients, especially
from the machine where the PID Generator is running on. The postmaster service
should be started with the -i option which allows for remote connections. This
also holds if the database system and the PID Generator software are located on
the same host. Refer to the PostgreSQL system manuals, if you have any problems
[?].

To create and set up a PID database with PostgreSQL one should use the command
psx gen (see section 5.1 Database Generation). For database systems other than
PostgreSQL one has to create the database before running the psx gen command.

The PID database consists of the following tables.

sch schema definitions
cfg configuration
ctp component types
fld field definitions
rsp result specifications
sts state specifications
rec data records
req PID requests

Some of these tables are fixed, i.e. they should not be modified after their creation.
These tables are sch, fld, ctp, rsp, and sts. The tables fld, rsp, sts mirror
the data field, result and status specifications as defined in the specification file (see
section 4 Specification) so be sure to carefully specify the data format and matching
strategy before setting up these tables.

In contrast to those fixed tables the table req will be updated at each PID request
thus mirroring the request history if configured to do so (see section 3.3 Request

History). The table rec holds the (transformed) data records and will be updated
each time a new record is created or a data record is updated by newer informa-
tion. The table cfg contains the current number used to create the PID and the
timestamp of the last PID request.



2.3 Database System 5

The tables are defined as follows:
Table sch

idx integer NOT NULL // schema identifier

sym text NOT NULL // schema name

Table cfg

atr text NOT NULL // attribute name

val NOT NULL // attribute value

Table ctp

sym text NOT NULL // identifier of component

Table fld

idx integer NOT NULL // field identifier

sch integer // corresponding schema

sym text NOT NULL // name of field

dtp text // datatype

lbl text // label

pos int // start position

len int // length

mini int // minimal length

maxi int // maximal length

tfm text // transformation code

cps text // components

equ text // equality code

Table rsp

idx integer NOT NULL // result identifier

sch integer // corresponding schema

sym text NOT NULL // name of result

prm character(1) // PID retrieval mode

rum character(1) // record update mode

msg text // message

ntf text // notification

Table sts

idx integer NOT NULL // status identifier

sch integer // corresponding schema

sym text NOT NULL // name of status

sps text // KSXO specification

tg0 text // target - no match

tg1 text // target - one match

tgm text // target - multiple matches

Table rec

pid character(8) NOT NULL // PID

sub character(8) // substitute PID

sur integer // sureness

f_{field_name} // fields according to table fld

...

Table req

idx integer NOT NULL // request identifier

pid character(8) // PID

tsp text // timestamp

adr text // address

prt text // port

hst text // host

usr text // user

sur integer // sureness

f_{field_name} // fields according to table fld

...



6 2 Installation

2.4 Example: Initial setup of the GPOH database

sch

| idx | sym |

|-----|------------|

| 1 | Schema |

cfg

| atr | val |

|------|--------------------- |

| sch | 1 |

| pix | 00000000 |

| req | |

ctp

| sym |

|-----|

| C1 |

| C2 |

| C3 |

| PC |

| PH |

fld

| idx | sch | sym | dtp | lbl | pos | len | mini | maxi | ...

|-----|-----|-------|-----|--------------|-----|-----|------|------|----

| 1 | 1 | lname | N | Name | 1 | 12 | 2 | 0 | ...

| 1 | 1 | fname | N | Vorname | 30 | 15 | 0 | 0 | ...

| 1 | 1 | bd | DD | Geburtstag | 62 | 02 | 0 | 0 | ...

| 1 | 1 | bm | DM | Geburtsmonat | 65 | 02 | 0 | 0 | ...

| 1 | 1 | by | DY | Geburtsjahr | 68 | 04 | 0 | 0 | ...

| 1 | 1 | plz | T | PLZ | 73 | 08 | 0 | 0 | ...

| 1 | 1 | loc | T | Ort | 82 | 09 | 0 | 0 | ...

| 1 | 1 | state | T | Staat | 92 | 10 | 0 | 0 | ...

| 1 | 1 | sex | SEX | Geschlecht | 103 | 12 | 0 | 0 | ...

... | tfm | cps | equ |

----|--------------------|----------------|-----|

... | *:D[N]:P[*]:E[AES] | C1:C2:C3:PC:PH | +:1 |

... | *:D[N]:P[*]:E[AES] | C1:C2:C3:PC:PH | -:1 |

... | *:D[F]:P[*]:E[AES] | C1:C2:C3:PC:PH | + |

... | * | | + |

... | - | | + |

... | - | | + |

... | - | | - |

... | - | | * |

... | - | | * |

... | - | | * |



2.4 Example: Initial setup of the GPOH database 7

rsp

| idx | sch | sym | prm | rum | msg | ...

|-----|-----|---------|-----|-----|----------------------------------------|----

| 1 | 1 | NIR | 0 | 0 | Es wurden mehrere Fälle mit identi... | ...

| 2 | 1 | POS_DIR | 1 | 1 | Sie können den PID mit Kopieren/Ei... | ...

| 3 | 1 | POS_NUP | 1 | 1 | Sie können den PID mit Kopieren/Ei... | ...

| 4 | 1 | POS_WNG | 1 | 1 | Es wurde ein passender, als > unsi... | ...

| 5 | 1 | POS_NUP | 1 | 0 | Es wurde ein passender Fall gefund... | ...

| 6 | 1 | POS_WCP | 1 | 0 | Es wurde ein passender Fall gefund... | ...

| 7 | 1 | POS_TNT | 1 | 1 | Es wurde ein sehr ähnlicher Fall g... | ...

| 8 | 1 | NEG | * | 0 | Sie können den PID mit Kopieren/Ei... | ...

| 9 | 1 | NEG_TNT | 0 | 0 | Es wurden ein oder mehrere ähnlich... | ...

| 10 | 1 | AMB_SUR | 0 | 0 | Es wurden mehrere Fälle mit identi... | ...

| 11 | 1 | AMB_UNS | 0 | 0 | Es wurden mehrere Fälle mit identi... | ...

| 12 | 1 | AMB_SIM | 0 | 0 | Es wurden ein oder mehrere ähnlich... | ...

... | ntf |

----|----------------------------|

... | Identische Fälle gefunden. |

... | Direct Match. |

... | |

... | |

... | |

... | |

... | |

... | |

... | |

... | |

... | |

... | |

sts

| idx | sch | sym | sps | tg0 | tg1 | tgm |

|-----|-----|----------|-------------|------------|------------|----------- |

| 1 | 1 | T_Start | I | S:T_S0_001 | S:T_S1_001 | Z |

| 2 | 1 | T_S0_001 | K0:S1:X1:O1 | S:T_S0_002 | R:POS_NUP | R:NIR |

| 3 | 1 | T_S0_002 | K0:S1:X1:O0 | S:T_S0_003 | R:POS_NUP | R:AMB_SUR |

| 4 | 1 | T_S0_003 | K0:S0:X1:O1 | S:T_S0_004 | R:POS_WCP | R:NIR |

| 5 | 1 | T_S0_004 | K0:S0:X1:O0 | S:T_S0_005 | R:POS_WCP | R:AMB_UNS |

| 6 | 1 | T_S0_005 | K0:S*:X0:O1 | S:T_S0_006 | R:POS_TNT | R:AMB_SIM |

| 7 | 1 | T_S0_006 | K0:S*:X0:O0 | R:NEG | R:NEG_TNT | R:AMB_SIM |

| 8 | 1 | T_S1_001 | K0:S1:X1:O1 | S:T_S1_002 | R:POS_DIR | R:NIR |

| 9 | 1 | T_S1_002 | K0:S1:X1:O0 | S:T_S1_003 | R:POS_DIR | R:AMB_SUR |

| 10 | 1 | T_S1_003 | K0:S0:X1:O1 | S:T_S1_004 | R:POS_WNG | R:NIR |

| 11 | 1 | T_S1_004 | K0:S0:X1:O0 | S:T_S1_005 | R:POS_WNG | R:AMB_UNS |

| 12 | 1 | T_S1_005 | K0:S0:X0:O1 | S:T_S1_006 | R:POS_TNT | R:AMB_SIM |

| 13 | 1 | T_S1_006 | K0:S0:X0:O0 | R:NEG | R:NEG_TNT | R:AMB_SIM |



8 2 Installation

rec

| pid | sub | sur | f_lname_c1 | f_lname_c2 | f_lname_c3 | f_lname_pc |...

|-----|-----|-----|------------|------------|------------|------------|---

...| f_lname_ph | f_aname_c1 | f_aname_c2 | f_aname_c3 | f_aname_pc |...

---|------------|------------|------------|------------|------------|----

...| f_aname_ph | f_fname_c1 | f_fname_c2 | f_fname_c3 | f_fname_pc |...

---|------------|------------|------------|------------|------------|----

...| f_fname_ph | f_bd | f_bm | f_by | f_plz | f_loc | f_state | f_sex |

---|------------|------|------|------|-------|-------|---------|-------|

req

| idx | pid | tsp | adr | prt | hst | usr | sur | f_lname_c1 |...

|-----|-----|-----|-----|-----|-----|-----|-----|------------|----

...| f_lname_c2 | f_lname_c3 | f_lname_pc | f_lname_ph | f_aname_c1 | ...

---|------------|------------|------------|------------|------------|----

...| f_aname_c2 | f_aname_c3 | f_aname_pc | f_aname_ph | f_fname_c1 | ...

---|------------|------------|------------|------------|------------|----

...| f_fname_c2 | f_fname_c3 | f_fname_pc |f_fname_ph | f_bd | f_bm | ...

---|------------|------------|------------|-----------|------|------|----

...| f_by | f_plz | f_loc | f_state | f_sex |

---|------|-------|-------|---------|-------|

2.5 Graphical User Web Interface

The PID software provides a special command (gui) which enables a PID request
to be invoked via a web browser. It indicates that the program is executed in
CGI mode and thus causes the appropriate behavior. Note that this graphical user
interface requires the installation of a Web Server.

The general installation method of the graphical user web interface is to wrap this
invocation in a script (psx.cgi) that will be called by the web server. The script
should be placed into the cgi-bin directory of the web server and provided with
the corresponding rights. The following shell script provides for the corresponding
functionality.

psx.cgi

#!/bin/sh

dir="/sys/svr/psx"

prg="${dir}/psx"

cfg="${dir}/psx.cfg"

cmd="${prg} gui -c:${cfg}"

${cmd}



2.6 XML Web Interface 9

Note that the dir variable should be adapted to the local installation. For a quick
test, one may call the script from a web browser without arguments. Any problems
arising during execution will be written to the log file, if it is configured properly
(see section 3.2 Logging).

To employ self-defined html documents instead of the automatically generated web
pages one can configure the use of templates in the configuration file (see section
3.8 Templates).

2.6 XML Web Interface

to be written



10 2 Installation



3 Configuration

The configuration of the software is located within a special file that should be
accessible at execution time. The default file name is psx.cfg and the default
location is the current directory. Especially in the context of web server applications
using CGI one should not rely on these defaults and one should make sure that the
location of the configuration file is explicitly given on the commandline using the -c
option. The configuration file is organized as a set of attribute-value-assignments.
Double-slashes introduce comments that consume the rest of the current line. The
most important sections relate to the database connection, the logging mechanism
and the default character set for the encoding of encrypted data.

3.1 Database

The database connection is specified with the attribute dbs, as a single string of
tokens, separated by colons. Note that, in general, the syntax of this string is
DBMS-specific, i. e. depending on the database access method there will be differ-
ent representations of the corresponding access specification. A connection string
always begins with a prefix, which identifies a unique database driver, e. g. a spe-
cific system such as PostgreSQL or a specific standard such as ODBC. The rest of
the connection string will be specific to the selected driver. However, in general,
the syntax of the database connection string is defined as follows.

Syntax Connection Specification

Connection Specification ::= dbs = [pgs : pgs access | odbc : odbc access]
pgs access ::= host : port : name : user : password

odbc access ::= datasource name : user : password

Example

dbs = pgs:localhost::pdb:foo:bar

This expression would specify a database connection on the actual machine to the
database named ’pdb’, accessed as the user ’foo’ with password ’bar’, using the
native database driver for PostgreSQL.

dbs = odbc:psx:root:lgsym

This expression would be suitable for another database system using ODBC. The
datasource name is specified as ’psx’ which will be accessed by the user ’root’ using
the password ’lgsym’.

11



12 3 Configuration

3.2 Logging

The location of the log file and the activities that are logged are specified with two
attributes.

The attribute log.file specifies the path to the file where logs are written to. This
should be an absolute path and the file should be accessible under the user account
the software is run. Note that this file may grow very rapidly, depending on the log
mask.

The attribute log.mask specifies a set of modules, the activities of which are logged.
Each module is represented with a mnenomic symbol, and the set of modules is
specified as a sequence of symbols, separated by colons. The symbol ’-’ disables
all logging activities while the symbol ’*’ enables logging for all modules. Note
that the modules cpi, cni, and dbi may log data items in cleartext which may be
undesirable for privacy reasons.

Syntax Logging Specification

Logging Specification ::= file mask

file ::= log.file = filename

mask ::= log.mask = [ - | * | module{:module}* ]

You can specify the following modules to be logged.

sys System Interface
cmd Command Interface
cpi Cipher Interface
aes AES Encryption Interface
idea IDEA Encryption Interface
cni Control Number Interface
dbi Database Interface
dbi/pgsql PostgreSQL Database Interface
dbi/odbc ODBC Driver Interface
pdi PID Database Interface
psi PID Service Interface
mti Matching Interface

Example A log mask such as sys:dbi:mti would cause the logging of the activi-
ties of the system interface, the database interface and the matching interface. The
activities of sys include the basic startup and finalization steps. Enabling dbi will
cause any database commands to be written to the log file, while enabling mti will
cause the whole matching procedure to be documented.

3.3 Request History

Each request for a PID will be logged in the database table req which is thus
mirroring the request history. The stored data comprises at least a timestamp and
the assigned PID.

If configured to do so, it will additionally store the input data record in its original
form (before encipherment). Since this may be undesirable in some cases for data
privacy reasons this option can be disabled by setting the value to ’0’



3.4 Mailing 13

Syntax Request History

Request History Specification ::= Request History = [0|1]

3.4 Mailing

The mailing interface allows for the individual notification of PID request events.
Whenever something happens the administrator would like to know, the PID Gener-
ator will automatically send a notification mail to a predefined address, if configured
to do so. Such a notification mail will contain some obligatory information such as
a timestamp, the name and address of the requesting person, if available, as well as
a special message that relates to a special outcome of the matching algorithm.

The mailing specification involves five attributes that define the names and ad-
dresses of the sender and the receiver of a notification mail, as well as the subject.
These attributes are specified under a node named mail, involving subordinated
nodes for the source and the destination of the mailings.

Syntax Mailing

Mailing Specification ::= source

destination

subject

source ::= mail.src.name = name

mail.src.adr = address

destination ::= mail.dst.name = name

mail.dst.adr = address

subject ::= mail.sub = string

3.5 Encoding

The encoding of data items may be configured to make use of different character
sets. Control numbers are generated as MD5 hash codes, which are traditionally
represented as printable ASCII characters [?]. However, using this character set,
which contains special characters such as apostrophes or backslash, may cause ad-
ditional conversion overhead with most database management systems. Therefore,
an optional hexadecimal representation was introduced, which comes along with
codes that are somewhat longer though, but much more simpler when dealing with
database systems.

The encoding of data items may be specified at the commandline for virtually any
task the software provides. If not given at the commandline, the encoding will be
retrieved from the configuration. The default encoding may be specified with the
attribute ctn.enc, the value of which can be raw, for the raw encoding, or hex, for
hexadecimal encoding, respectively. Note that commandline arguments will always
override default specifications.

For ordinary control numbers, the raw encoding of a single data item will always
result in a string with a length of 23 characters. The hexadecimal encoding of a
data item will result in a string with a length of 32 characters. In any case, the
actual output format will specify the positions and lengths of the data items.



14 3 Configuration

Syntax Default encoding

Encoding Specification ::= ctn.enc = encoding

encoding ::= [ raw | hex ]

3.6 Directory Access

Directory service access provides for restrictions on the users that may submit
requests to the PID service. If enabled, a LDAP server will be consulted whenever
a user tries to submit a request. The model of the server’s directories has to support
a special attribute pid that states wether a user is allowed to do so. If the lookup
is successful, the request will be processed as usual. In any other cases, the request
will be rejected.

Directory service access is enabled with the attribute dir.lookup. If this attribute
is set to 0, the directory configuration has no effect at all. The LDAP server used
for access validation is specified with the attribute dir.server. The base DN is
specified with the attribute dir.base.

For now, directory service access is implemented as an experimental extension.
One should not consider this feature without being able to setup a dedicated LDAP
server with a customized schema.

Syntax Directory Access Specification

Directory Access Specification ::= lookup server base

lookup ::= dir.lookup = [ 0 | 1 ]

server ::= dir.server = host

base ::= dir.base = base DN

3.7 PID Construction

PID construction is performed in two steps. First, an internal number is incre-
mented, representing a logical counter that corresponds to the number of records
stored in the PID database. Secondly, this number is mapped into a string that
does not give insight on the contents of the database. This string is the well-known
PID.

The mapping function is dependent on some parameters that are retrieved from the
configuration file. These include three encryption keys (k1, k2, k3), as well as the
random width, which determines the number of bits used for randomization. All
four parameters are of type integer.

Syntax PID Construction Specification

PID Construction Specification ::= k1 k2 k3 rw

k1 ::= pid.k1 = integer

k2 ::= pid.k2 = integer

k3 ::= pid.k3 = integer

rw ::= pid.rw = integer



3.8 Templates 15

3.8 Templates

Templates are user-defined HTML documents serving as a flexible framework for the
graphical user interface. There is a predefined set of document types, each of which
is used in a predefined set of unique situations to perform some interaction with the
user. Whenever a CGI request comes in, some document type is selected depending
on the outcome of the request, and the corresponding template file is processed.
The template may contain placeholders for many properties of the actual situation,
which are replaced by their actual values, resulting in a context specific document,
which is sent as a response to the user.

There are three different situations considered by the software, namely the request
(req), the response (ret) and the message (msg). These correspond to three differ-
ent templates that may be activated within the configuration with the attributes
tpl.req, tpl.ret and tpl.msg, for the presentation of requests, returns and arbi-
trary messages, respectively. Each of these attributes should be assigned an absolute
path to a template file that should be readable by the system.

The overall process looks as follows. When the user accesses the service, he usually
gets a request form, where he enters the patient data and submits the request. If
the request is processed successfully, he is returned a result page containing the PID
along with other information. If the request is not processed successfully, he gets a
message page that informs about the reasons for the request failure.

The dynamics of request processing are realized with special placeholders, which
are embedded within the templates and replaced during execution. These variables
begin with a dollar sign ($) and may be placed as desired within the documents.
Those variables that represent the fields of the input records begin with the prefix
FLD to avoid naming conflicts.

Note the following on fields that represent human sex. Implementation specific
templates should present such a field as a pair of option buttons, which should be
specified with a value of ’M’ or ’W’, which indicates male or female sex, respectively.
The automatically generated user interface will present this field as a text field, for
now. In general, if one wishes to limit user input to a predefined set of values, the
templates will provide for the appropriate means.

Template configuration is designed to be a feature, rather than an enforcement. If a
template is not specified or not loadable at execution time for some reason, a default
document will be generated automatically. This document may look somewhat
rigid, because it was generated automatically, but it is a good starting point for the
installation. The following table shows the set of placeholders that may be used
within template files, as well as their existence for the different template types.

ptl portal
sys system administration panel
req PID request panel
ret PID return panel
msg message panel



16 3 Configuration

symbol description req ret msg

FLD * input fields corresponding to specification +
FLD SUR sureness (0 or 1) +

PID the assigned PID +
CTN control numbers generated for the input +
MSG descriptive message for the user + +
USR user name, if processed in protected mode +
TSP time stamp of PID request +
DATE date of PID request +
TIME time of PID request +
ADR IP address of the requesting host +
HST name of the requesting host +
PRT port of the requesting host +

SSL CLI SSL: client certificate +
SSL CLI C SSL: country +
SSL CLI N SSL: name +
SSL CLI E SSL: email +
SSL CLI L SSL: location +
SSL CLI O SSL: organization +
SSL CLI U SSL: organizational unit +
SSL CLI S SSL: state +

1 type data type (see data types)
2 symbol unique regular identifier
3 label quoted field description
4 start start position within a row of a data file
5 length fixed length
6 min minimum size for field data, 0: ignore
7 max maximum size for field data, 0: ignore
8 transformation transformation code
8 match match code

3.9 Messages

The message items may be used to specify messages to present to the user in case
of erroneous data input. Four different types can be distinguished: Missing values,
to short or to long input, or otherwise invalid values.

Syntax Message Specification

Message Specification ::= incomplete min max invalid

incomplete ::= msg.req.inc = string

min ::= msg.req.min = string

max ::= msg.req.max = string

invalid ::= msg.req.inv = string

Note that the message strings may contain the placeholders $FLD and $LEN that
will be replaced by the corresponding values if an incorrect item is found.



3.10 Encryption 17

3.10 Encryption

The encryption specification contains the password used for AES or IDEA encryp-
tion.

Syntax Encryption Specification

Encryption Specification ::= [ aes specification | idea specification ]

aes specification ::= aes.key = string

idea specification ::= idea.key = string

3.11 Health Insurance Code Validation

The PID Generator software includes some functions to verify the health insurance
codes for a variety of health insurance organizations. A code identified as erroneous
will cause the processing of the input record to stop which may be undesirable in
some cases. Therefore an option is provided to control this feature. If not set, the
validation will be disabled by default.

Syntax Health Insurance Code Validation

Health Insurance Code Validation ::= ValidateHIC = [0|1]



18 3 Configuration

3.12 Example: The GPOH configuration

GPOH Configuration

////////////////////////////////////////////////////////////////////////////////

// GPOH Configuration //

////////////////////////////////////////////////////////////////////////////////

// database connection

dbs = pgsql:localhost::pdb_test:wagner:

// logging

log.file = /sys/log/psx.log

log.mask = sys:dbi:pdi

// directory access

dir.lookup = 1

dir.server = ’gpoh.imsd.uni-mainz.de’

dir.base = ’o=University of Mainz,c=DE’

// encoding

ctn.enc = hex

// mailing

mail.src.name = ’PSX’

mail.src.adr = ’magnus@gmx.de’

mail.dst.name = ’Admin’

mail.dst.adr = ’magnus@gmx.de’

mail.sub = ’PSX Notification’

// templates

tpl.req = /sys/dvl/prj/psx/web/psx-req.html

tpl.ret = /sys/dvl/prj/psx/web/psx-ret.htm

tpl.msg = /sys/dvl/prj/psx/web/psx-msg.html

// messages

msg.req.inc = ’Das Feld ’$FLD’ darf nicht leer sein.’

msg.req.min = ’Die Länge des Feldes ’$FLD’ muss mindestens $LEN sein.’

msg.req.max = ’Die Länge des Feldes ’$FLD’ darf höchstens $LEN sein.’

msg.req.inv = ’Der Inhalt des Feldes ’$FLD’ ist ungültig.’

// PID construction

pid.k1 = 1030420120 // key 1

pid.k2 = 237344121 // key 2

pid.k3 = 365421576 // key 3

pid.rw = 0 // random width

// Encryption

aes.key = ’Insert your favourite passphrase here’



4 Specification

A configurable specification file allows to customize the PID Generator to the local
requirements. It consists of three sections, the data format section that describes
the contents of a data record, the result section that defines the set of possible results
the matching engine may produce, as well as the matching procedure section that
implements the core of the matching strategy. For this purpose a formal language
(KSXO) was designed as described at page 24. The specification file is read once
when setting up the PID database. The data format section can furthermore be
used to process input data that differs from the initial format specification settings.

4.1 Data Format

The data format specification defines the structure of data records. It consists of a
sequence of field definitions whereas each field represents an item of the record. The
sequence implicitly defines the order of the items when processed by the different
commands. This affects the order of plausibility checks, the automatic generation
of data entry forms, and the presentation of output records and output format
specifications. However, it does not affect the outcome of the matching procedure
at all.

4.1.1 Basic Definitions

The specification relies on some basic definitions, namely data types, equality and
transformation codes. Data types are used to classify the items with respect to
plausibility checks and range limits. Equality codes define when two data items are
considered to be equal and how the fields of two records may be exchanged without
affecting equality. Transformation codes define how data items are to be modified
upon acquisition before any further processing is done.

Data Types

Data types are used to characterize the contents of data fields. This allows suitable
normalization and plausibility checks as well as data type specific transformation
on input records.

There are types for simple text data, names of persons, date components, sex, and
for health insurance organizations and health insurance codes. The following table
shows the set of data types and specifies the range of valid values.

19



20 4 Specification

Data Type Description Values

T text string

N last name (surname) string

F first name (given name) string

DY year of date 4-digit-number

DM month of date [0-12]

DD day of date [0-12]

SEX human sex [f | m]

HIO health insurance organization string

HIC health insurance code string

Transformation

A set of transformation functions can flexibly be incorporated to modify the original
data items of an input record. These modifications include the decomposition of
names into components, the generation of phonetic codes using different algorithms,
the generation of control numbers using MD5 hash as well as the final encryption
with AES or IDEA. The latter is only applicable though if control numbers are
generated. Transformation takes place at the very beginning of any operation, so
that the internal input will always be an already transformed record.

The transformation is specified with a transformation code, a single string composed
of substrings separated by colons. Each substring represents some special transfor-
mation option whereas some of them require additional parameters which further
specify the algorithms. These parameters are specified in square brackets, right be-
hind the option symbol. Except the symbol for the generation of control numbers
(* or - respectively) which is required and must be specified first, transformation
options may be specified in an arbitrary order. The following table shows the set
of transformation options.

- do not generate control numbers
* generate control numbers using MD5 hash
D[N] decompose (sur)name
D[F] decompose first name
P[C] generate phonetics using the system of Cologne
P[H] generate phonetics using the system of Hannover
P[*] generate both phonetic codes
E[IDEA] encrypt the resulting components with IDEA
E[AES] encrypt the resulting components with AES

Example The transformation code *:D[N]:P[C]:E[AES] specifies that control
numbers should be generated, after decomposition of names and generation of pho-
netics using the algorithm of Cologne, and that the final result components should
be encrypted with AES, using the key specified in the configuration file.

Equality

Whenever two records are compared, the equality specifications of the fields are used
to tell wether the field contents match or not. The specification includes a simple
mechanism to describe exchangeability. For example, the fields name (surname)
and aname (alternative, former surname) should be defined as exchangeable, which
allows a married person to be still matched correctly.



4.1 Data Format 21

The equality specification is given as a single string composed of one or two sub-
strings. The first part defines an equality code. The optional second part is sepa-
rated from the equality code by a colon and specifies an exchange identifier which
must be identical for the respective exchangeable fields. The following table shows
the set of equality codes.

- no equality condition;
field is not considered in the matching procedure

+ mandatory equality;
field values must be equal for two records to be considered a match

* optional equality;
matching field values increase similarity between records

# key equality;
two records are considered to be equal if these field values match

4.1.2 Field Definitions

A field definition is introduced by the keyword Field, followed by a unique identifier
and the assignment block in curly brackets. The assignments include any further
information on the properties a field may have. Every assignment is of the form
attribute = value, separated by white space. A data type defines the valid contents,
a field may have. The arbitrary label is used for external representation to the
user. A start position and a length define the location of a data item within a row-
oriented ASCII file. A minimum and a maximum length further define limitations
on the set of valid contents. Finally, the transformation code and the equality code
may prepare a field for consideration within the matching process. This is defined
as follows.

Syntax Field Specification

Field Specification ::= Field identifier { { assignment }+ }
assignment ::= [ type = type | label = string |

start = integer | length = integer |
min = integer | max = integer |
transformation = transformation |
equ = equality ]

The field identifier must obey the typical conventions of popular programming lan-
guages, i. e., letter([letter|digit|′ ′])∗. There is no need to put every allowed assign-
ment within such a definition, since missing assignments will always cause default
values to be assigned to the corresponding attributes. However, in case of doubt
one should not rely on default values. The following table shows the set of field
attributes recognized by the schema parser.

type data type
label quoted label for user interaction
start start position for reading in ASCII line mode
length length for reading in ASCII line mode

min minimum length for field data, 0 = ignore
max maximum length for field data, 0 = ignore

transformation transformation code
equ equality specification



22 4 Specification

Example Figure 4.1 shows an example of a field specification. It defines a field
named lname for the representation of person last names. The type is set to N

(name) and the label is set to a natural language description. The start position
for ASCII file representation is set to 14 and the length of the field is set to 15. The
minimum field length is set to 1, while there is no limitation for the maximum field
length. The transformation code specifies that control numbers are to be generated,
after name decomposition and generation of phonetics, and that the result is to be
encrypted with AES. The equality specifies that the contents of two records for this
field must match or may be exchanged with any other fields, the exchange id of
which are equal to 1.

Field lname
{
type
label

length
min
max
transformation

start

=
=
=
=
=
=

=

N

14
15
1
0
"*:D[N]:P:E[AES]"
"+:1"

}
equality

=

"Last Name"

Figure 4.1: Example field specification

4.2 Result Specification

The result specification defines the set of possible results. A result represents a
unique situation at the end of the matching process. Beside the identity each result
has additional properties. The PID retrieval mode (prm) defines, if a given PID
is returned, a new PID is generated or nothing is returned at all. The record
update mode (rum) defines, wether the contents of a successfully identified record
are updated or completed with the contents of the input record. The message
returned to the user is also defined in this context.

The syntax of a result definition involves a block of attribute-value pairs, which
define the properties of the result. This is introduced by the keyword Result,
followed by a unique symbol and the assignment block in curly brackets. Every
assignment is of the form attribute = value, separated by white space. This is
defined as follows.

Syntax Result Specification

Result Specification ::= Result id { { assignment }+ }
assignment ::= [ pid = [ 0 | 1 | ∗ ] |

update = [ 0 | 1 ] |
message = string ]

As in the case of the format specification, the result identifier must be a valid
symbol. The pid attribute specifies the pid retrieval mode and should always be
present. Note that a retrieval definition for existing PIDs requires that a unique
record is identified by the matching procedure. The following table summarizes the
set of possible values for the pid attribute.

0 no PID is returned at all
1 the PID of an existing record is returned
* a new PID is generated and returned



4.3 Matching Procedure 23

The update attribute specifies, whether an existing record should be completed
with the fields of the input record. Note that a positive update definition requires
that a unique record is identified by the matching procedure. The following table
summarizes the set of possible values for the update attribute.

0 the existing record will not be modified
1 the existing record will be completed

Since the results are produced as identifiers for unique situations in the course of
the matching procedure, their true meanings are relative to the context, in which
they are selected. This means that one should take care that only suitable results
are produced by the matching procedure, because not every result makes sense in
some situation. Obviously, it would generally not make much sense to have a PID
generated and an existing record updated.

Example Figure 4.2 shows an example of a result specification. It defines a result
named POS DIR for a direct, positive match, i. e. a query such as K0S1X1O0 yields
exactly one result record (see section 4.3 KSXO notation). The pid retrieval mode
is set to 1, which means that the pid of the matched record is to be returned. The
update attribute is set to 1, which means that the matched record is to be updated
with the appropriate contents of the input record. There also is a message that
should be returned to the user, whenever this result is computed.

Result POS_DIR
{
pid
update
message

=
=
=

1
1
"PID Retrieval successful"

}

// positive, direct match

Figure 4.2: Example result specification

4.3 Matching Procedure

The procedure specification defines the overall algorithmic strategy for the matching
of input records against the PID database. It characterizes the sequence of tests
carried out depending on the respective previous test result. The proceeding is
represented as a finite state machine which will be considered by the matching
interpreter whenever a request is processed. Upon activation, some starting state
is declared to be the active state, and repetitive state processing begins.

There are two types of states, namely input states which require some sort of user
input and query states in which a distinct database query is executed on the PID
database. The proceeding from a state follows one of its defined exits which are
links to either other states or results. The latter will define the end of the sequence
of tests causing the result identity to be returned to the superordinated procedure.

The input state normally occurs exactly once within a matching schema and refers
to the sureness of the input record, thus delivering a binary result. The proceeding
from an input state follows one of two links, which refer to an input record marked
as unsure (0) or marked as sure (1).

In contrast to that a query state delivers an arbitrary numeric result representing
the number of matched records that fulfill the query condition. The proceeding



24 4 Specification

from a query state follows one of three exits, which are associated with the query
evaluation delivering no record (0), exactly one record (1) or more than one record
(∗).

The arrangement of analysis steps and their linkage with the final results define the
core of individual PID generation strategies and should be developed independently
for each pseudonymization project. Therefore, it has been isolated from the source
code. The dedicated specification language supported by the software should pro-
vide enough scope for an in-depth local adaptation, without modifying any line of
code.

KSXO notation

The KSXO-notation serves as a simplified query definition language. The KSXO-
expression of each state will be transformed into the correspoding complex SQL-
query, thus specifying a subset of the records in the PID database. It consists
of four parameters which affect the relevance of key fields (K), the sureness of
records(S), the exactness of field comparison(X), as well as the consideration of
optional values(O).

The meaning of the parameters is as follows. Key relevance selects only records
with equal key fields (1) if these are present in the input record, or it has no effect
at all (0) (since it makes no sense to select non-equal keys). Sureness selects all
records that are marked as unsure (0), sure (1) or both (∗). Exactness causes fields
to be compared either exactly (1) or by phonetic similarity (0) by the phonetic al-
gorithm selected in the configuration. Optionality causes the comparison to include
optional values (1) or to ignore their existence (0). If optionality is turned on, all

of the optional variables have to be equal for a match. If a single optional variable
differs from the input record, the corresponding database record is considered to be
different. Figure 4.3 illustrates the parameters of the KSXO-notation.

K S X O

Key Relevance Sureness Exactitude Optionality

0:
1:

ignore
require keys 1:

*:

select unsure
select sure
select all

1:
0:exact

consider
0: 0:

phonetic
ignore

1:

Figure 4.3: KSXO notation

In combination, these parameters define some kind of filter on the records stored in
the database. It may be more or less strict in the different states of the matching
procedure. In general, one wants to find a filter, which delivers exactly one record
because only in this case a match is produced.

Syntax

The specification of a state is divided into a prologue section that defines the data-
base query, and an epilogue section that connects the exits of the actual state to
other objects within the procedure specification. Besides that, a state definition al-
ways includes a unique symbolic identifier introduced by the keyword Test, which
allows other states to reference its identity through some of their defined exits.



4.3 Matching Procedure 25

Thus, a state definition consists of an identifier, a prologue block and an epilogue
block.

For an input state the prologue section simply consists of the literal input sure ?.
The prologue section of a query state however becomes decomposed into the fields
key, sure, exact and optional, which correspond to the four parameters of the
KSXO-notation.

The exit specification defines the connections of the actual state to other objects
of the current schema. The syntax requires the exit identifier, followed by a colon,
followed by the identifier of another state (to proceed to another query) or a result
(thus terminating the test sequence). For an input query state, the exits 0 and 1 are
defined, corresponding to a sure or unsure input record. For a data query state, the
exits 0, 1 and ∗ are defined, corresponding to the different outcomes of the query.
In any case, the exit definitions will have to reference existing objects.

Syntax Test Specification

Test Specification ::= Test id { prologue epilogue }
prologue ::= Prologue { query }
epilogue ::= Epilogue { exit }
query ::= [ input query | data query ]

input query ::= input sure ?

data query ::= key = key

sure = sureness

exact = exactness

optional = optionality

sureness ::= [ 0 | 1 | ∗ ]
exactness ::= [ 0 | 1 ]
key ::= [ 0 | 1 ]
optionality ::= [ 0 | 1 ]
exit ::= 0 : target 1 : target ∗ : target

target ::= [ state identifier | result identifier ]

The procedure specification defines a network of states, results and transitions. The
most important integrity constraint is that there never are references to undefined
objects.

Example Figure 4.4 shows an example of a test specification. The definition refers
to a query state, which selects all records that are marked as unsure and the fields
of which are exactly equal to the fields of the input record, considering optional
fields and not considering key fields. The corresponding KSXO-query would be
K0S0X1O1. There are three exits to the state T S1 004, the result POS WNG and the
result NIR, which are to be selected, when the query returns 0, 1 or more records,
respectively. The result POS WNG represents a situation, where a record is matched
positively but the corresponding query is too weak to lead to a direct match, and
thus, the result is associated with a warning message. The result NIR is associated
with multiple database hits so that the ambiguity prevents a direct match.

Flow notation

The flow of analysis may be represented with a state-chart diagram. States are
represented as diamonds, while results are represented as rounded rectangles. Any
object has an entry point, which connects it to an exit of another state. An input
query state has two exits, while a data query state has three exits, corresponding



26 4 Specification

Test T_S1_003
{
Prologue

=
=
=

{

}
Epilogue
{
0
1
*

}

:
:
:

T_S1_004
POS_WNG
NIR

}

optional = 1
exact
sure
key

0
1

0

Figure 4.4: Example test specification

to an outcome of zero, one or more records, labeled with 0, 1 and ∗, respectively. A
result object has no exits, since it constitutes a final state of analysis. In general,
any path the analysis process will form leads from an input query state to a final
result.

The graphical notation simplifies the view on the principal flow of analysis steps,
while neglecting the details of the results and the contents of the actual database
fields. This abstraction will help thinking about the matching procedure, when
talking about something like a strategy.

input query data query result

0

0 1

0

*1
input sure

?
K? S? X? O? identifier

Figure 4.5: Procedure notation



4.4 Example: The GPOH matching diagram 27

4.4 Example: The GPOH matching diagram

Figure 4.6 shows the GPOH matching diagram.

input sure 10 ?

1 *

0

1

1

1

1

1

0

0

0

0

0

*

*

*

*

*

K0:S1:X1:O0

K0:S0:X1:O1

K0:S0:X1:O0

K0:S*:X0:O1

K0:S*:X0:O0

K0:S1:X1:O1

POS_NUP

POS_NUP

POS_WCP

POS_WCP

POS_TNT

NEG_TNT

NEG

AMB_SIM

AMB_SIM

AMB_UNS

NIR

AMB_SUR

NIR

T_S0_01

1

0

K0:S1:X1:O1

T_S1_01

*

POS_DIR

K0:S1:X1:O0

K0:S0:X1:O1

K0:S0:X1:O0

K0:S0:X0:O1

K0:S0:X0:O0

POS_DIR

POS_WNG

POS_WNG

POS_TNT

NEG_TNT

NIR

AMB_SUR

NIR

AMB_UNS

AMB_SIM

AMB_SIM

NEG

T_S1_02

T_S1_03

T_S1_04

T_S1_05

T_S1_06

1

1

1

1

1

0

0

0

0

0

*

*

*

*

*

T_S0_02

T_S0_03

T_S0_04

T_S0_05

T_S0_06

Figure 4.6: The GPOH matching diagram



28 4 Specification

4.5 Example: The GPOH specification

GPOH Schema Specification

////////////////////////////////////////////////////////////////////////////////

// Field Specification //

////////////////////////////////////////////////////////////////////////////////

%Field kvn

%{

% type = HIO

% label = "Krankenversicherung"

% start = 0

% length = 0

% min = 0

% max = 0

% transformation = "-"

% equ = "#"

%}

%Field kvc

%{

% type = HIC

% label = "Krankenversicherungscode"

% start = 01

% length = 12

% min = 0

% max = 0

% transformation = "-"

% equ = "#"

%}

Field lname {

type = N

label = "Name"

start = 01

length = 12

min = 2

max = 0

transformation = "*:D[N]:P[*]:E[AES]"

equ = "+:1"

}

Field aname {

type = N

label = "Name (a)"

start = 14

length = 15

min = 0

max = 0

transformation = "*:D[N]:P[*]:E[AES]"

equ = "-:1"

}

Field fname {

type = N

label = "Vorname"

start = 30

length = 15

min = 0

max = 0

transformation = "*:D[F]:P[*]:E[AES]"

equ = "+"

}

Field bd {

type = DD

label = "Geburtstag"



4.5 Example: The GPOH specification 29

start = 62

length = 02

min = 0

max = 0

transformation = "*"

equ = "+"

}

Field bm {

type = DM

label = "Geburtsmonat"

start = 65

length = 02

min = 0

max = 0

transformation = "-"

equ = "+"

}

Field by {

type = DY

label = "Geburtsjahr"

start = 68

length = 04

min = 0

max = 0

transformation = "-"

equ = "+"

}

Field plz {

type = T

label = "PLZ"

start = 73

length = 08

min = 0

max = 0

transformation = "-"

equ = "-"

}

Field loc {

type = T

label = "Ort"

start = 82

length = 09

min = 0

max = 0

transformation = "-"

equ = "*"

}

Field state {

type = T

label = "Staat"

start = 92

length = 10

min = 0

max = 0

transformation = "-"

equ = "*"

}

Field sex {

type = SEX

label = "Geschlecht"

start = 103



30 4 Specification

length = 09

min = 0

max = 0

transformation = "-"

equ = "*"

}

////////////////////////////////////////////////////////////////////////////////

// Result Specification //

////////////////////////////////////////////////////////////////////////////////

Result NIR {

pid = 0

update = 0

message = "Es wurden mehrere Fälle mit identischen Daten gefunden. "

"Eine PID-Vergabe ist daher nicht möglich.<br><br>"

"Bitte melden Sie dieses Ereignis unmittelbat an den "

"<a href=’mailto:webmaster@gpoh.imsd.uni-mainz.de?"

"subject=Homonym’> Webmaster</A>!<br><br>Bitte arbeiten Sie"

"zunächst ohne PID."

}

Result POS_DIR {

pid = 1

update = 1

message = "Sie können den PID mit Kopieren/Einfügen (Copy & Paste) in"

"andere Dokumente einfügen."

}

Result POS_NOP {

pid = 1

update = 1

message = "Sie können den PID mit Kopieren/Einfügen (Copy & Paste) in"

"andere Dokumente einfügen.<br><br>"

"<em>Bemerkung</em>: Die ergänzenden Angaben waren"

"unvollständig oder die Adresse hat sich geändert."

}

Result POS_WNG {

pid = 1

update = 1

message = "Es wurde ein passender, als ’unsicher’ markierter Fall"

"gefunden. Eine Fehlzuordnung ist nicht mit absoluter"

"Sicherheit auszuschließen.<br><br>"

"Sie können den PID mit Kopieren/Einfügen (Copy & Paste) in"

"andere Dokumente einfügen."

}

Result POS_NUP {

pid = 1

update = 1

message = "Es wurde ein passender Fall gefunden. "

"Da die Eingabe als ’unsicher’ markiert war, ist eine"

"Fehlzuordnung ist nicht mit absoluter Sicherheit"

"auszuschließen.<br><br>"

"Sie können den PID mit Kopieren/Einfügen (Copy & Paste) in"

"andere Dokumente einfügen."

}

Result POS_WCP {

pid = 1

update = 1

message = "Es wurde ein passender Fall gefunden. "

"Da die Eingabe als ’unsicher’ markiert war, ist eine"

"Fehlzuordnung ist nicht mit absoluter Sicherheit"

"auszuschließen.<br><br>"

"Sie können den PID mit Kopieren/Einfügen (Copy & Paste) in"



4.5 Example: The GPOH specification 31

"andere Dokumente einfügen."

}

Result POS_TNT {

pid = 1

update = 0

message = "Es wurde ein sehr ähnlicher Fall gefunden. "

"Dessen PID wird mit Vorbehalt ausgegeben.<br>"

"Sie können den PID mit Kopieren/Einfügen (Copy & Paste) in"

"andere Dokumente einfügen.<br>"

"<strong>bitte kennzeichnen Sie bis auf weiteres den PID bei"

"jeder Verwendung mit einem Fragezeichen.</strong>"

}

Result NEG {

pid = *

update = 0

message = "Sie können den PID mit Kopieren/Einfügen (Copy & Paste) in"

"andere Dokumente einfügen."

}

Result NEG_TNT {

pid = 0

update = 0

message = "Es wurden ein oder mehrere ähnliche Fälle gefunden."

"Die Wahrscheinlichkeit reicht für eine hinreichend sichere"

"Zuordnung nicht aus.<br><br>"

"Bitte arbeiten Sie zunächst ohne PID und versuchen Sie,"

"weitere odere genauere Daten zu erhalten."

}

Result AMB_SUR {

pid = 0

update = 0

message = "Es wurden mehrere Fälle mit identischen Daten gefunden."

"Eine PID-Vergabe ist daher nicht möglich.<br><br>"

"Bitte melden Sie dieses Ereignis unmittelbar an den "

"<a href=’mailto:webmaster@gpoh.imsd.uni-mainz.de?"

"subject=Homonym’>Webmaster</A>!<br><br>"

"Bitte arbeiten Sie zunächst ohne PID."

}

Result AMB_UNS {

pid = 0

update = 0

message = "Es wurden mehrere Fälle mit identischen Daten gefunden."

"Eine PID-Vergabe ist daher nicht möglich.<br><br>"

"Bitte melden Sie dieses Ereignis unmittelbar an den "

"<a href=’mailto:webmaster@gpoh.imsd.uni-mainz.de?"

"subject=Homonym’>Webmaster</A>!<br><br>"

"Bitte arbeiten Sie zunächst ohne PID."

}

Result AMB_SIM {

pid = 0

update = 0

message = "Es wurden ein oder mehrere ähnliche Fälle gefunden."

"Die Wahrscheinlichkeit reicht für eine hinreichend sichere"

"Zuordnung nicht aus.<br><br>"

"Bitte arbeiten Sie zunächst ohne PID und versuchen Sie,"

"weitere odere genauere Daten zu erhalten."

}

////////////////////////////////////////////////////////////////////////////////

// Procedure Specification //

////////////////////////////////////////////////////////////////////////////////



32 4 Specification

Test T_Start {

Prologue

{

input sure ?

}

Epilogue

{

0: T_S0_001

1: T_S1_001

}

}

Test T_S0_001 {

Prologue

{

key = 0

sure = 1

exact = 1

optional = 1

}

Epilogue

{

0: T_S0_002

1: POS_NUP

*: NIR

}

}

Test T_S0_002 {

Prologue

{

key = 0

sure = 1

exact = 1

optional = 0

}

Epilogue

{

0: T_S0_003

1: POS_NUP

*: AMB_SUR

}

}

Test T_S0_003 {

Prologue

{

key = 0

sure = 0

exact = 1

optional = 1

}

Epilogue

{

0: T_S0_004

1: POS_WCP

*: NIR

}

}

Test T_S0_004 {

Prologue

{

key = 0

sure = 0

exact = 1



4.5 Example: The GPOH specification 33

optional = 0

}

Epilogue

{

0: T_S0_005

1: POS_WCP

*: AMB_UNS

}

}

Test T_S0_005 {

Prologue

{

key = 0

sure = *

exact = 0

optional = 1

}

Epilogue

{

0: T_S0_006

1: POS_TNT

*: AMB_SIM

}

}

Test T_S0_006 {

Prologue

{

key = 0

sure = *

exact = 0

optional = 0

}

Epilogue

{

0: NEG

1: NEG_TNT

*: AMB_SIM

}

}

Test T_S1_001 {

Prologue

{

key = 0

sure = 1

exact = 1

optional = 1

}

Epilogue

{

0: T_S1_002

1: POS_DIR

*: NIR

}

}

Test T_S1_002 {

Prologue

{

key = 0

sure = 1

exact = 1

optional = 0

}

Epilogue



34 4 Specification

{

0: T_S1_003

1: POS_DIR

*: AMB_SUR

}

}

Test T_S1_003 {

Prologue

{

key = 0

sure = 0

exact = 1

optional = 1

}

Epilogue

{

0: T_S1_004

1: POS_WNG

*: NIR

}

}

Test T_S1_004 {

Prologue

{

key = 0

sure = 0

exact = 1

optional = 0

}

Epilogue

{

0: T_S1_005

1: POS_WNG

*: AMB_UNS

}

}

Test T_S1_005 {

Prologue

{

key = 0

sure = 0

exact = 0

optional = 1

}

Epilogue

{

0: T_S1_006

1: POS_TNT

*: AMB_SIM

}

}

Test T_S1_006 {

Prologue

{

key = 0

sure = 0

exact = 0

optional = 0

}

Epilogue

{

0: NEG

1: NEG_TNT



4.5 Example: The GPOH specification 35

*: AMB_SIM

}

}



36 4 Specification



5 Operation

The PID Generator usually is invoked via the commandline. In the case of a PID
request however, a web interface can be used to run the gui (graphical user interface)
command. This requires some specifications in a cgi-script described in section ??

Graphical User Web Interface.

The overall commandline syntax requires the name of the executable, followed by
a command identifier, followed by a set of parameters and options. Options occur
in two flavors. Some options are boolean and do not require any further input.
Other options require a parameter, which has to be appended to the option symbol,
separated by a colon (:). Options may be arranged in arbitrary order. Note that
the command psx h provides a summary of the most frequently used commands
and options. For all other commands the configuration file is required. If it is not
located in the current directory its path should be provided by the option -c:.

Syntax Commandline Interface

psx command { parameter }∗ { option }∗

Input Records The commands enc and req require some input records either
provided via an input data file or in some cases via the commandline dialogue. If a
data file is used it may either be formatted according to the ISO 8857-1 (Latin 1) or
the DIN 66003 standard - the latter is used for German health insurance cards, for
example. This file may either contain a single record (one item per line) or multiple
records (one record per line). In the latter case the data format must conform to
the input format specification (see section 4.1 Data format).

5.1 Database Generation

Note: For database systems other than PostgreSQL you have to create the database
before running the database generation command.

The database generation command is used to create the PID database (as of now for
PostgreSQL only) and the necessary database tables. First, the schema specification
(see section 4 Specification) provided by the option -s is parsed and evaluated. If
any errors occur execution terminates. Otherwise, a new empty database is created,
using the name and access options specified in the configuration file. If the database
already exists execution aborts unless the -d option is specified, which forces the
deletion of the existing database if necessary. After successful database creation,
the specified schema is registered. This means that a set of tables is created which
will correspond to the schema specification. After initialization the database will
contain the complete schema specification as well as an empty record table, the

37



38 5 Operation

fields of which are based on the field specification and the transformation options.
See section ?? Database System for details on the database structure.

Syntax Database Generation

psx gen -c: -s: -d

-c: file configuration file
-s: file schema specification
-d delete existing database if necessary

5.2 Encipherment

The encipherment operation parses records according to the input format speci-
fication and transforms each item as defined in the corresponding transformation
code. This includes decomposition of names, phonetic code generation, as well as
the encryption using one of several encryption or hash algorithms, including MD5,
AES, and IDEA.

The encipherment operation may be performed in two different modes. The single
processing mode will handle one record at a time while the batch processing mode
will handle large files containing many records. Batch mode is activated with the
-b option. The encipherment operation requires an input format specification to
be provided by the -f option. Both, single and batch mode, may be configured to
use raw or hexadecimal encoding (see section 3.5 Encoding), using the -e option.
Input records are assumed to be formatted according to ISO 8857-1 (Latin 1) but
may also conform to the DIN 66003 standard if specified by the option -a.

In single mode the input record may be specified as a file containing one item per
line using the -d option. If this option is present at the command line the file will be
read in and its lines will be processed as attributes of the input record. Otherwise,
the interactive shell dialog is started which will ask for the attributes specified in
the format specification.

In batch mode the input records must be specified as a file containing one record
per line using the -d option. In this case the items of the records are identified by
column boundaries as specified in the format specification. An output data file may
be specified using the -o option. If the -u option is provided a new specification
file conforming to the generated output records will be generated. The option -p

causes the encipher operation to skip the first p-1 lines and the h option causes a
heading line to be inserted into to the output data file to enhance readability.

Syntax Encipherment

psx enc -c: -f: -d: -a: -u: -o: -p: -e: -b -h

-c: file configuration file
-f: file input format specification
-d: file input data file
-a:[din | iso] input character set
-u: file output format specification
-o: file output data file
-p: num start position
-e:[raw | hex] encoding
-b batch mode
-h headings



5.3 PID Request 39

5.3 PID Request

A PID request command requires an existing PID database which has to be regis-
tered with a valid schema specification.

The command req processes a set of input records and tries to match them against
the records in the PID database. Each record item is normalized, checked for plaus-
ability, and transformed according to the corresponding data type and transforma-
tion specification. Normalization steps include the removal of non-alphanumeric
characters (except apostrophe), the dissolving of umlauts, and the conversion of
accented characters into the corresponding characters without accent.

The resulting record is then passed to the matching interpreter which will execute
the matching procedure as defined in the schema resulting in one of three possible
outcomes: If matched, an existing PID will be assigned. If not matched, a new PID
will be generated. In any other case, ambiguous results, for example, no PID is
assigned.

The request command may be executed in two different modes. In single mode
one record is processed at a time. This input record may either be specified as a
file containing one data item per line using the -d option or interactively at the
command prompt. In the latter case the PID Generator will ask for every data
item defined in the format specification. Note that a special CGI interface for a
single PID request is provided by the gui command (see section 5.4 Graphical User

Interface).

In batch mode, the input data file must contain one record per line according to the
format specification. It is specified with the -d option. The format specification may
be specified using the -f option, if the tabular organization of the input data file
differs from the format found in the PID database (see section 4.1 Data Format).
Optionally, one may use the -t option to specify an output trace file where the
results are written to. On may direct the software to begin at a certain record
position using the -p option causing the tool to skip the first p-1 lines.

The request operation understands some general arguments which are independent
of the selected processing mode. The sureness of the input records may be specified
with the -s option. A ’+’ indicates reliable data (e.g. originating from health
insurance cards) whereas a ’-’ should be specified when less trustworthy data sources
are used. The generation of a new PID may be forced using the -F option. Input
records are assumed to be formatted according to ISO 8857-1 (Latin 1) but may
also conform to the DIN 66003 standard if specified by the option -a.

Syntax PID Request

psx req -c: -f: -d: -a: -t: -s: -p: -b -F

-c: file configuration file
-f: file input format specification
-d: file input data file
-a:[din | iso] input character set
-t: file output trace file
-s: [ + | − ] sureness specification
-b batch mode
-F force PID generation
-p: num start position

The result of batch mode processing is written into the output trace file. Each
line consists of a consecutive number specifying the position of the record in the
corresponding input file followed by a colon, the result specifier, another colon, and



40 5 Operation

finally the PID itself. The result specifier is either ’PID’ indicating that a PID is
returned and ready to be used or ’???’. Three question marks indicate either a very
weak match or an ambiguous matching result. In the former case a PID is returned
but one should try to retrieve more reliable data to assert the result. In the latter
case no definite PID could be retrieved. If instead of a PID a question mark is
returned an error has occurred. In this case you should consult the logfile.

0001: PID: 7QHG8VGA PID ready to use
0002: PID: DKJVXP9B PID ready to use
0003: ???: ambigous match result
0004: ???: AK8ZWHF4 PID should not be used; weak similarity
0005: ???: ? an error occured

5.4 Graphical User Web Interface

The command gui provides an access point for a cgi-script thus enabling the invo-
cation of a PID request via a web server. See details about the cgi script in section
?? Graphical User Web Interface.

Depending on the context the PID Generator generates an HTML document pre-
senting the user either a data entry form or a result page containing the match
result or an arbitrary message. The automatically generated HTML output can be
replaced by customized HTML documents as described in section 3.8 Templates.

Syntax Graphical User Web Interface

psx gui -c: -s -d

-c: file configuration file
-s enable system panel
-d enable debugging

5.5 PID Validation

A PID consists of eight letters and digits, the last two characters being check char-
acters. The PID Generator offers a validation command to run plausibility checks
on PIDs whose correctness is not assured. It is capable of recognizing errors affect-
ing two positions within a PID and of correcting errors that affect only one position
or two neighbouring digits if these have interchanged. Note that there is no check
to ensure that the given PID has been assigned at all.

The command chk can be used either in single mode or in batch mode by specifying
the -b option. Single mode requires the specification of the PID using the option
-P while in batch mode an input data file must be presented using -d. The input
file contains one PID per line.

Syntax PID Validation

psx chk -c: -d: -o: -t: -p: -b -P:

-c: file configuration file
-P: PID PID
-d: file input data file
-o: file output data file
-b batch mode
-p: num start position



5.6 Configuration Information 41

The following table shows examples for possible outcomes of a PID validation. The
line numbers only appear in batch mode though.

0001: VAL: 7QHG8VGA PID is valid
0002: INV: PID is invalid, no correction possible
0003: COR: 7QHG8VGA PID is invalid, corrected as listed

5.6 Configuration Information

Configuration information encloses tasks that provide some insight into the settings
of the local implementation. This especially includes details on the internal schema
specification as stored in the PID database.

A summary of the data format, result and state specification can be obtained using
the -s option. To get the details about the matching procedure of a single state,
the option -m must be provided followed by the -q option and the KSXO notation
of the respective state. (Example: -q:K0:S1:X1:O0.)

Syntax Configuration Information

psx cfg -c: -s -m -q:

-c: file configuration file
-s dump schema
-m dump matching
-q: string KSXO filter

5.7 Version Information

Version information should report the global version numbers of the compiled bi-
nary, a unique time stamp that reflects the time of the last build, as well as a build
number, which is the absolute number of times when the binary was built, since the
first time.

Syntax Version Information

psx ver -c:

-c: file configuration file

5.8 Status Summary

The summary command will provide general status information on the contents of
the PID database. For now, only the current number of records is displayed.

Syntax Status Summary

psx sts -c:

-c: file configuration file



42 5 Operation



43



44 A Reference

A Reference

A.1 Commands

gen generate database
-c: configuration file
-s: schema specification
-d delete existing database

enc encipher
-c: configuration file
-f: input format specification
-d: input data file
-a: input character set
-o: output data file
-u: output format specification
-p: start position
-e: encoding specification
-b batch mode processing
-h print headings

req request
-c: configuration file
-f: input format specification
-d: input data file
-a: input character set
-t: output trace file
-s: sureness
-b batch mode processing
-F force PID generation
-p: start position

gui graphical user web interface
-c: configuration file
-s enable system panel

chk check
-c: configuration file
-d: input data file
-o: output data file
-P: PID
-b batch mode processing
-p: start position

cfg configuration
-c: configuration file
-s dump schema
-m dump matching
-q: filter (KSXO)

ver version information
-c: configuration file

sts print status summary
-c: configuration file

hlp show help




	1 Introduction
	2 Installation
	2.1 Installation on UNIX Systems
	2.2 Installation on Windows Systems
	2.3 Database System
	2.4 Example: Initial setup of the GPOH database
	2.5 Graphical User Web Interface
	2.6 XML Web Interface

	3 Configuration
	3.1 Database
	3.2 Logging
	3.3 Request History
	3.4 Mailing
	3.5 Encoding
	3.6 Directory Access
	3.7 PID Construction
	3.8 Templates
	3.9 Messages
	3.10 Encryption
	3.11 Health Insurance Code Validation
	3.12 Example: The GPOH configuration

	4 Specification
	4.1 Data Format
	4.2 Result Specification
	4.3 Matching Procedure
	4.4 Example: The GPOH matching diagram
	4.5 Example: The GPOH specification

	5 Operation
	5.1 Database Generation
	5.2 Encipherment
	5.3 PID Request
	5.4 Graphical User Web Interface
	5.5 PID Validation
	5.6 Configuration Information
	5.7 Version Information
	5.8 Status Summary

	A Reference
	A.1 Commands


