Secondary Use of the EHR via Pseudonymisation

*Klaus Pommerening, Mainz
Michael Reng, Regensburg

TMF = Telematikplattform für die medizinischen Forschungsnetze
[Telematics Platform for the German Health Research Networks]
Contents

1. EHR and Pseudonyms
2. 5 Scenarios for Secondary Use
3. Results
4. Discussion
Uses of the EHR

• Primary use: Treatment context.
• Secondary uses:
 – Disease specific clinical or epidemiological research projects,
 – Health care research, assessment of treatment quality, health economy.

Typical aspects of secondary uses:
• Outside of treatment context and professional discretion (of the treating physician),
• The identity of the patient doesn't matter.
For secondary use of the EHR:

- Protect the identities of the patients.
- Anonymisation wherever possible.

Drawbacks of anonymisation:
- No association between data from distinct sources
- ... or from distinct points of time.
- No way back to the patient for feedback
- ... or for recruiting suitable patients for a new research project.
Pseudonyms

• The golden mean between anonymous data and identity (or identity revealing) data.
• Almost as good as anonymity, depending on context –
 – one-way pseudonyms can’t be reversed,
 – reversible pseudonyms allow re-identification of the individual.
• Written informed consent necessary for reversibility!
Basic Types of Pseudonyms

• Untraceable pseudonyms (Chaum ca 1980)
 – Based on blind digital signature,
 – Under control of owner,
 – Not suited for secondary uses of the EHR.

• TTP-generated pseudonyms
 – Trusted Third Party = »Vertrauensstelle« or
 »Datentreuhänder« (e. g. a notary).
 – Example: Cancer registry (Michaelis/Pomm. 1993).
TTP-generated Pseudonyms
(Basic Model)

Reference list, strongly secret or secret key

Leaking data

Pomerening, Reng
Contents

1. EHR and Pseudonyms
2. 5 Scenarios for Secondary Use
3. Results
4. Discussion
(1) Single Data Source, One-Time Secondary Use

• Typical application case for anonymisation.
• Example: A simple statistical evaluation of EHR data.
(2) Overlapping Data Sources, One-Time Secondary Use

- Data from diverse sources must be linked together.
- Examples:
 - Multicentric study,
 - Follow-up data.
- Typical application case for one-way pseudonyms.
Pseudonymisation for One-Time Secondary Use

Data Source(s)

MDAT
IDAT
PID

(TTP)
Pseudonymisation Service

encrypted

PID
PSN

Secondary Use

MDAT
PSN

MDAT = Medical Data
IDAT = Identity Data
PID = Unique Patient Identifier
PSN = Pseudonym

Pommerening, Reng
Properties of Scenario (2)

• Medical data (MDAT) are encrypted with public key of secondary user –
 – The TTP cannot read the MDAT.
 – Only the secondary user can decrypt them.

• The pseudonym (PSN) is the encrypted PID
 – With a secret key, known only to the TTP,
 – By a one-way procedure.

• The TTP doesn’t store anything (except the key).
(3) One-Time Secondary Use with Re-Identification

- Use the »Basic TTP« model,
 - But no reference list, only secret TTP key.
 - PSN service performs reversible encryption procedure.
- Use a non-public (project specific) PID
 - Generated by a separate TTP service.
 - PID service stores association between IDAT and PID (»Patient List«).
- Re-identification involves PSN service and PID service.
Pseudonymisation with Possible Re-Identification

Data Source(s)

MDAT
IDAT
IDAT
PID

PID Service (TTP)

Pseudonymisation Service (TTP)

encrypted

MDAT = Medical Data
IDAT = Identity Data

PID = Patient Identifier
PSN = Pseudonym

Secondary Use

MDAT
PSN

encrypt/decrypt
(4) Pseudonymous Research Data Pool

- Same procedure as in (3),
 - But the secondary user builds a (disease specific) registry.
- Long term data accumulation needs special organisational and technical security measures.
- Quality management of data should precede pseudonymisation.
 - Yet another TTP service.
- »Model B« of the generic concept of the TMF.
(5) Central Clinical Data Base, Many Secondary Uses

• Data pool = central »clinical« data base.
 – Access for treating clinician (decentral).
 – No identity data, only PID.s.
 – Access by temporary tokens.
 – Implemented as (yet another) TTP service.

• No online access by secondary users.
 – Secondary users get exported data set (anonymised or pseudonymised).
TTPs for Central Clinical Data Base

Local Database

MDAT
PID
IDAT

(TTP) Central Database

(PSN) Patient List
(TTP)

Export

Pseudonymisation Service

(TTP)

PID
PSN

MDAT
PSN

MDAT = Medical Data
IDAT = Identity Data
PID = Patient Identifier
PSN = Pseudonym

Pommerening, Reng
Properties of Scenario (5)

• Advantages:
 – Better support for long-term observation of patients with chronic diseases.
 – Useful for the data producing clinician.
 – Individual feedback of research results easy.
 – Fits well into EHR architecture.

• Drawback:
 – Sophisticated communication procedures.
 – More TTPs and secret keys involved.

»Model A« of the generic concept of the TMF
Contents

1. EHR and Pseudonyms
2. 5 Scenarios for Secondary Use
3. Results
4. Discussion
Results I

- TMF models A and B [(5) and (4)] approved by the German Data Protection Commissioners
 - (Arbeitskreis Wissenschaft der Datenschutzbeauftragten des Bundes und der Länder)
- Scenario (2) in routine use since 2002 in a health care research project of the TMF.
- Scenario (5) implemented in a research network.
 - KN CED (Chronic Inflammatory Bowel Disease).
 - Further implementations in progress.
Results II

- Scenario (4) adapted by several research networks
 - Implementations in progress.
- TMF offers software tools for the TTP services.
- Corresponding policies, sample contracts, forms for patient’s consent available from TMF (free for members).
Contents

1. EHR and Pseudonyms
2. 5 Scenarios for Secondary Use
3. Results
4. Discussion
Discussion I

• The TMF model architecture (variants A and B) provides ways for building central data pools for medical and health care research, that
 – conform to the German and European data protection rules,
 – respect the patients’ rights,
 – and cover a wide range of situations.

• The pseudonymisation scenarios look complex, but once established, work transparently.
Discussion II

• The transfer to other applications in health care is possible and recommended.
 – We could – and should – build TTP services for secondary uses into the EHR architecture (suitably adapted from the TMF services).