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1 Crystal structure and group-theoretical classification

1.1 Introduction

The theoretical description of the physics of solids and other condensed materials (liquids and soft mat-
ter) is a longstanding issue, which nowadays covers a large fraction of theoretical physics. The key point
of traditional solid state theory is, of course, the crystal symmetry, which facilitates the solution of the
electronic band structure problem – as well as the phonon problem – enormously. Most of the solid state
theory literature up to the 70’s or so was therefore devoted to the application and refinement of band
structures.

The description of non-crystalline materials such as liquids and polymers was (and is until now) almost
entirely based on statistical and thermodynamic concepts. This part of condensed matter science was
more at home in chemistry than in the physical community. Nowadays these parts have merged into a
wealth of descriptions of condensed matter making use both of (eventually present) crystal symmetry and
(eventually present) disorder statistics.

Solid state theory, however does not only deal with approximate one-particle theories in a crystalline or
disordered environment but also with the physics which results from interactions. The most prominent
interaction phenomena are magnetism and superconductivity.

The focus of the present, somewhat unusual introductory lecture is on mean-field concepts, which help
to approximately solve the Schrödinger equation (and other fundamental equations) in the presence of
interactions and disorder. These mean-field concepts are the random-phase approximation (RPA) for
interacting many-body systems, the coherent potential (CPA) and self-consistent Born (SCBA) approx-
imations for disorder, the Weiss theory for magnetism, the Bardeen-Cooper-Schrieffer (BCS) theory for
superconductivity and the Landau theory for a general phase transition.

From a mathematical point of view we shall make use of the concept of Green’s functions and – to a
certain extent – of functional integrals. These concepts will be introduced within the lectures.

The starting point of the lecture is the structure of crystals and their group-theoretical classification. The
second chapter deals with the statistical description of liquids and polymers. The following chapters are
devoted to the electronic and vibrational structures of solids with and without crystalline symmetry. The
three chapters on transport deal with the distinction between metals and semiconductors, the disorder-
induced metal-nonmetal transition and then with the description of transport in the presence of weak
(Boltzmann equation) and strong disorder (hopping and diffusion equation). The two final chapters are
on magnetism and superconductivity.
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1.2 Groups and representations

We here give a very brief review of the theory of groups and their representations.

A set g with a composition ”◦” is called group if

• ◦ does not lead out of g a ◦ b = c a ∈ g, b ∈ g ⇒ c ∈ g

• ◦ is associative a ◦ (b ◦ c) = (a ◦ b) ◦ c

• there exists a neutral element e with e ◦ a = a ◦ e = a for all a ∈ g

• for each a ∈ g there exists an inverse a−1 with a ◦ a−1 = e

If, in addition, ◦ is commutative (i.e. a ◦ b = b ◦ a for all a, b ∈ g) the group is called Abelian.
If there is a finite number h of group elements, h is called the order of the group g.
A group of finite order is completely characterized by its multiplication table.

Most simple example: Turning of an object

t = turn

e = no action

Multiplication table:

e t
e e t
t t e

So we see that all the group axioms are fulfilled. g is trivially Abelian, because for all groups of order 2
e ◦ t = t ◦ e must hold, and the above is the simplest nontrivial multiplication table. (A trivial group ist
just {e}.)
For any group element one can form a sequence

a, a ◦ a, a3, · · · , an−1, an = e

n is the order of the group element a. If the n powers of a exhaust the group, the group is called cyclic.

Example:
The solutions of the equation

zn = 1 z ∈ C n ∈ N

(”roots of unity”). We put

z1 = ei 2π

n and zν = zν
1

Obviously for all zn the equation is fulfilled, and they form a cyclic group of order n.

All cyclic groups are Abelian.

A subgroup is a subset of g, which forms a group. If the powers of an element a ∈ g do not exhaust g,
these powers form a cyclic subgroup of g.

A mapping between two groups

g
f
> g′

with compositions ◦ and ◦′, resp. is called homomorphic if

f(a ◦ b) = f(a) ◦′ f(b)

If this mapping is injective, i.e. a 6= b ⇒ f(a) 6= f(b) the groups are called isomorphic and f is an
isomorphism.
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The elements a, b are conjugate if they can be transformed into each other by

b = c−1ac a, b, c ∈ g

All mutually conjugate elements form a class. e forms always its own class.

A subgroup s of g, composed entirely of classes is called an invariant subgroup or normal divisor.

If s = {a1, · · · , af} is a normal divisor then s = {ca1, · · · , caf} = s = {a1c, · · · , afc} (c ∈ g) is called a
co-set. The normal divisor together with its cosets is a set of sets. This ”set-set” forms a group, which is
called factor group or quotient group g/s.

1.3 Representations of groups

Let g be a group and G a set of non-singular unitary quadratic matrices, which forms a group with respect
to matrix multiplication. If there exists a homomorphic mapping f

g
f
> G

G is called a representation of g. If f is an isomorphism G is called a true or faithful representation1.
Example: the two matrices

E =

(

1 0
0 1

)

T =

(

1 0
0 −1

)

form a true representation of the group (e, t), introduced above.

The dimension of the matrices is called the dimension of the representation. A one-dimensional matrix
is just a complex number. If this number has to be unitary it must be of the form z = eiφ. The n-th
unit roots form a one-dimensional representation of any cyclic group of order n. If one can perform a
transformation

A′
1 = S−1AS

| |
| |

A′
h = S−1AhS

between G = {A1, · · · , Ah} and G′ = {A′
1, · · · , A

′
h} the two matrix groups (or representations) are equiv-

alent and one writes G′ ∼= G.

A representation G is called reducible, if it is equivalent to a matrix G′, which has block form, i.e. all
elements A of G′ have the form

A

A

A

0

00

0

0

0

0

0

0(1)

(2)

(n)

Representations for which such a decomposition is not possible are called irreducible. The irreducible
representations of symmetry groups play a key role in quantum mechanics, and hence in the quantum
theory of crystalline solids.

Theorems on representations:

• Any representation is either irreducible or completely reducible.

1Deutsch: treue Darstellung
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• Let di be the dimension of representation i. Then we have for the order h of g

imax
∑

i=1

d2
i = h (1)

• The number of irreducible representations of a group is equal to the number of classes

Example The group {T,E} introduced above is a true representation of {t, e}, but it is reducible. An
irreducible nontrivial representation of {t, e} is {1,−1}.

Abelian groups
Consider an abelian group g = {a1, a2, · · · , ah}.
If we try to form conjugate elements

a−1
2 a1a2 = a1 or a−1

1 a2a1 = a2

we see that each element is only conjugate to itself, i.e. it forms a class on its own. From this follows
that the number of classes is equal to the order h of the group. Therefore the number of irreducible
representations must also be equal to h. The relation (1) can in this case only be fulfilled if all di are
equal to 1. Therefore we state the important theorem

The irreducible representations of an Abelian
group are all one-dimensional.

1.4 The role of the irreducible representations of symmetry groups in quan-

tum mechanics

Let s = {s1, · · · , sh} be a group of symmetry operations, where sr are operators in Hilbert space, then a
state vector |ψ > is transformed under s into other vectors:

|ψs1
> = s1|ψ >

| |
| |

|ψsh
> = sh|ψ >

This set is not necessarily linearly independent. Let’s assume there are d linearly independent vectors,
which are transformed under s into each other. Then we have

sr|ψα >=

d
∑

β=1

Γαβ(sr)|ψβ >

where Γ is a d-dimensional representation of s. < r|ψα >= ψα(r) is called basis function.
If {|ψ1 >, · · · , |ψd >} is an orthonormal basis, the Γ are unitary, and we have

Γαβ(sr) =< ψα|sr|ψβ >

By definition if s is the symmetry group of the Hamiltonian H, the elements of s must commute with H.

⇒ All observables, whhich can be represented as operator function of elements of s are invarians

⇒ All eigenvectors of elemens of s are also eigenvectors of H with respect to the same eigenvalue of H.

The group of symetry operations that commute with H is called group of the Schrödinger equation, because
it leaves the Schrödinger equation

H|ψ >= E|ψ >
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invariant. Let Ei be a particular eigenvalue and Let’s assume that Ei is di-fold degenerate, i.e. there exist
di linarly independent eigenvectors of Ei. If s is a symmetry group, these vectors must transform among
each other according to

sr|ψ
(i)
α >=

d
∑

β=1

Γ
(i)
αβ(sr)|ψ

(i)
β >

< r|ψ
(i)
α >= ψα(r)(i) is called the αth basis function of the ith irreducible representation of s.

• To each eigenvalue Ei there corresponds an irreducible representation Γ(i) of s.

• The label i is the quantum number.

• The dimension of Γ(i) is equal to the degeneracy of Ei.

Atom Solid (crystal)

s = continuous s = crystal covering
rotation group group (space group)

Quantum numbers
n, l,m n, kx, ky, kz

1.5 Crystal symmetry operations

A crystal is a regular arrangement of atoms, groups of atoms or molecules within a unit cell, which is
repeated by the translation operator

T = n1a1 + n2a2 + n3a3 ni ∈ Z, a1,a2,a3 linearly independent

The set of points generated by T is called Bravais lattice.

The translations are not the only covering operations of a crystal. The other symmetry operations are
found as those, which leave a particular point (origin) unchanged. These operations form the point group

of the crystal. The total symmetry group is called space group.
Symmetry operations, which build up the point group:

1. Rotations about axes through the origin;

2. Reflections in planes containing the origin.

Notations (Schoenflies):

E = Identity
Cn = Rotation through 2π/n
σ = Reflection in a plane
σh = ” ” rectangular to the axis

of highest symmetry
(horizontal plane)

σv = ” ” passing through the axis
of highest symmetry
(vertical plane)

Sn = Improper rotation = rotation, followed
by a reflection in a plane rectangular to the
rotation axis

i = S2 = Inversion, takes r into −r
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List of point groups

Cn Only one n-fold symmetry about one axis
Cnv In addition to the Cn symmetry there are n σv planes
Cnh = Cn × {E, i} There is a σh plane
S2n Improper rotations about an angle 2π/2n,

contains Cn as subgroup
Dn In addition to Cn the group contains

n two-fold axes perpendicular to the main axis
Dnh =Dn × {E, i} Dn plus horizontal reflection plane
Dnd Dn plus n vertical reflection planes

that bisect the angle of the 2-fold axes
T Tetrahedral Cn’s, which take a regular

group tetrahedron into itself:
E
3 C2’s about x, y, z axes,
8 C3’s about body diagonals
12

Td Including all reflections which take
the tetrahedron onto itself

Th =Td × {E, i}
O Octahedral All proper rotations, which take an octahedron

group or a cube into itself
E
8 C3’s about body diagonals
6 C2’s around axes || face diagonals
6 C4’s around axes ⊥ face midpoints
3 C2’s around axes ⊥ face midpoints
24

Oh =Od × {E, i}

1.6 Scattering theory

Ωd

k2
k1

q = k
2

k1

region where V = 0

We want to describe the scattering of X-rays or neutrons from
a simple liquid sample. We study an ingoing plane wave (1st
term) and an outgoing scattered spherical wave (2nd term) of the
following asymptotic form

ψ(r)
|r|→∞

= eik1·r + f(θ)
1

r
eik2r (2)

The scattering cross-section into the solid angle element dΩ in
the direction of k2 is then given by the modulus-square of the
scattering amplitude

dσ

dΩ
= |f(θ)|

2
(3)

If the scattering potential (the potential between the scattered rays and the particles) can be decomposed
as

V(r) =

N
∑

α=1

v(r − rα) (4)

the scattering amplitude is given in 2nd approximation (Born approximation)

f(θ) = −
m

2π~2
〈k2|V|k1〉 = −

m

2π~2
V(q) = −

m

2π~2

N
∑

α=1

eiq·rαv(q) ≡

N
∑

α=1

eiq·rαf(q) , (5)

f(q) is called form factor and has the unit of length. In the case of energy unresolved neutron or X-ray
diffraction there is no net energy exchange with the sample, i.e. |k1| = |k2|. In an isotropic material the
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form factor depends only on the modulus of the exchanged momentum, which is given by

q = |k1 − k2| = k1

√

2[1 − cos(θ)] =
4π

λ
sin

(

θ

2

)

, (6)

where θ is the angle between k1 and k2 and λ = 2π
|k1|

is the wavelength.

In the case of neutrons, which scatter from the nuclei, whose potential v(r) is extremely short-ranged,
f(q) does not depend on q (in the range of interest q < 20 Å−1) and is called scattering length and is
denoted by the letter b.
Let us look at the scattering amplitude in the case of a crystal. Max von Laue’s condition for constructive
interference of incoming and scattered waves gives

eiqRℓ = 1 (7)

where Rℓ are lattice points. One can show that the vectors q that fulfil (7) form a three-dimensional
lattice. This lattice is called the reciprocal lattice. The reciprocal lattice has a fundamental significance
for band structure and phonon dispersion calculations for a crystal. Its unit cell is called first Brillouin

zone. The reciprocal lattice is formed by the normal vectors corresponding to all lattice planes, i.e all
planes that contain two-dimensional sublattices of the 3d lattice.
The unit vectors b1,b2,b3 are given in terms of the unit vectors of the real-space lattice as

b1 =
2π

VE

a2 × a3 (8a)

b2 =
2π

VE

a3 × a1 (8b)

b3 =
2π

VE

a1 × a2 , (8c)

(8d)

where VE = a1 · a2 × ·a3 is the volume of the unit cell.
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