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2 Structure of liquids and polymers

2.1 Structure of amorphous materials and simple liquids

2.1.1 Molecular distribution functions

The structure of a liquid or an amorphous material is governed by the statistical distribution of the centers
of gravity of the atoms or molecules. In the liquid, of course the molecules keep moving, but we can ask
about the atomic distributions if one could perform a snapshot of the atomic arrangements. This is what
we call the (static) structure of the liquid. The structure of an amorphous material very often looks like
that of a frozen liquid.
We now pose the question of how a collection of N ≈ 1023 atoms or molecules (or much less in a computer
simulation) are distributed inside a certain volume V . We call the probability for these particles to occupy
volume elements d3r1, d

3r2, . . . d
3rN around positions r1, r2, . . . rN

P (r1, r2, . . . rN )d3r1, d
3r2, . . .d

3rN . (2.1)

P (r1, r2, . . . rN ) is the probability density of the configuration {r1, r2, . . . rN} and is normalized to 1:

∫

V

N∏

α=1

d3rαP (r1, r2, . . . rN ) = 1 . (2.2)

If a physical quantity A depends on the position of the particles the configurational average can be
calculated as

〈A〉 =

∫

V

N∏

α=1

d3rαA(r1, r2, . . . rN )P (r1, r2, . . . rN ) . (2.3)
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One can select n < N particles in order to define the reduced n-particle densities

ρ(n)(r1, r2, . . . rn) =
N !

(N − n)!

∫

V

N∏

i=n+1

d3rαP (r1, r2, . . . rN ) , (2.4)

In the case of a complete random arrangement, which is only realized in an ideal gas we have

ρ(n)(r1, r2, . . . rn) =

(
N

V

)n

≡ ρn
0 . (2.5)

where ρ0 is called the homogeneous density of the liquid. The deviation from this random distribution is
given by the n-particle correlation functions g(n), which are defined as follows

ρ(n)(r1, r2, . . . rn) = ρn
0 g(n)(r1, r2, . . . rn) . (2.6)

In homogeneous systems we have
ρ(1)(r1) = ρ0 (2.7)

g(1)(r1) = 1 . (2.8)

In a homogeneous and isotropic material we have

g(2)(r1, r2) = g(|r1 − r2|) (2.9)

g(r) is called radial pair correlation function or radial pair distribution function and can, as we shall see,
be determined by neutron or x-ray diffraction.
Let us consider again the X-ray or neutron scattering cross-section. Inserting (1.5) into (1.3) and averaging
over an ensemble of different configurations of a liquid or non-crystalline material we obtain

dσ

dΩ
= |f(q)|2

〈
N∑

α,β=1

eiq·[rα−rβ ]

〉

≡ |f(q)|2NS(q) , (2.10)

where S(q) is the static structure factor

S(q) =
1

N

〈
N∑

α,β=1

eiq·[rα−rβ ]

〉

(2.11)

It can be shown that S(q) is related to the pair correlation function by a simple Fourier transform

S(q) = 1 + ρ0

∫

d3reiqr[g(r) − 1] (2.12)

which can - because g and S depend only on the moduli of their arguments - be simplified as

S(q) = 1 +
4πρ0

q

∫ ∞

0

dr r sin(qr)[g(r) − 1] (2.13)
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2.1.2 Thermodynamic relations

We are now assuming that the liquid under consideration can be described by a classical Hamiltonian

H =

N∑

α=1

1

2
mṙ2

α +
1

2

∑

α6=β

φ(|rα − rβ |) . (2.14)

There are the following thermodynamic relationships (equations of state):
Potential Energy

1

N
〈Epot〉 = 2πρ0

∫ ∞

0

dr r2φ(r)g(r) (2.15)

Pressure

〈P 〉 V

NkBT
= 〈P 〉 1

ρ0kBT
= 1 − 2πρ0

3kBT

∫ ∞

0

dr r3φ′(r)g(r) (2.16)

Number fluctuations and isothermal compressibility κT

〈N2〉 − 〈N〉2
N

= ρ0kBT

(

− 1

V

∂V

∂P

)

T

= ρ0kBTκT (2.17)

= S(q = 0) = 1 + 4πρ0

∫ ∞

0

dr r2[g(r) − 1] (2.18)

2.1.3 Direct correlation function

The static structure factor can be split in an obvious way into a self and distinct part by separating the
α 6= β term in the summation over the particles:

S(q) =
1

N

〈
N∑

α,β=1

eiq·[rα−rβ ]

〉

= 1 +
1

N

〈
N∑

α6=β

eiq·[rα−rβ ]

〉

≡ 1 + ρ0h(q) (2.19)

The self part is just equal to unity, and the distinct part is ρ0 times the Fourier transform of the deviation

of g(r) from unity, i.e.
h(r) = g(r) − 1 . (2.20)

We now sub-divide the correlation function h(r) into a part which involves only a particular pair of atoms,
say r1 and r2 and a part which involves more than two atoms. Following Ornstein and Zernike, the first
term is called direct correlation function. The second part can be generated by combining several direct
functions in the following way:

h(r12) = c(r12) + ρ0

∫

d3
r3c(r13)c(r32) + ρ2

0

∫

d3
r3

∫

d3
r4c(r13)c(r34)c(r42) + . . . (2.21)

The terms under the r3 integral can be summed again to give the function h(r32):

h(r12) = c(r12) + ρ0

∫

d3r3c(r13)h(r32) (2.22)

This is the so-called Ornstein-Zernike equation. It is the starting point for some integral equation theories

for g(r) (See section 2.7).
If we introduce the Fourier transform c(q) of c(r) and use the convolution theorem we obtain

h(q) =
c(q)

1 − ρ0c(q)
(2.23)

which finally leads to

S(q) =
1

1 − ρ0c(q)
(2.24)
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2.1.4 Density response function

We can be interested in the density change due to the presence of an external potential

Vext(r) =
∑

α

φext(r − rα) . (2.25)

The average density in the presence of Vext(r) is given by1

〈ρ(r)〉Vext
=

1

ZVext

∫
d3r′

V

∏

α

d3rα

∑

α

δ(r − rα)

︸ ︷︷ ︸

ρ(r)

e−βV {rα}e−βVext(r
′) (2.26)

with

ZVext =

∫
d3r′

V

∏

α

d3rαe−βV {rα}e−βVext(r
′) (2.27)

and

V {rα} =
1

2

∑

α6=α′

φ(|rα − rα′ |) (2.28)

Defining 〈ρ〉0 to be the density average with Vext = 0 and going over to Fourier Transforms we obtain to
lowest order in Vext = 0 (linear response)

δρ(q) = 〈ρ(q)〉Vext
− 〈ρ〉0 = − β

V
〈ρ∗(q)ρ(q)〉 φext(q) ≡ χ(q)φext(q) (2.29)

the (static) response function or susceptibility is therefore given by

χ(q) = −βρ0S(q) (2.30)

This is a version of the famous fluctuation-dissipation theorem.

2.1.5 Mean field potential and random phase approximation

In order to to formulate an approximate theory for S(q) it is useful to represent the interatomic interac-
tions in terms of a mean field potential U(q) which acts on the individual atoms as an effective external

polarization potential

φpol(q) ≡ U(q)δρ(q) . (2.31)

One then can use the non-interacting Curie response function χ0 = −βρ0 to write down the density change
in terms of the real and the effective external potential:

δρ(q) = χ0 [φpol(q) + φext(q)]

= χ0 [U(q)δρ(q) + φext(q)]

= χ(q)φext(q) (2.32)

from which follows
χ(q) =

χ0

1 − χ0U(q)
(2.33)

If we compare this with (2.24) we find
c(q) = −βU(q) (2.34)

We conclude that −kBTc(r) has the meaning of a mean-field potential. Identifying U(r) with the true
pairwise potential φ(r) is called the Random-Phase approximation. It gained its name from the theory
of interacting electrons (or nucleons). There the RPA involves the decoupling of electronic correlation
functions, which is only possible if the wave functions are assumed to have “random phases”.
In many cases it is useful to sub-divide a potential into a “hard-core” repulsive part and a perturbative
part, which extends to larger distances:

φ(r) = φ0(r) + φ1(r) (2.35)

1β = 1/kBT .
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Correspondingly one writes for the direct correlation function

c(r) = c0(r) + c1(r) (2.36)

The perturbative random-phase approximation, which consists in setting

c1(r) ≈ − 1

kBT
φ1(r) (2.37)

This approximation can be shown to hold in many cases, in paricular for the function c(q) in the long-
wavelength limit q → 0.

2.2 Binary solutions

2.2.1 Thermodynamics and partial quantities

As we now start dealing with mixtures (solutions) of liquids we gradually cross the borderline between
physics and chemistry, so we must introduce the concept of moles which are lumps of NAvo = 6.022 · 1023

particles (atoms or molecules). The number of moles is just n = N/NAvo. We consider a mixture of two
liquid phases A and B (“species”) which are assumed to be in equilibrium with each other and consist of
NA = nANAvo and NB = nBNAvo particles, resp. If one is working at a given temperature T and pressure
p (as we shall do) the appropriate thermodynamic potential is the Gibbs free enthalpy

G = H − TS = E − TS + pV . (2.38)

where H = E + pV is the enthalpy. The fundamental thermodynamic equation for G reads

dG = −SdT + V dp +
∑

i=A,B

µidni (2.39)

from which follows

S = −∂G

∂T
entropy (2.40a)

V =
∂G

∂p
volume (2.40b)

µi =
∂G

∂ni
chemical potentials (2.40c)

For any physical variable X (like G, E, T , S, p, and V ) that characterizes the total mixture one can
introduce so-called partial quantities which are defined as

xi =
∂X

∂ni
i = A, B (2.41)

from which follows (this is an exercise to be done!)

X = nAxA + nBxB (2.42)

X is also called an extensive quantity, and the xi are the corresponding intensive quantities. We indentify
immediately the chemical potentials µi as the partial free enthalpies of the mixture. We now introduce
the so-called concentrations or mole fractions ci = Ni/N = ni/n. Since cA + cB = 1 only one of these
variables is independent, and we define cA ≡ c to be the independent variable, so that cB = 1 − c. For
any extensive quantity X we have (exercises!)

∂X

∂c
= xA − xB (2.43)

and

xA
∂xA

∂c
+ xB

∂xB

∂c
= 0 . (2.44)

In particular, we have

xA
∂µA

∂c
+ xB

∂µB

∂c
= 0 , (2.45)

which is the famous Gibbs-Duhem relation.
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2.2.2 Cross-sections and partial correlation functions

Let us recall the scattering cross-section for energy unresolved neutron or X-ray scattering from a liquid

dσ

dΩ
=

〈
N∑

α,β=1

f∗
α(q)fβ(q)eiq·[rα−rβ ]

〉

, (2.46)

where we now have labelled the form factors with atomic indices α, β. Let us assume, that the atoms
now belong to either species A or species B. We would like to factorize (2.46) into a form and structure
factor as done with the expression (14) for the mono-atomic liquid. However, due to the heterogeneous
character of a mixture such a factorization is no more possible. All we can do is to come up with a linear

combination of form and structure factors. In order to derive such an expression we again separate the
terms into self and distinct parts. Let us keep in mind that the distinct correlation function h(q) was
defined as

h(q) =
1

ρ0
[S(q) − 1] =

V

N2

〈
∑

α6=β

eiq·[rα−rβ ]

〉

. (2.47)

We now define the corresponding quantities in which the α, β sums are only over A- or B-type atoms:

hij(q) =
V

NiNj

〈
Ni∑

α=1

Nj∑

β=1
︸ ︷︷ ︸

α6=β

eiq·[r(i)
α −r

(j)
β

]

〉

i, j = A or B (2.48)

and obtain, since the incoherent α = β terms occur only linearly in the concentrations ci

dσ

dΩ
= N



cA|fA(q)|2 + cB|fB(q)|2 + ρ0

∑

i=A,B

∑

j=A,B

cicjf
∗
i (q)fj(q)hij(q)



 (2.49)

One defines the so-called partial structure factors as

Sij(q) = 1 + ρ0hij(q) i, j = A or B , (2.50)

but, as we see from (2.49) and (??), this definition is not of much use, as the functions hij(q) and not
Sij(q) enter into the expressions. On the other hand, the Fourier transforms of hij(q) are related to the
partial radial distribution functions gij(r)

hij(r) =
1

2π2r

∫ ∞

0

dq q sin(q)h(q) = gij(r) − 1 (2.51)

ρ04πr2gij(r)dr gives the probability for the presence of a j particle inside a spherical shell of thickness
dr, if there is an i particle at the origin.

2.2.3 Number and Concentration fluctuations

Instead of working with the partial structure factors Sij(q) or the functions hij(q) one can define linear
combinations of these functions which are the correlation functions of the density fluctuations δρ and the
concentration fluctuations δc (Bhatia, Thornton, 1970):

Sρρ(q) = c2
ASAA(q) + c2

BSBB(q) + 2cAcBSAB(q) (2.52a)

Sρc(q) = cAcB {cA [SAA(q) − SAB(q)] − cB [SBB(q) − SAB(q)]} (2.52b)

Scc(q) = cAcB {1 + cAcB [SAA(q) + SBB(q) − 2SAB(q)]} (2.52c)

In terms of these quantities (2.49) and (??) take the form

dσ

dΩ
= N

(∣
∣f

∣
∣
2
Sρρ(q) + |fA − fB|2Scc(q) + 2f∗(fA − fB)Sρc(q)

)

(2.53)

with X ≡ cAXA + cBXB.

13



At q = 0 the following relations hold:

Sρρ(0) =
1

N
〈(∆N)2〉 = θ + δ2Scc(0) (2.54a)

Sρc(0) = 〈∆N∆c〉 = −δScc(0) (2.54b)

Scc(0) = N〈(∆c)2〉 = kBT/gcc (2.54c)

with the three thermondynamic quantities

θ = ρ0kBTκT (2.55a)

δ =
1

V

(
∂V

∂c

)

P,T,N

=
vA − vB

nAvA + nBvB
(2.55b)

gcc =
1

N

(
∂2G

∂c2

)

P,T,N

=
1

N

(
∂2∆G

∂c2

)

P,T,N

(2.55c)

Here θ is again related to the isothermal compressibility κT , vi are the partial molar volumina and gcc is
the stability function. ∆G is the free enthalpy of mixing, which is defined to be

∆G = G − NAG
(0)
A − NBG

(0)
B (2.56)

where G
(0)
i are the free enthalpies of the pure systems. As these quantities do not depend on concentration

we only need to know ∆G for calculating gcc.

2.2.4 Entropy of mixing

S  = k  ln N  ! = k  N  ln N

S  = k  ln N  ! = k  N  ln N
A A A AB B

B B B B B B

S = k  ln N! = k  N ln N
B B

Red and blue particles in the demixed and mixed state

0 0,2 0,4 0,6 0,8 1
c

0

0,2

0,4

0,6

0,8

∆S
(c

)

Entropy as a function of concentration

Let us perform the classical gedanken experiment for defining the
entropy and showing that the entropy increases with mixing. For
a system of N particles the entropy is defined to be kB times the
logarithm of the number of possible configurations. We imagine
that the particles can be distributed into N volume “cells” in N !
different ways. Then the entropy is just

S = kB lnN !
N→∞

= kBN lnN (2.57)

We now start the gedanken experiment at the left side of our
figure. The Entropy is initially the sum of the red and blue terms.

If we achieve a complete random mixture the entropy is given by the black expression. The increase in
entropy is

∆S(0) = kB [(NA + NB) lnN − NA lnNA − NB lnNB]

= −kBN [cA ln cA + cB ln cB] (2.58)
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For non-interacting particles (for which ∆H = 0) the stability function obviously is given by

gcc =
1

N

∂2

∂c2
[−T∆S] = kBT

∂2

∂c2
[c ln c + (1 − c) ln(1 − c)]

= kBT

[
1

c
+

1

(1 − c)

]

= kBT

[
1

c(1 − c)

]

(2.59a)

⇒ Scc(0) = c(1 − c) (2.59b)

2.2.5 Partial structure factors of ideal solutions

Ideal solutions are defined to be systems in which there are either no interactions or all interactions are
equal so that there are no excess interactions:

φAA(r) = φBB(r) = φAB(r) (2.60)

In such a system the partial structure factors Sij are all equal and we have

S(0)
ρρ (q) ≡ S(q) S(0)

ρc (q) = 0 S(0)
cc (q) = c(1 − c) (2.61)

Inserting this into (2.53) we obtain

dσ

dΩ
=

∣
∣f

∣
∣
2
S(q) + |fA − fB|2c(1 − c) (2.62)

One obtains the same expression from (2.49) if all hij are set equal to 1
ρ0

[S(q) − 1]. In the case of X-ray
diffraction on weakly interacting alloys the second term is just a background which is q independent and
is called Laue background. Such a background is also observed in randomly mixed crystals.

2.2.6 Direct correlation functions

As in the single-component case one can define direct correlation functions by the equations

hij(r) = cij(r) + ρ0

∑

ℓ=A,B

cℓ

∫

d3r′hiℓ(r
′)cℓj(|r − r′|) (2.63)

By applying the convolution theorem and a 2 × 2 matrix inversion one can derive the following relations
between their Fourier transforms Cij(q) ≡ ρ0d

3reiqrcij(r) and the number and concentration structure
factors:

Sρρ(q) = Θ(q) + ∆2(q)Scc(q) (2.64a)

Sρc(q) = −∆(q)Scc(q) (2.64b)

Scc(q) =

[
1

cAcB
− ∆(q)2

Θ(q)
− CAA(q) − CBB(q) + 2CAB(q)

]−1

(2.64c)

Θ(q) =
[
1 − c2

ACAA(q) − c2
BCBB(q) − 2cAcBCAB(q)

]−1
(2.64d)

∆(q) = Θ(q) [cA (CAA(q) − CAB(q)) − cB (CBB(q) − CAB(q))] (2.64e)

Here the quantities Θ(q) and ∆(q) are the generalizations of θ = Θ(q = 0) and δ = ∆(q = 0) of (2.55).

2.2.7 Perturbative RPA for q = 0 and regular solution model

As in the single-component case we now generalize the perturbative RPA as follows

Cij(q = 0) = C
(0)
ij − 1

kBT
U

(1)
ij (2.65)
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with

U
(1)
ij =







ρ
∫

d3rφij(r) RPA

ρ
∫

d3rgij(r)φij(r) ERPA
(2.66)

We now define a Flory-Huggins interaction parameter by

ω = kBTχ = U
(1)
AB − 1

2

[

U
(1)
AA + U

(1)
BB

]

(2.67)

and obtain for Scc(0)

Scc(0) =

[
1

S
(0)
cc

− δ2
0

θ0
+

δ2
1

θ1
− 1

kBT
2ω

]−1

, (2.68)

where the index 0 refers to the hard-core system, and the index 1 refers to the combination of the direct

correlation functions C
(1)
ij (q = 0) ≡ −U

(1)
ij (q = 0)/kBT given by (95d) and (95e).

In the case δ = 0, S
(0)
cc (0) = cAcB we have

Scc(0) =

[
1

cAcB
− 1

kBT
2ω

]−1

(2.69)

S   (q),S   (q)/c  cρρ cc A B

1

q

demixing

compound−
forming

S
cc

ideal

Sρρ

Sρρ(q) and the different possible forms of Scc(q)/cAcB for

different types of chemical order

The quantity Scc(0) can be taken as a parameter
which describes the degree of chemical ordering. In
the non-interacting case, which is equivalent to the
case in which all three pair potentials are equal, there
is no chemical ordering and we have Scc(0) = cAcB.
If the A − B potential is more attractive than the
average of the A − A and B − B potentials we
have a tendency towards forming an A − B com-
pound, and there will be a chemical ordering as in
an antiferromagnet. This establishes a superstruc-

ture (Überstruktur) and is accompanied by a pre-

peak in Scc(q), which is situated half-way between
the principle peak of Sρρ(q) and q = 0. On the other
hand, if the A − B potential is less attractive than
the average of the A − A and B − B potentials we
have a tendency towards de-mixing, which can re-
sult in a demixing phase transition if the quantity
χ = ω/kBT becomes too large.

A tendency towards demixing is accompanied by an enhanced small-angle scattering, i.e. an increase in
the low-q part of Scc(q).

We now call a model substance in which δ = 0, S
(0)
cc = cAcB holds, a regular solution. Inserting (2.68) into

(2.54c) and (2.55c) we obtain (with c ≡ cA) for the stability function

gcc =
1

N

(
∂2∆G

∂c2

)

P,T,N

= −2ω + kBT
1

c(1 − c)
(2.70)

If we integrate (2.70) twice with the boundary condition ∆G(c = 0) = ∆G(c = 1) = 0 we obtain the free

enthalpy of mixing for a regular solution

1

N
∆G = c(1 − c)ω + kBT [c ln c + (1 − c) ln(1 − c)] (2.71)
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2.2.8 Phase separation in regular solutions
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Top figure: Enthalpy of mixing for the three tem-

peratures kBT/ω = 0.4, 0.5(TC), and 0.6.

Bottom figure: The phase diagram with spinodal

lines and equilibrium concentrations. The dashed

lines give the temperatures of the top figure.

We now consider a regular solution with a free enthalpy of
mixing

1

N
∆G = c(1 − c)ω + kBT [c ln c + (1 − c) ln(1 − c)] (2.72)

and a corresponding stability function

gcc =
1

N

(
∂2∆G

∂c2

)

P,T,N

= −2ω + kBT
1

c(1 − c)
(2.73)

We immediately notice that there occurs an instability, once
kBT/2ω ≤ c(1− c). Because c(1− c) does not exceed 0.25,
the critical temperature for separation into a B-rich and
an A-rich phase is given by kBTc/ω = 0.5. Below this
temperature the line of instability, given by

kBT

ω
=

1

χ
= 2c(1 − c) (2.74)

is called spinodal line. The equilibrium concentrations of
the A-rich and B-rich phases are obtained by the condition
that the chemical potentials of both species must coincide:

µA,rich = µA,poor µB,rich = µB,poor (2.75)

If these equations hold, we must also have

µA,rich − µB,rich = µA,poor − µB,poor (2.76)

Because the chemical potential difference is just proportional to the slope of the curve ∆G(c), the two
equilibrium concentrations are given by the double-tangent construction: in the instable region, where
∆G(c) varies non-monotonically with concentration one seeks a line which touches the curve at two points
(double tangent). In our case these concentrations co-incide with the positions of the minima of ∆G(c)
and are given by

kBT/ω =
2c − 1

ln c − ln(1 − c)
(2.77)
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2.3 Structure of polymer materials

2.3.1 Solutions of polymers as macromolecules

Flory-Huggins model of a polymer as a random

walk on a lattice

We now consider Np polymer molecules consisting of
N segments immersed in a solvent consisting of Ns

molecules. The total number of molecules2 is Nm =
Ns + Np. Following Flory and Huggins (1942) we imag-
ine that we arrange the monomers and the solvent
molecules on a simple cubic lattice (volume V , lattice
constant a), which provides NV = V/a3 = NNp + Ns

sites. With respect to the concentrations cp = c =
Np/Nm, cs = 1 − c = Ns/Nm the Entropy of mixing
takes the form

∆S(c) = −NmkB[c ln c + (1 − c) ln(1 − c)] . (2.78)

Instead of working with the polymer concentration we
want to work with the volume fraction φ occupied by
the polymer. This number is given by

φ = N
Np

NV
= Ncp

Nm

Nv
. (2.79)

Consequently we have for c and 1 − c

c =
φ

N

NV

Nm
1 − c = (1 − φ)

NV

Nm
(2.80)

So that we obtain

∆Sc = −NV kB

[
φ

N
ln

φNV

NNm
+ (1 − φ) ln(1 − φ)

NV

Nm

]

= −NV kB

[
φ

N
lnφ + (1 − φ) ln(1 − φ) +

φ

N
ln

NV

NNm
+ (1 − φ) ln

NV

Nm

]

. (2.81)

With respect to the variable φ we obtain the following entropy of mixing per lattice site

∆S =
1

NV
[∆Sc(φ) − φ∆Sc(φ = 1) − (1 − φ)∆Sc(φ = 0)]

= −kB

[
φ

N
lnφ + (1 − φ) ln(1 − φ)

]

. (2.82)

Now we add an enthalpy term of the same form as that in the theory of regular solution, except that we
now work with the variable φ:

∆H = φ(1 − φ)ǫ = φ(1 − φ)χkBT (2.83)

Here ǫ is the energy difference

ǫ = z

[

ǫps −
1

2
(ǫpp + ǫss)

]

(2.84)

between p−s nearest-neighbors and the averaged p−p and s−s nearest-neighbors. z is the lattice coordination
number (i.e. z = 6). So we obtain the Flory-Huggins expression for the free enthalpy per site and kBT

∆g =
1

kBT
∆G = φ(1 − φ)χ +

φ

N
lnφ + (1 − φ) ln(1 − φ) (2.85)
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Of course this model embodies a very crude approx-
imation to the reality, as the different possible poly-
mer chain conformations are completely neglected.
However, it has turned out that despite the model
is more than 50 years old it still serves as a starting
point for discussing the thermodynamics of polymer
solutions. For the spinodal value of χ we obtain

2χsp =
1

Nφ
+

1

1 − φ
(2.86)

If we seek the minimum of this curve we obtain for
the critical concentration

φc =

√
N − 1

N − 1
≈ 1√

N
(2.87)

We see that for large N the critical point be-
comes situated at very dilute volume fractions, and
the critical temperature approaches the so-called Θ
limit:

lim
N→∞

χc = lim
N→∞

ǫ

kBTc
=

ǫ

kBΘ
= 2 (2.88)

From the equality of the chemical potentials of the concentrated and the dilute phase we have for the
equilibrium volume fractions φ1,2: (double-tangent construction)

∆g1 − ∆g2

φ1 − φ2
=

∂∆g

∂φ

∣
∣
∣
∣
φ1

=
∂∆g

∂φ

∣
∣
∣
∣
φ2

(2.89)

We know that the equilibrium volume fractions for the concentrated and the and dilute phase must be
situated outside the spinodal curve. As for large N there is not much of an inteval left for the concentrated
volume fraction, we conclude that

lim
N→∞

φ1 = 0 , (2.90)

from which follows in the limit N → ∞:

0 = φ2
∂∆g

∂φ

∣
∣
∣
∣
φ2

− ∆g2 = −φ2
2χ + φ2

(
1

N
− 1

)

+ ln
1

1 − φ2
≈ −φ2

2χ + ln
1

1 − φ2
− φ2 . (2.91)

This leads to a coexistence curve of the form

1

2χ
=

φ2
2

2

1

ln 1
1−φ2

− φ2

=
φ2

2

2

1
1
2φ2

2 + 1
3φ3

2 + 1
4φ4

2 + · · · (2.92)

We see that - according to the Flory-Huggins RPA theory - in the phase-separated state the concentrated
phase contains still a lot of solvent molecules, whereas the dilute phase is entirely made up of polymer
solute molecules.
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2.3.2 Diblock Copolymers
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Phase diagram for equilibrium diblock-copolymer phases as a

function of the χ parameter and the volume fraction φA .

If n polymer species are linked together chem-
ically one speaks of block copolymers The
molecules in the special case of n = 2 are
called diblock copolymers. As any A molecule
is tied to a B molecule, the volume fraction of
the A species is just given by

φA =
NA

NA + NB
(2.93)

and can only be changed by the chemist, not
by the physicist. As the van-der-Waals inter-
actions of different polymers will still be differ-
ent in the case of linking two species together,
equation (??) for the monomer-monomer in-
teraction will hold and one expects a segrega-
tion tendency as in the case of polymer mix-
tures. The overall thermodynamics for χ < χc

including the critical small-angle scattering
law (??) will be the same. However for χ > χc

the molecules cannot segregate, because they
are tied together. Instead they can form reg-

ular structures.

These structures differ for different volume fractions. So one obtains a rich phase diagram (see figure).
For small concentrations φA ≪ 1 or φB ≪ 1 spheres are formed with the minority species inside. This
situation is quite comparable to solutions of polymers with large χ parameter but with a hydrophilic
end group (lipids) in water. The spherical structures form a bcc lattice. For larger fractions cylinders

are formed, which are arranged in a hexagonal 2 − d lattice. For NA ≈ NB layered structures are
formed. In the concentration range φ ≈ 0.3 two interpenetrating diamond-type filament structures (ordered
bicontinuous double diamond, OBDD) are formed. As the thermodynamic and interaction parameters are
AB symmetric, so is the phase diagram.
From (??) one would estimate for φA = 0.5, i.e. NA = NB = N a critical χ parameter of χc = 2/N .
However empirically it was found that the transition is at χ ≈ 5/N .

2.3.3 Random walks and diffusion

A random walker on a two-dimensional lattice

The motion of a Brownian particle can be visualized
by that of a “random walker”, e.g. by a drunken
person, who changes its direction at random after
every step. The statistics of such a motion can be
easily worked out on a lattice. We start with this on a
one-dimensional array of points with lattice constant
a. the time steps are called τ . The propabilities
P (x = a, t = τ) and P (x = −a, t = τ) are 1/2, those
for one time step for |x| > a are zero. The non-zero
probabilities for the νth time step are (1/2)ν times
the number of ways one can reach the site xn = na
on the triangle.
This number increases from 1 at the maximum dis-
tance |x|max = νa with k = (|x|max − |x|)/a as

(
n
k

)
,

which can be represented as

20



��

�� ��

�� ��

������

������������

��

��

��

�� �� �� �� ��

��������������������������������������������
1

11

1

6 4 1

15101051

21

41

x 2

x 2

x 2

x 2

x 2

−1

x 2
−2

−3

−4

−5

−6

x

t

31 3 1

P(x,t)

0
Pascal’s triangle for a 1d random walk. The number of

ways a time-space point can be reached from the bot-

tom is given by Pascal’s algorithm, i.e. each number

is the sum of the two numbers underneath.

P (xn, ντ) =

(
1

2

)ν (ν

k

)

k =

[
1

2
(n + ν)

]

,

(2.94)
where [ν] is the smallest integer κ with κ ≥ ν. It is
worth wile to note that at an even/odd time step ν
only even/odd random walk sites xn can be reached.

We consider now the recursion formula for the bino-
mial coefficients

(
n + 1

k

)

=
(n

k

)

+

(
n

k − 1

)

(2.95)

We re-write this recursion formula with the help of the probabilities P (nx, ντ):

P (xn, t + τ) =

(
1

2

)ν+1 (
ν + 1

kn,ν+1

)

=
1

2
P (xn+1, t) +

1

2
P (xn−1, t) (2.96)

This can be re-written as

P (xn, t + τ) − P (x, t)

τ
= D

[
P (xn + a) + P (xn − a, t) − 2P (x, t)

a2

]

(2.97)

with

D =
a2

2τ
(2.98)

We take now the double limit τ → 0 and a → 0 keeping the ratio D = a2/2τ fixed. This leads to

∂P (x, t)

∂t
= D

∂2

∂x2
P (x, t) (2.99)

This is the famous diffuson equation, which was first derived by Charles Fourier. We want to solve now
this equation. Going over to a spatial Fourier transform

P (k, t) =

∫ ∞

−∞

dx eikxP (x, t) (2.100)

and a temporal Laplace transform

P (k, p) =

∫ ∞

0

dt e−ptP (k, t) (2.101)

we obtain from (2.99)
pP (k, p) − P (k, t=0) + Dk2P (k, p) = 0 (2.102)

with the solution

P (k, p) =
P (k, t=0)

p + Dk2
= P (k, t=0)G(k, p) (2.103)

where we have introduced the special solution G(k,t), (Greens function) which has the initial condition

G(k, t=0) = 1 (2.104)

corresponding to
G(x, t=0) = δ(x) (2.105)

G(x, t) can be interpreted as the probability density of a Brownian particle which started his journey at
t = 0 at the origin x = 0 (see next subsection). The back transforms of G(k, p) are

G(k, t) = e−Dk2t (2.106)
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and

G(x, t) =
1√

4πDt
e−x2/4Dt (2.107)

An important quantity is the mean square distance walked by the Brownian particle at a certain time t.
It can be calculated from the function G(x, t) as

〈
x2(t)

〉
=

∫ ∞

−∞

dxx2 G(x, t) (2.108a)

= − ∂2

∂k2

∫ ∞

−∞

dx eikx G(x, t)

∣
∣
∣
∣
k=0

(2.108b)

= − ∂2

∂k2
e−Dk2t

∣
∣
∣
∣
k=0

(2.108c)

= 2Dt (2.108d)

This equation states that the mean distance a Brownian particle moves away on the average from its
starting point grows with the square-root of time.
The diffusion equation and its solution are easily generalized to the three-dimensional case. The diffusion
equation reads

∂ρ(r, t)

∂t
− D∇2ρ(r, t) = 0 . (2.109)

with solution

G(k, t) =

∫ ∞

−∞

d3r eik·rG(r, t) = e−Dk2t , (2.110)

subject to the initial condition G(k, t=0) = 1 ⇔ G(k, t=0) = δ(r). We now have k2 = |k|2 = k2
x +k2

y +k2
z .

The solution in r space has the form

G(r, t) =

[
1√

4πDt

]3

e−r2/4Dt (2.111)

with r2 = |r|2 = x2 + y2 + z2. For the three-dimensional mean-square distance we obtain the Einstein
relation

〈
r2(t)

〉
=

∫ ∞

−∞

d3r
(
x2 + y2 + z2

)
G(r, t) (2.112a)

= −
(

∂2

∂k2
x

+
∂2

∂k2
y

+
∂2

∂k2
z

) ∫ ∞

−∞

d3r eik·r G(r, t)

∣
∣
∣
∣
kx=ky=kz=0

(2.112b)

= −
(

∂2

∂k2
x

+
∂2

∂k2
y

+
∂2

∂k2
z

)

e−Dk2t
∣
∣
∣
∣
kx=ky=kz=0

(2.112c)

= 6Dt (2.112d)
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2.3.4 Polymer chain as a random walk

x

φ
θ

y

Thre segments of a polymer

chain with bond angles θ and

azimuthal angle φ by which the

bond can be directed into the

trans and the gauche direction

A real polymer molecule has a rather rigid bond structure, which allows
only certain bond angles θ and φ (see figure). the same length a. On the
other hand, these molecules are so huge, that one can choose the unit
“beads” much larger than a single molecular segment. The angles be-
tween these beads (“Kuhn segment”) can then be assumed to be random,
and the itinerary of the chain in 3-dimensional space can be considered
to be described by a random walk.

The probability density for the end of the chain of length N to be a distance R from the other end (origin)
is, using (189) with 2Dt = a2t/τ = a2N :

P (R, N) = [2πa2N ]−3/2e−R2/2a2N (2.113)

The number of random walks with N steps leading from the origin to any point inside a sphere of radius
R∗ is then given by

ζ(R∗, N) = 4π

∫ R∗

0

R2P (R, N) (2.114)

From this we can calculate the number of random walks having exactly the distance R from the origin as

Z(R, N) =
dζ

dR∗

∣
∣
∣
∣
R∗=R

= 4πR2P (R, N) (2.115)

The corresponding entropy is

S(R, N) = kB ln[Z(R, N)] = −kB
R2

2a2N
+ kB ln[4πR2] − (3/2)kB ln[2πa2N ] (2.116)

and the free energy

Fid = −TSid = kBT
R2

2R2
0

− kBT ln[4πR2] − (3/2)kB ln[2πR2
0] = F0 + kBT

R2

2R2
0

(2.117)

From this we can, for example, calculate the distance x the chain will be elongated if an external force f
in x direction is applied. The corresponding potential is φf = −fx so that the free energy is

Ff = −fx + F0 + kBT
x2 + y2 + z2

2R2
0

(2.118)

Minimizing Ff with respect to x yields

x = f
R2

0

kBT
= f

Na2

kBT
(2.119)

2.3.5 Swollen polymer chains

However, we made a serious mistake in the previous section: A polymer chain cannot occupy more than
once the same portion of space. A random walk which never uses the same site is has already used is
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called a self-avoiding random walk. In a real polymer the excluded-volume property is, of course, due to a
repulsive potential φ(|r− r′|) between two monomer units at locations r and r′. Flory has calculated the
relation between the length N and the extension R of a self-avoiding random chain by a thermodynamic
argument. We now estimate the mean repulsive energy as follows:

E = ρ2
0

∫

V

d3r

∫

V

d3r′g(|r − r′|)φ(|r − r′|) (2.120)

Here V = R3, g(r) is the radial pair distribution function of the monomers and ρ0 = N/V = NR−3 is
their density. As g(r) is 0 for |r − r′| < d (where d ≈ a is the distance of nearest approach) and φ(r) is
supposed to drop quickly to 0 beyond d we can make the approximation

g(r)φ(r) ≈ ǫδ(r − d) , (2.121)

where ǫ has the dimension of an energy times a volume. We obtain

E = ρ2
0V ǫ = ǫN2/R3 (2.122)

We can now write down the free energy

F = E − TS

= ǫN2/R3 + kBT ln[Z(R, N)]

= ǫN2/R3 + kBT
R2

2a2N
− kBT ln[4πR2] − (3/2)kB ln[2πa2N ] (2.123)

We now seek the equilibrium value of R for a self-avoiding random walk of N steps, which, is obtained by
that value of R which minimizes F , i.e.

0 =
∂F (R, N)

∂R
= −3

ǫN2

R4
+

kBTR

a2N
− 2kBT

R
, (2.124)

from which follows
R2

Na2
= 3

N2ǫ

R3kBT
+ 2 (2.125)

In the limit of large N and R (and for temperatures equal or smaller than ǫN2/R3) the constant term 2
is negligible, and we obtain

N(R) =

[
kBT

3ǫa2

]1/3

R5/3 , (2.126)

which can be inverted to yield

R(N) =

[
kBT

3ǫa2

]1/5

N3/5 , (2.127)

The exponent 3/5=0.6 is considerably larger than the “free-chain” exponent 0.5. One therefore speaks of
chains which are “swollen” through the excluded-volume interaction. Interestingly enough the excluded-
volume interaction, which leads to the Flory exponent, acts only, if the polymer molecule is free to expand,
wich is the case in dilute polymer solutions. In concentrated solutions the
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