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4 Phonons in crystals and in noncrystalline materials

4.1 General models for quantized vibrational excitations

4.1.1 Einstein model

Just one year after the four famous papers by Einstein, namely in 1906, he published a paper on the
specific heat of solids, which layed the foundation of modern solid state theory. He modelled the solid as
a set of harmonic oscillators with eigenfrequency ωE = 2πνE .
The total energy of N atoms vibrating with this frequency in the three spatial directions is

EE = 3

N∑

i=1
︸ ︷︷ ︸

3N

~ωE
1

e~ωE/kBT − 1

−→ 3NkBT T → ∞

(4.1)

The high temperature limit is in accord with the equipartition theorem. From this we obtain the following
formula for the specific heat

CN,E =
1

N

∂EE

∂T
= 3kB x2

E

exE

(
exE − 1

)2 xE =
~ωE

kBT
(4.2)

Here Einstein applied the new quantum statistics introduced for electromagnetic radiation interacting
with a black body by Max Planck.
While this formula explains the strong drop of the specific heat from the Dulong-Petit law CN = 3NkB

towards zero as T → 0 as a quantum phenomenon, the details how C(T ) behaves as T → 0 are not
adequately described by the Einstein model. In the Einstein model the specific heat vanishes exponentially
with T as T → 0, whereas one can prove from general considerations that the low-temperature behavior
of the specific heat should be C(T ) ∝ T 3 as in the Debye model described below.
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4.1.2 Elasticity theory and Debye model

Left: original page from Einsteins article Ann Phys. 22, 180 (1907); comparison with experimental data of Weber

on crystalline diamond.

Right: Comparison of the Einstein and Debye model for the specific heat

In 1912 Debye realized that something was inconsistent with the Einstein model. It was well known that
low-energetic excitations of a solid material were not oscillations of a single atom, but collective vibrations,
which are sound waves. Such waves were well known from elasticity theory. The main object of elasticity
theory is the generalized Hooke law between the stress tensor σij and the strain tensor ǫkℓ

σij =
∑

kℓ

Cijkℓǫkℓ i, j, k, ℓ = 1, 2, 3 (4.3)

The stress tensor is defined in terms of a force in i direction acting on a surface element dAj with normal
vector in j direction

dFi =
∑

j

σijdAj (4.4)

The strains are defined in terms of infinitesimal displacements ui(r) at r in i direction

ǫij =
1

2

(
ui|j + uj|i

)
ui|j =

∂uj

∂xi
(4.5)

In an isotropic system the Hooke tensor Cijkℓ has only 2 independent entries and we have

Cijkℓ = λ δijδkℓ + µ

(

δikδjℓ + δiℓδjk

)

(4.6)
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The general Lagrangian density is (ρ = N/V )

L(r, t) =
1

2
ρ u̇·u̇−

1

2

∑

ijkℓ

ui|jCijkℓuk|ℓ

=
1

2
ρ u̇·u̇−

λ

2

(
∑

i

ǫii

)2

− µ
∑

ij

ǫ2ij

(4.7)

where the second equality holds for the isotropic system.
λ and µ are Lamé’s elastic constants. µ is identical with the shear modulus, in other textbooks also called
G. The bulk modulus, which is the inverse of the compressibility is given by

K = λ +
2

3
µ =

E

2
(
1 − 2ν

) (4.8)

where E is Young’s modulus and ν the Poisson number.

The equations of motion are

3∑

i=0

∂

∂xi

∂L

∂uk|i
−

∂L

∂uk
= 0 x0 = t k = 1, 2, 3 (4.9)

They can be refomulated as

ρüi =
3∑

ℓ=1

Aiℓuℓ

Aiℓ = λ∂i∂ℓ + µ

(

∂ℓ∂i + ∇2δiℓ

)
(4.10)

With the Ansatz
u(r, t) = uei[kr−ωt] (4.11)

we obtain the matrix eigenproblem

ω2ui =
∑

ℓ

Diℓuℓ

Diℓ =
1

ρ

[
(
λ + µ

)
kikℓ + µk2δiℓ

] (4.12)

D is called the dynamical matrix We easily obtain the eigenvalues of this matrix by rotating into a system
in which the z axis coincides with the direction of the vector k. In this system k = (k, 0, 0), and we have

D =
1

ρ





µk2 0 0
0 µk2 0
0 0 (λ + 2µ)k2



 (4.13)

We see that we have three independent sound waves, two transverse ones (u ⊥ k) with sound velocity
cT =

√

µ/ρ and one longitudinal one (u||k) with sound velocity cL =
√

(λ + 2µ)/ρ.
We return now to the ideas of Debye. Her realized that the number of vibrational modes (of a particular
polarization direction) cannot exceed the number of atoms. So he imposed a wavenumber cutoff kD (k-
Debye) by demanding N =

∑

k
, where the sum is carried out with the help of the Born-von-Karman

boundary conditions (just as in the calculation of the Fermi wavenumber):

N =
∑

k
|k|<kD

=
V

(2π)3

∫

|k|<kD

d3k =
V

2π2

∫ kD

0

dk k2 =
V

6π2
k3

D (4.14)

⇒ kD = 3

√

6π2N/V (4.15)
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�����������������

ω

k

kD

transverse

longitudinal

Dispersion of the Debye model

The Debye model now states that the solid, com-
posed of N atoms allows for two transverse sound
modes and one longitudinal one with wavenumbers
k ≤ kD.
The total energy of the Debye solid is

E =

2∑

λ=1

∑

k

~ωkλ

ex − 1
ωkλ = cλk

=
∑

λ

cλ
V

2π2

kD∫

0

dk
k3

ex − 1
x = ~cλk/kBT ≡ ΘD/T

=
∑

λ

(kBT )4

(~cλ)3
V

2π2

ΘD/T∫

0

dx
x3

ex − 1

(4.16)
ΘD is called the Debye temperature.

For T → 0 the integral over x becomes a constant I = 6.43. In this limit, therefore we can write

E

N
=

V

N

I

2π2

1

~3

(
1

c3
L

+
2

c3
T

)
(
kBT

)4

=
3I

(~kD)3

(
1

c3
L

+
2

c3
T

)
(
kBT

)4
(4.17)

⇒ CN =
3IkB

(~kD)3

(
1

c3
L

+
2

c3
T

)
(
kBT

)3
(4.18)

This is the famous T 3 law of Debye. As a matter of fact this is not an approximation but it holds rigorously
for any insulating crystalline material. In metals there is an additional contribution proportional to T . In
disordered i.e. noncrystalline or strongly distorted crystals there is an approximate linear contribution to
the temperature dependent specific heat, i.e. the Debye law is no more valid.

For the whole temperature ramge the Debye formula serves as an interpolation formula between the exact
Debye T 3 law and the exact Dulong-Petit law, which does lead to very good agreement with experimental
specific heat data. The formula for the specific heat per atom CN is

CN = 9kB

(
T

ΘC

) ∫ ΘD/T

0

dx
x4ex

(ex − 1)2
(4.19)

4.2 Harmonic approximation and interatomic potentials

Until now the fact that the crystalline (or non-crystalline) material is composed of atoms or molecules
entered only via the Debye cutoff wavenumber kD. We are now going to formulate a microscopic theory
of atomic vibrations in a solid.
Considering displacements of atoms from their equilibrium positions in a lattice leads to the question:

• What does the lattice hold together in the first place?

This question ist intimately related to the nature of the chemical bond.
We know from elementary chemistry that there are four fundamentally different kinds of bonds (forces)
which hold the atoms together

– Van-der-Waals bonds (rare gases and polymers)
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– Ionic bonds (ionic crystals and glasses)

– Covalent bonds (insulating homopolar materials)

– Metallic bonds (metals)

In almost all of these different cases one can formulate the concept of an effective interatomic potential

φ(rij), rij = |ri − rj |, such that the total energy of cohesion of the solid can be written

E = E0 +
1

2

N∑

i,j=1

i6=j

φ(rij) (4.20)

Such potentials can have very different form.
Let us now assume that all atoms have their equilibrium positions on a lattice site Ri and we perform a
Taylor expansion of the lattice energy

E = E0 +
1

2

N∑

i,j=1

i6=j

φ(Rij) +
1

4

∑

ij

[
(
ui − uj

)
· ∇

]2

φ(rij)

∣
∣
∣
∣
rij=Rij

(4.21)

with Rij = |Ri − Rj| and ui = ri − Ri. The latter are the displacement vectors. The linear term in
the expansion does not exist, because we assume that the Ri are equilibrium positions of the atoms. The
quadratic term is called the harmonic part of the lattice energy and has the form

Eharm =
1

4

∑

ij
µν

(
uiµ − ujµ

)
φij

µν

(
uiν − ujν

)

φij
µν =

∂

∂xµ

∂

∂xν
φ(rij)

∣
∣
∣
∣
rij=Rij

(4.22)

The φij
µν are called harmonic force constants. We can re-write Eharm as

Eharm =
1

2

∑

ij

µν

uiµDij
µνujν

with Dii
µν =

∑

ℓ

φiℓ
µν

Dij
µν = −φij

µν i 6= j .

(4.23)

We can now write down the equation of motion for the displacements

Müiµ = −
∑

j

Dij
µνujν (4.24)

which is the microscopic version of Hooke’s law. Dij
µν is the dynamical matrix.

4.3 Phonon dispersions in crystals

The task is, of course, to diagonalize Dij
µν . The eigenvectors are called normal modes of the lattice. We

shall now consider

– Normal modes of a one-dimensional lattice;

– normal modes of a one-dimensional lattice with basis;

– normal modes of a three-dimensional lattice.

The eigenvalues in reciprocal space are the squares of the characteristic frequencies ωα(k), which are called
phonon dispersions.
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4.3.1 Normal modes of a one-dimensional lattice

Let uℓ be the longitudinal displacements (i.e. in chain direction) of a one-dimensional chain of atoms with
lattice constant a and periodic boundary condition u(r0) = u(rN ). We further assume that there are only
nearest-neighbor force constants K = φℓm

xx . Then we have the equation of motion

Müℓ(t) = K
(
uℓ+1 + uℓ−1 − 2uℓ

)
(4.25)

-2 -1 0 1 2
ka/π

0

0,5

1

ω
(k

)

We make the ansatz

ui(t) = uk(ω)ei(kℓa−ωt) (4.26)

from which we obtain

Mω2 = 2K
(
1 − cos ka

)
= 4K sin

ka

2

ω(k) = 2

√

K

M
sin

ka

2
= 2

√

K

M

∣
∣
∣
∣
sin

ka

2

∣
∣
∣
∣

(4.27)
For small k we have

ω(k) =

√

K

M
ka = ck (4.28)

This corresponds to a continuous one-dimensional wave with sound velocity c = a
√

K/M .

4.3.2 Normal modes of a one-dimensional lattice with basis
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A A A A A AB B B B B

Qe now consider a chain of atoms who have different masses, i.e. alternating mA and mB. The set of
equations of motion is

üA
i = −

1

mA
K

∑

ℓ

(
uA

i − uB
ℓ

)

üB
ℓ = −

1

mB
K

∑

i

(
uB

ℓ − uA
i

)
(4.29)

leading to the set of eigenvalue equations

−ω2uA = −2KuA + 2K cos(ka)uB

−ω2uB = −2KuB + 2K cos(ka)uA
(4.30)
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-2 -1 0 1 2
ka/π

0

1

2

3

ω
(k

)
From this we obtain the characteristic equations

(

ω2 −
2K

mA

)(

ω2 −
2K

mB

)

−
4K2

mAmB
cos2ka = 0

(4.31)
with the solutions

ω1,2 =

[
K

µ

(

1 ±

√

1 −
4µ

mA + mB

(
1 − cos2ka

)
)] 1

2

(4.32)
where mu = mAmB/(mA+mB) is the reduced mass.

Looking at the dispersion we see two new features in comparison with the mono-atomic chain: (i) the
reciprocal lattice has doubled; (ii) there are now two branches of the dispersion. The first feature is due
to the overstructure (Überstruktur) introduced by the different masses: The new lattice constant is not a
but 2a, and we have a one-dimensional lattice with basis, which leads to the second branch of the phonon
dispersion. The bottom branch is called acoustical, because it includes acoustic waves near the Γ point:
near k = 0 the dispersion is linear. The top branch is called optical, because it is observed by optical (in
particular Raman) spectroscopy.

4.3.3 Normal modes of a monatomic three-dimensional lattice

We recall the expression for the harmonic part of the cohesion energy

Eharm =
1

2

∑

ij

µν

uiµDij
µνujν (4.33)

which corresponds to the set of equations of motion

müiµ(t) = −
∑

jν

Dij
µνujν (4.34)

The dynamical matrix has the symmerties

Dij
µν = Dji

νµ

Dij
µν = Dji

µν
∑

i

Dij
µν =

∑

j

Dij
µν = 0

(4.35)

We seek solutions of the form
uiµ(t) = uµei(k·Ri−ωt) (4.36)

Due to the periodic boundary condition the reciprocal space is discretized again in such a way that we
can write

k =
n1

N1
b1 +

n2

N2
b2 +

n3

N3
b3 (4.37)

where the bi are the reciprocal basis, Li = aNi are the edges of the sample volume and ni, Ni are integers.
We obrain the characteristic equations

mω2uµ =
∑

ν

Dµν(k)uνDµν (4.38)

Dµν(k) =
∑

ℓ

lattice

eikRℓDµν(Ri − Rj)

∣
∣
∣
∣
Rℓ=Ri−Rj

(4.39)
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Taking advantage of the symmetries (4.35) of the dynamical matrix we re-write (4.39) as follows

Dµν(k) =
1

2

∑

ℓ

eikRℓ

[

Dµν(Rℓ) + Dµν(−Rell)

]

−
∑

ℓ

Dµν(Rℓ)

︸ ︷︷ ︸

=0

=
1

2

∑

ℓ

Dµν(Rℓ)
[
coskRℓ − 1

]
=

∑

ℓ

Dµν(Rℓ) sin2
(1

2
kRℓ

)

(4.40)

The matrix
↔

D (k) has 3 eigenvalues γ1, γ2, γ3 and 3 eigenvectors, which can be orthogonalized us·us′ = δss′ ,
so that we have

ωs(k) =

√

1

m
γs(k) with

↔

D (k)us = γsus (4.41)

Phonon dispersions of Al and Cu. The points are experimental data obtained by inelastic neutron scattering.

The lines are obtained by electronic structure calculations of the adiabatically deformed crystal.

The phonon dispersions ωs(k) can be directly measured by inelastic neutron scattering, where the trans-
ferred energy is just ∆E = ~ω(k) and the transferred momentum is ∆p = ~k. In materials, where it is
possible to apply the density-functional theory the force constants entering into the dynamical matrix can
be calculated by applying the adiabatical principle: the crystal inside the computer is deformed according
to the vibrational mode considered. Then the corresponding change in the total energy is calculated,
which yields the force constants (“frozen phonon” method).

4.3.4 Vibrational density of states

The normalized density of vibrational frequencies (density of states, DOS) is given by

g(ω) =
1

3N

∑

s

∑

k

δ
(
ω − ωs(k)

)
=

1

3N

∑

s

1

(2π)2

∫

d3k δ
(
ω − ωs(k)

)
(4.42)

For the Debye model

ωs(k) =

{
csk k ≤ kD

0 k > kD
(4.43)

This gives

g(ω) =
V

6π2N

∑

s

kD∫

0

δ
(
ω − kcs

)
=

∑

s

V

6π2Nc3
s

ω2

= 3
ω2

ω3
D

(4.44)

where we have introduced the Debye frequency

ωD = kD

[
1

c3
L

+ frac2c3
L

]−1/3

≡ kDcD (4.45)
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Instead the dynamical matrix
↔

D we can also introduce a modified dynamical matrix

Kij
µν =

1

mi
Dij

µν (4.46)

which allows for different masses, and define the eigenvalues of
↔

K as

λu =
↔

K u (4.47)

Then we have ωs(k) = λs(k). The density of eigenvalues is then

g̃(λ) =
1

3N

∑

s

∑

k

δ
(
λ − λs(k)

)
(4.48)

and we have

g(ω) =
dλ

dω
g̃(λ) = 2ωg̃(λ) (4.49)

Use of the density of states Let us consider the vibrational energy per atom

EN =
1

N

3∑

s=1

∑

k

~ωs(k)
1

e~ωs(k)/kBT − 1

= 3

∫

dω
1

3N

∑

sk

δ
(
ω − ωs(k)

) ~ωs(k)

e~ωs(k)/kBT − 1

= 3

∫

dωg(ω)
~ω

e~ω/kBT − 1

⇒ CN = 3

∫

dωg(ω)~ω
∂

∂T

(
1

e~ω/kBT − 1

)

(4.50)

The density of states appears if one wants to consider the frequency dependence of the contributions to
the energy instead the k dependence. This point of view becomes important in disordered solids, where it
is in general not possible to label the vibrational states by means of the components of a wave vector k.

4.4 Harmonic vibrational dynamics in disordered Solids

4.4.1 Disordered cubic lattice and coherent-potential approximation (CPA)

Let us consider masses of value M fixed to a cubic lattice which are connected with springs the Hooke
constants (force constants) MKij of which fluctuate according to a distribution density P (Kij).
We simplify the system further by considering the displacements ui(t) at site i to be scalar quantities.
The equation of motion of this system is

d2

dt2
ui(t) = −

∑

j

Kij

(
ui(t) − uj(t)

)
(4.51)

The green’s function of this equation Gij(t, t
′) obeys the equation

d2

dt2
Gij(t, t

′) +
∑

ℓ

Kiℓ(Gij − Gℓj) = δijδ(t − t′) (4.52)

Defining a ”Hamiltonian Matrix”

Hij =







−
∑

j Kij i = j

Kij i 6= j
(4.53)

and Fourier transforming we obtain the following matrix equation for the Green matrix < i|G(ω)|j >=
Gij(ω)

(
z̃ −H

)
G =

(
− ω2 + iǫ̃−H

)
G = 1 (4.54)
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where we, again introduced a complex frequency variable z̃ which is, for convenience, constructed with
respect to ω2.
If we look carefully at these equations they turn out to be identical to the Schrödinger equation of tight-
binding electrons with transfer integrals Kij and on-site energies Ei = Hii = −

∑

j Kij . So we can make
use of the approximation schemes which have been invented in the literature to deal with electrons in
disordered systems with such a type of Hamiltonian.
One of the most powerful mean-field theories of disorder is the coherent-potential approximation, CPA.
The CPA is derived as follows:
We invent an effective medium, which is not disordered (i. e. it has the cubic symmetry), but the force
constants are frequency dependent:

Keff
ij (z̃) = Γ(z̃). (4.55)

Let Z = 6 be the coordination number of the sites. Then effective-Medium Hamiltonian is

Hij =







−
∑

j Keff
ij (z̃) − ZΓ(z̃) i = j

Keff
ij (z̃) = Γ(z̃) i 6= j

(4.56)

and the Green’s function of the effective medium obeys the equation of motion

z̃Gij − δij = ZΓ(z̃)(Gℓj − Gij) ℓ arbitrary neighboring site (4.57)

As in the Lorentz theory of dielectric polarizability1 we now ”dig a hole” into the effective medium. As we
deal with pairs of sites this hole must contain a pair (i0, j0). Inside the hole we replace the effective-medium
force constant Γ(z̃) by the actual one Ki0j0 so that we obtain a ”perturbation” vi0j0(z̃) = Ki0j0 − Γ(z̃).
The corresponding perturbing Hamiltonian matrix V has four non-zero entries, namely Vi0i0 , Vj0j0 , Vi0j0 ,
and Vj0i0 . In the i0j0 subspace we have

V =





−vi0j0(z̃) vi0j0(z̃)

vi0j0(z̃) −vi0j0(z̃)



 (4.58)

We now demand that introducing this perturbation should have on the average no influence on the effective
medium which is equivalent to demanding that the Green’s function of the effective medium should be equal
to the configuratonally averaged Green’s function of the disordered system. One can again reformulate
this postulate in demanding that the averaged T-matrix

〈T 〉 = 〈
V

1 − V G
〉 (4.59)

should vanish. Working out the 2 × 2 inverse and using (4.57) with i = j we obtain the following CPA
self-consistent equation for Γ(z̃)

〈
K − Γ(z̃)

1 + (K − Γ(z̃) 2
ZΓ(z̃)(1 − z̃Gii(z̃)

〉 = 0 (4.60)

which can be reformulated as

Γ(z̃) = 〈
K

1 + (K − Γ(z̃) 2
ZΓ(z̃) (1 − z̃Gii(z̃)

〉 (4.61)

We now define the local Green’s function of the simple cubic lattice (Z = 6) as

G
(0)
ii (z̃) =

∑

k∈BZ

1

z̃ + 6 − E(k)
(4.62)

with the simple-cubic band structure

E(k) = 2[cos(kxa) + cos(kya) + cos(kza)] (4.63)

1The first version of the CPA has been devised by Bruggeman, 1937 for composite dielectrica.
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where a is the lattice constant and BZ is the 1st Brillouin zone. Then we have for the local Green’s
function of the effective medium

Gii(z̃) =
1

Γ(z̃)
G

(0)
ii

(
z̃

Γ(z̃)

)

(4.64)

(4.61) and (4.64) now establish a self-consistent set of equations which can (and have to be) solved on a
computer.
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Fig. 8: Density of states, divided by ω2 of a simple-cubic lattice with a Gaussian distribution of force
constants with width parameter σ/K0 = 0.6. The full line is a CPA calculation (solution of (4.61) and

(4.64) ), the points are the result of numerical diagonalizations of systems with periodic boundary
conditions, averaged over different box sizes.

The density of states is obtained from the Green’s function according to

g(ω) = 2ωg(ω2) = −
2ω

π
ℑm{G(z̃)} (4.65)

in Fig. 8 we have plotted the so-called reduced density of states g(ω)/ω2 resulting from a numerical
diagonalization of a model with a Gaussian P (K) with width-to-mean ratio σ/K0 = 0.6 together with
the CPA calculation. Clearly the CPA gives a good account of the data. It also is seen that there are no
van-Hove singularities as in the ordered system (see the curve ”σ = 0” in Fig. 9), but instead a maximum,
which can be identified as the so-called boson peak.
We are now giving a physical explanation of the forming of such a peak in the reduced density of states
of disordered solids. First we note that if we increase the width of the distribution P (K) the system
becomes unstable, because some atoms are now sitting on top of a potential hill instead at the bottom
of a potential well. This instability manifests itself by the exixtence of negative eigenvalues ω2

i in the
numerics, or, in the CPA, by the appearance of a portion of the density of states for negative values of
ω2. To have a ”fine-tuning” of this instability we introduced a lower cutoff Kmin in the Gaussian and put
σ = K0. The result is shown in Fig. 9
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Fig. 9: Density of states, divided by ω2 of a simple-cubic lattice with a varying lower cutoff Kmin and
width parameter σ/K0 = 1. The full line is a CPA calculation (solution of (4.61) and (4.64) ), the points
are the result of numerical diagonalizations of systems with periodic boundary conditions, averaged over

different box sizes.

It is seen that the more negative force constants we put in, the stronger becomes the boson peak. So it
looks as if the boson peak is the precursor of the mentioned instability. This conclusion will be thoroughly
corroborated in the rest of the present lectures.

4.4.2 The self-consistent Born approximation, SCBA

We would like to simplify the CPA by the following steps:

• getting rid of the unphysical cubic lattice by replacing the dispersion by a Debye law

6K2
0 [6 − E(k)] → c2

0k
2θ(k − kD)

• expanding the CPA equation with respect to the deviations δK = K − K0 and δΓ = Γ − K0
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Fig. 10: Density of states, divided by ω2 for a generalized Debye model with fluctuating elastic constants
K̃ ≡ c2 calculated for different disorder parameters γ ∝ 〈δK̃2〉/〈K̃〉2, calculated in SCBA and CPA

If we limit the expansion to second order in δK and δΓ we obtain the so-called self-consistent Born

approximation, SCBA

δΓ(z̃) = −γ
∑

|k|<kD

k2

z̃ + k2[c2
0 + δΓ(z̃)]

(4.66)

where γ ∝ 〈(δK)2〉/〈K〉2 In Fig. 10 we compare the CPA for a Gaussian P (K) with the SCBA with the
same width parameter. The difference is not striking, so that we can use safely the SCBA instead of the
CPA, especially if we don’t want to compare our results to a simulation on a lattice. It is clear from Fig.
10 that the boson peak has nothing to do with a broadened van-Hove singularity as claimed sometimes in
the literature, because all lattice-specific features have been removed from the theory. To understand the
origin of the boson peak we further simplify the SCBA equation (4.66) by replacing the sum over k by its
dominant term at the maximum |k| = kD. If we use frequency units where c0 = kD = 1 we obtain

δΓ(z̃) = Γ(z̃) − 1 = −γ
1

z̃ + Γ(z̃)
(4.67)

which is a quadratic equation for Γ(z̃)

/ )(
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2ω 0c

’’Γ ω(    )

Fig. 11: Imaginary part of the ”self

energy” Γ(z̃ for the simplified SCBA

equation (4.67). If γ becomes larger

than unity the system becomes

unstable.

The solution of this equation yields a semicircular law for the imaginary
part of the self energy Γ (Fig. 11) which is proportional to the ”density
of levels” g(ω2). if the variance-to mean square ratio γ becomes com-
parable to unity the system becomes unstable. If it is smaller a rapid
rise of the spectrum occurs for ω2 ≈ c2

0[1 − γ], which actually is the
boson peak. The gap below this value occurs, because we omitted the
k summation. If included, there is a crossover from the Debye behavior
to the semicircular behavior. However, as we know from random matrix
theory, the occurrance of a semicircular spectrum with width propor-
tional to the mean of the distribution density of the matrix elements is
a generic property of any random matrix.

So we can state that the boson peak marks the crossover from Debye’s law (which is actually dictated by
the translational symmetry of the equation of motion) to the semicircular law of the random Hamiltonian.
If the variance of its matrix elements exceeds their mean the system is unstable. The boson peak can be
interpreted as the precursor of this instability.
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