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5 Electronic and ionic transport

5.1 Diffusion and Einstein relation

In this chapter we are dealing with the diffusion of charged particles in condensed matter and the corre-
sponding electric conduction phenomena. Such theoretical considerations are traditionally called transport

theory as the focus is on the transport of charged particles from one region in space to another with or
without an applied electric field. Charged particles, which give rise to conduction phenomena in the pres-
ence of such a field can be electrons in a metal or semiconductor on the one side; on the other side mobile
ions in a solid or liquid matrix (≡ host material).
Electric conduction phenomena due to charged particles are intimately related to the diffusion of such
particles due to the thermal excitation of the material. This is the reason why we start with a reconsid-
eration of diffusion and random walk which we first encountered in subsection 2.3.3 in connection with
the random-walk description of polymer materials. Here we start from a different angle and consider
the diffusion of a density profile n(r, t) from an initial disturbed pattern n(r, t = 0) towards its uniform
value n = N/V . At finite temperature T a pattern different from n will give rise to a current, which is
proportional to the density gradient:

j(r, t) = −D∇n(r, t) (5.1)

where D is the diffusion coefficient. (5.1) is called Fick’s law. On the other hand, due to particle
conservation, the current density is related to the time dependence of n(r, t) via the continuity equation

∇ · j(r, t) +
∂

∂t
n(r, t) (5.2)

Taking the divergence of Fick’s law (5.1) we have

−∇ · j(r, t) =
∂

∂t
n(r, t) = D∇2n(r, t) (5.3)

This is identical to the diffusion equation (2.109), which we derived from a completely different starting
point, namely from a 3-dimensional random walk of a particle. We see that Fick’s law, together with the
continuity equation is equivalent to assuming that the particles which form the density distribution n(r, t)
perform a random walk. The special solution n(r, t) = G(r, t) with the initial condition

G(r, t = 0) = δ(r) (5.4)
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has been shown to be (see (2.111) )

G(r, t) =

[
1√

4πDt

]3

e−r2/4Dt (5.5)

or, Fourier- and Laplace-transformed

G(k, p) =

∫ ∞

0

dte−pt

∫

d3reikrG(r, t) =
1

p+Dk2
(5.6)

Thei initial condition (5.4) becomes
G(k, t = 0) = 1 . (5.7)

The general solution is then given by

n(k, p) = n(k, t = 0)G(k, p) (5.8)

or, back transformed into the real space and time domain

n(r, t) =

∫

d3r′n(r′, t = 0)G(r − r′, t) (5.9)

We now assume that the particles, which perform the random walk within the thermally excited medium
(which is assumed to be in thermal equilibrium) carry a charge q and that there exists a small applied
uniform electric field E throughout the material, such that the non-diffusive part of the current density,
i.e. the current-induced part depends linearly on E:

j(E) = σE (5.10)

(Ohm’s law). The electric conductivity is now related to the diffusion coefficient D by the famous Einstein

relation

σ =
∂n

∂µ
q2D (5.11)

where n is the equilibrium density and µ the chemical potential. The Einstein relation (5.11) follows
from the time-dependent version of the fluctuation-dissipation theorem (see 2.30), which is the central
theorem of non-equilibrium thermodynamics. The explicit form of the µ derivative of the density depends
on the statistics, which the particles under consideration obey. Diffusing ions (except protons) usually
obey classical (Boltzmann) statistics, electrons (at room temperature and below) obey Fermi statistics.
We have for the two statistics

∂n

∂µ
=







n
kBT

Boltzmann statistics

N(EF ) Fermi statistics, T → 0

(5.12)

where N(EF ) is the electronic density of states at the Fermi energy EF = µ(T → 0). The T → 0 limit is
called the degenerate limit.

5.2 Ionic diffusion in crystals

We now consider interstitial diffusion in a crystal, i.e. we assume that the sites the diffusing ions may
occupy form a lattice, which we - for simplicity - assume to be a simple cubic one. We furthermore assume
that the concentration of the diffusing ions is low so that we can neglect blocking phenomena due to
occupied sites. In this limit the problem reduces to that of a random walk of a single ion. The equation
of motion for the occupation probability of a site i follows from (2.96) with t≫ τ

d

dt
Pi(t) =

∑

j
n.N.

[
−WPi(t)
︸ ︷︷ ︸

hops
away from site i

+WPi(t)
︸ ︷︷ ︸

hops
towards site i

]

Pi(t) = lim
τ/t→0

P (ri, t) W =
1

2τ

(5.13)

58



Here W is the probability per unit time to perform a diffusion step (“hop”) in any direction.
(5.13) is solved easily by going to reciprocal space Pk =

∑

ℓ e
irℓkPℓ(t) and by performing a Laplace

transform Pk(p) =
∫ ∞

0 e−ptPk(t):

pPk(p) − 1 = W
[
6 + E(k)

]

⇒ Pk(p) =
1

p+W
[
6 + E(k)

]

E(k) = −2 cos(kxa) − 2 cos(kya) − 2 cos(kza)

(5.14)

where we have used the initial condition Pk(t=0) = 1 corresponding to Pi(t=0) = δi,0. E(k) is just the
tight-binding band structure with E0 = 0 and t = 1. If we now become interested in length scales much
larger than the lattice constant a we perform the limit ka≪ 1 and obtain

Pk(p) =
1

p+
[
6 − 6 + k2a2

]
W

=
1

p+Dk2
(5.15)

This is the solution of a diffusion equation wit diffusion constant

D = a2W (5.16)

We emphasize again that the hopping motion of a particle on an interstitial lattice is equivalent to a
random walk on such a lattice and becomes a diffusive motion in the continuum limit.

5.3 Ionic diffusion in disordered solids

The process discussed in the previous subsection describes a diffusion process of small ions (like H+ or Li+

ions) in a crystalline host. However, most of the materials (e.g. materials for solid-state batteries), which
allow for small-ion diffusion are disordered. The hopping probability per unit time from a a potential
energy minimum at site i to anoter one at site j Wij is given by the Arrhenius-Kramers relation

Wij = ν0e
−ǫij/kBT (5.17)

where ǫij is the energy barrier, which must be overcome to go from i to j, and ν0 is the so-called attempt

frequency, which describes the oscillatory motion of the particle inside the potential well and is of the
order of a phonon frequency. The disorder in our model now enters via the assumption of a distribution of

energy barriers P (ǫ), which may be a Gaussian or something else. The equation of motion for the hopping
particles now becomes

d

dt
Pi(t) =

∑

j

n.N.

[
−WijPi(t) +WijPi(t)

]
(5.18)

We now exploit a mathematical analogy between eq. (4.52) of the “scalar” phonon problem in paragraph
4.4.1 and (5.18), in order to be able to use the 2-site version of the CPA developed in this paragraph:

Scalar phonon problem Hopping problem

(
d
dt

)2
d
dt

z = −ω2 + iǫ p = iω + ǫ

Kij Wij

(5.19)
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Defining Γ(p) as the frequency dependent hopping probability in the effective medium we can use mutatis

mutandis1 the CPA equation (4.61) to calculate Γ(p) from P (W ):

Γ(p) =

∫ ∞

0

dǫP (ǫ)
W (ǫ)

1 +
(
W (ǫ) − Γ(p)

)
2

ZΓ(p)

(
1 − pGii(p)

)

Gii(p) =
1

Γ(p)
G

(0)
ii (p) =

∑

k∈BZ

1

p+ Γ(p)
(
6 + E(k)

)
ka≪1−→ 1

p+ Γ(p)k2

(5.20)

In the continuum limit we obviously deal with a frequency dependent diffusivity

D(p) = Γ(p)a2 , (5.21)

which leads, via the Nernst-Einstein relation

σ(p) =
n

kBT
q2D(p) = σ′(ω) + iσ′′(ω) (5.22)

to a frequency-dependent dynamic conductivity. The latter is related by electrodynamics to the frequency-

dependent permittivity

ǫ(p) = ǫ′(ω) + ǫ′′(ω) =
σ(p)

p
(5.23)

The mathematical analogy (5.19) and the CPA scheme (5.20) already imply the following important and
far-reaching conclusions:

• The disorder leads to a frequency-dependent conductivity.

• The frequency dependence of the ac conductivity σ′(ω) starts, where in the analogous phonon prob-
lem k would cease to be a “good quantum number”, i.e. near the “boson peak”.

Indeed, in all disordered “fast ion conductors”, in which small ions contribute the conduction mechanism,

one encounters such a frequency dependence which is very often of the form σ(p) ∝ px with x
∼
< 1. Such a

dependence, indeed, is also obtained from the CPA equation (5.20) if a sufficient broad distribution P (ǫ)
is taken.

5.3.1 Percolation picture for the dc conductivity

From the beginning of transport measurements of disordered fast-ion conductors the experimentalists
associated the frequency dependence of the ac conductivity with the disorder and discussed it either in
terms of independent different parallel conduction channels (“parallel equivalent network”) or in terms of
hopping processes in series (“serial equivalent network”). In both cases the disorder would lead to a dc

conductivity σ(o) = σ′(0), which does not obey an Arrhenius law

σ(0) = σ0e
−EA/kBT (5.24)

where EA is the so-called activation energy. In contrast, in all disordered fast-ion conductors such a
temperature dependence is observed to a very good accuracy. This apparent contradiction is solved on
the one hand by the fact known to electro-engineers that in a complex impedance network both parallel
and serial equivalent circuits are wrong, on the other hand by the following argumentation using our CPA

1lat.: after the appropriate changes made
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theory. In the dc limit p→ 0 we obtain for the quantity Γ(0), which is proportional to the dc conductivity

Γ(0) ≡ Γ =

〈

W

1 + W
Γ − 1

3

〉

=

〈

W
2
3 + W

Γ

〉

= Γ

〈

1
2Γ
3W + 1

〉

⇒ 1 =

∫

dǫP (ǫ)
1

1 + 2Γ
3ν0

eǫ/kBT

(5.25)

We now make the ansatz

Γ =
3

2
ν0e

−E∗/kBT (5.26)

and obtain from (5.25)

1 =

∫

dǫP (ǫ)
1

1 + e(ǫ−E∗)/kBT
(5.27)

From (5.27) we conclude

• The apparent activation energy E∗ becomes independent of T for T ≪ E∗/kB;

• In this limit (which holds at room temperature) there is always an Arrhenius law, independent of
P (ǫ)

In the low-temperature limit the activation energy is given by

1 =

∫ E∗

0

dǫP (ǫ) (5.28)

This equation allows for the following interpretation:
Let us consider the hopping problem as a compex conductance problem: All hopping probabilities are
modelled as conductances between the appropriate sites with values Gij = Wij . We now put all con-
ductances away and sort them according to their magnitude. We then start to re-insert them, beginning
with the small conductances i.e. large resistances. We then put larger conductances in up to a limiting
value Gij = ν0e

−E/kBT , where E is the minimum allowed energy barrier. If we increase E, more and
more sites become connected by conducting paths until — at a threshold energy Ethr — a conducting

path leads through the whole network. The model construction we just described is called percolation

construction. According to this construction, which can be mathematically (approximately) described
by equation (5.28), the observed activation energy EA = E∗ is a little larger than Ethr such that just a
current can penetrate through the disordered network. The considerations of the present little paragraph
are at the heart of the theory of hopping conductivity in disordered systems developed by Sir Nevill Mott
and Michael Pollak.
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5.4 Electron transport in metals

5.4.1 Scattering, diffusion and Drude formula

mean free path l

Scattering path of a nearly free electron

We now consider nearly free electrons in a
metal, which are occasionally scattered by
an impurity or a lattice vibration (phonon),
which passes by (see our figure). The elec-
tronic velocity is its momentum pF = ~kF ,
divided by its mass

vF =
1

m
~kF (5.29)

So, during the repeated scattering the electron
performs a kind of random walk, and we make
the ansatz

D =
1

3
ℓ2

1

τ
(5.30)

Here ℓ is the mean-free path of the electron, i.e. the length an electron moves freely (on average) without
being scattered. 1/τ is the (average) scattering rate per uni time, which is related to ℓ via

ℓ = vF τ , (5.31)

so that we have

D =
1

3
ℓvF =

1

3
v2

F τ . (5.32)

From the degenerate version of the Einstein relation (5.11) we obtain

σ = N(EF )e2D =
3

2

n

EF
e2

1

3

~
2k2

F

m2
τ =

1

m
ne2τ (5.33)

This is the Drude formula for the electric conductivity of a metal, which can be derived from kinetic
theory as well. We shall do so in the next paragraph. Here we have emphasized the random-walk aspect,
which states, that a repeated scattering process is equivalent to a diffusion mechanism.

5.4.2 Boltzmann equation

We now consider the repeated scattering process of electrons in a metal more formally. As the transport
phenomena do not involve wave functions but electronic densities and currents one considers Wigner’s
generalized phase space function

fk,s(r, t) =
∑

q

eiqrψ∗
s

(
k − q

2

)
ψs

(
k +

q

2

)

=

∫

d3~ρei~ρkψ∗
s

(
r − ~ρ

2

)
ψs

(
r +

~ρ

2

)
(5.34)

r, ~ρ are center-of-mass and relative coordinates, resp.:

r =
1

2

[
r1 + r2

]
~ρ = r2 − r1 (5.35)

The scattering of a wave of wave vector k can be accounted for by making a bilance of “scattering in and
out of the k channel” in the following manner:

∂

∂t
fk,s(r, t)

∣
∣
∣
∣
coll

= − 1

V

∑

k′,s′

W ss′

kk′fk,s

[
1 − fk′,s′

]
+

1

V

∑

k′,s′

W s′s
k′kfk′,s′

[
1 − fk,s

]
(5.36)

The index “coll” means that this is the collisional change of the electronic phase space density due to
collisions with an impurity or a phonon.
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We now disregard the spin index and consider the quantities r and p = ~k in fk(r, t) ≡ f(p, r, t) as
classical quantities r(t) and p(t). Then the collisional change of f(p, r, t) should be equal to the total time

derivative of f(p, r, t):

∂f

∂t

∣
∣
∣
∣
coll

=
∂f

∂t
+

3∑

α=1

∂f

∂pα

∂pα

∂t
+

3∑

α=1

∂f

∂xα

∂xα

∂t

=
∂f

∂t
+ F · ∇pf + v · ∇rf

(5.37)

(5.37), together with the spinless version of (5.36) form the celebrated Boltzmann equation of electronic
transport. F is the force on the electron, which — in “semiclassical approximation” — is taken to be the
Lorentz force

F = −e
[
E + v × B

]
(5.38)

In the relaxation time approximation one writes (see exercise 9.1)

∂f

∂t

∣
∣
∣
∣
coll

= −1

τ

(
f − f0

)

with
1

τ
=

1

V

∑

k′

Wkk′

(
1 − ek · e′k

)
∣
∣
∣
∣
|k|=|k′|=kF

(5.39)

Here f0 is the equilibrium Fermi distribution. We now call f − f0 = f1 and assume that f1 is created by
the small external electric field E, so that f1 can be neglected in the force term. We further assume an
uniform spatial distribution of the scattered electrons, i.e. ∇rf = 0, and no explicit time dependence, i.e.
∂f/∂t = 0, so that we get the following strongly simplified version of the Boltzmann equation

F · ∇pf0 = −f1
τ

(5.40)

We re-arrange ∇pf0 as

∇pf0 = ∇pE
︸ ︷︷ ︸

v

∂f

∂E

⇒ f1 = τ

(

− ∂f

∂E

)

v · F = −eτ
(

− ∂f

∂E

)

v ·E
(5.41)

For the field-induced current density we finally obtain

j = −2e

V

∑

k

f1v

=
2e2τ

V

∑

k

(

− ∂f

∂E

)

v ·Ev
︸ ︷︷ ︸

v2ez if j||EE||ez

(5.42)

from which we obtain the quantum Drude formula

σ =
2e3τ

3V

∑

k

(

− ∂f

∂E

)

v2

Exercise 9.2−→ ne2τ

m∗
for E =

~
2k2

2m∗

(5.43)
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5.4.3 Quantum interference effects

We consider again the scattering of the electrons as a random walk and construct a time variable along
the walk as we have done in discussing the polymer chains. in terms of this time variable the diffusivity
is given as

D = lim
t→∞

1

2t
〈r2(t)〉 = lim

t→∞

∫

d3r
r2

2t
P (r, t) (5.44)

where P (r, t) is the diffusion probability density. Defining ǫ to be the Laplace variable (instead of p) we
have

D = lim
ǫ→0

ǫ2

2
〈r2(ǫ)〉 = lim

ǫ→0

ǫ2

2

∫

d3rr2P (r, ǫ) (5.45)

Now there exists a relation by Kubo and Greenwood

D ∝ lim
ǫ→0

ǫ2

2

∫

d3
rr2Pquantum(r, ǫ)

with Pquantum(r1 − r2
︸ ︷︷ ︸

r

, ǫ) = 〈G+(r1 − r2, ǫ)G−(r2 − r1, ǫ)〉disorder

(5.46)

G±(r1, r2, ǫ) =< r1|G|r2 >=< r1|
1

E ∓ iǫ−H|r2 > is our old friend, the Green’s function, which can be

represented as a multiple-scattering expansion with respect to the fluctuating potential V as

G = G0 + G0V G0 + . . .

= G0TG0

(5.47)

The scattering operator T involves all possible scattering processes, which can be decomposed into scat-
tering processes from specific impurities, located at a site i, associated with a single-site T matrix ti.
The Green’s function can then be decomposed as (we drop all ǫs from now on)

G(r, r′) =
∑

paths
from r to r′

G0(r01)t1G0(r12)t2G0(r23) . . . tn−1G0(rn−1,n) (5.48)

with r0 = r and rn = r′.
If, now, we approximate |G|2 in such a way that we put

∣
∣
∣
∣

∑

paths

G0t1G0t2 . . . tn−1G0

∣
∣
∣
∣

2
→
=

∑

paths

|G0|2|t1|2|G0|2|t2|2| . . . |tn−1|2|G0|2 (5.49)

we obtain the diffusion propagator for Pquantum(r, ǫ). with τ−1 ∝ |ti|2. By this procedure all interferences
have been assumed to be cancelled out by the impurity averages, i.e. one has assumed that the Tij =
Aije

iφij have all random phases φij , which cancel out by the impurity average. As the free Green’s
functions have the form

G0(rν,ν+1) ∝ eikF rν,ν+1 (5.50)

the phases φij are just given by kF times the length sij of the path from i to j. This fact leads to an
important exception from the rule that the interference terms cancel out:
Assume that a multiple-scattering path contains a loop. As the positions of the impurities do not change
in time, the phases along this path are fixed once forever. Let us now consider two paths one, which leads
clockwise around the loop, the other anticlockwise. The phases along both paths are exactly the same so
that we have for the intensities of the two processes
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1.

2.

∣
∣T1 + T2

∣
∣
2

=

∣
∣
∣
∣
A1e

iφ1 +A2e
iφ2

∣
∣
∣
∣

2

=
∣
∣A1

∣
∣
2

+
∣
∣A2

∣
∣
2
+ 2A1A2 cos(φ1 − φ2)

︸ ︷︷ ︸

=1 for φ1=φ2

= 4
∣
∣A1|2 for A1 = A2

(5.51)

In the incoherent approximation (5.49) one would obtain |T1 + T2|2 = 2|A1|2 instead. in the incoherent
approximation, which treats the quantum propagator Pquantum(r, ǫ) as classical diffusion propagator the
closed-loop interferences are missing. Obviously there must be a correction to the scattering rate due to
the closed-loops:

τ−1 = τ−1
0 + ∆τ−1 (5.52)

which is of the form

∆τ−1 ∝
y∑

loops

t1G0t2G0 · · ·
x∑

loops

t1G0t2G0 . . . (5.53)

which can be approximated as

∆τ−1 ∝ Gdiff(r = 0, ǫ→ 0) = lim
ǫ→0

∫ ∞

0

dt
1

[
4πD0t

]d/2
e−ǫt (5.54)

where we have used the expression for the d dimensional diffusion propagator

Gdiff(r, t) =
1

[
4πD0t

]d/2
e−r2/4Dt (5.55)

For evaluating the interference contribution (5.54) we first consider d = 3:

∫ ∞

0

dt t−3/2e−ǫt = ǫ1/2Γ(−1/2)
ǫ→0−→ 0 (5.56)

So the contribution vanishes, unless there is a maximum loop length, given by the inelastic mean-free path

ℓin due to scattering from phonons. In this case ǫ is replaced by τ−1
in = vF /ℓin. Assuming2 τ−1

in ∝ T p we
obtain a correction with a temperature dependence ∝ T p/2.

Let us now consider the case d = 2. The integral
∫ ∞

0
dt
t certainly diverges. This is a first indication for

a disorder and interference induced localization transition in d = 2, which we shall discuss in the next
subsection. If we insert a minimal and maximal scattering time (the minimal one corresponding to the
elastic mean-free path ℓ0 = vF τ0) we obtain

∆τ−1 ∝ ln τin/τ0 ∝ − lnT (5.57)

Such a behavior is, indeed observed in two-dimensional devices.

5.4.4 Anderson localization

In 1958 P. W. Anderson published his famous paper “Absence of diffusion in certain random lattices”,
in which he showed that the diffusion coefficient of an electron in a random potential V can be zero
if the spatial fluctuations measured by < (V− < V >)2 > /(< V >)2 exceed a certain critical value.
This happens roughly when the mean free path due to the potential fluctuations becomes as short as the
electronic wavelength or (equivalently) an interatomic distance. In 1979 Abrahams, Anderson, Licciardello
and Ramakrishnan showed that this localization effect is due to a quantum interference effect first discussed
by Langer and Neal in 1966. We just discussed this effect in the previous subjection.
We now discuss the Anderson localization transition (or metal-nonmetal transition) from the point of view
of electrons in a random environment and present the scaling ideas of Abrabahams et al. .

2The exponent p can vary between 2 and 5, depending on the type of material.
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In his original paper Anderson considered a tight-binding Hamiltonian with a spatially fluctuating local
energy ǫi representing the fluctuations of the external potentials:

H = H1 + H0 =
∑

i

ǫi|i >< i| + t
∑

ij
n.N.

|i >< j| (5.58)

We assume that the on-site energies ǫi = ǫi + ∆ǫi are random variables with average ǫ0 and relative
variance σǫ = 〈(∆ǫi)2〉/σ2

0 . In the subsection 3.2.6 we convinced ourselves that lear the lower band edge
H0 can be represented by a free-electron Hamiltonian with effective mass m∗ = ~

2/2ta2, where a is the
lattice constant of a simple-cubic lattice.
Anderson found that there exists a critical amount σc of disorder. For σǫ < σc the mean-square dis-
placements of the electrons increases linearly with time, whereas for σǫ > σc it has an upper bound
r20 :

〈
r2(t)

〉







∝ t σǫ < σc Diffusion

≤ r20 σǫ > σc Localization
(5.59)

r0 is called localization length, and, in the localized state the electronic wave function has an envelope,
which decays exponentially beyond r0:

ψ(r) =
∑

α

aW (r)e−|r−rα|/r0 (5.60)

where aW (r) is a Wannier function and rα are some random points in the disordered material. The
important point is, if one considers a piece of disordered material, the conductance G of the material will
decay exponentially with the length L of a bar

G(L) ∝ e−L/r0 (5.61)

We now turn to the scaling argument of Abraham et al.:
We consider the length dependence of the conductance a metallic piece of material of size Ld of resistivity
ρ

LL L

d = 1 d = 2 d = 3

G ∝ 1

ρL
G ∝ 1

ρ
G ∝ L

ρ
(5.62)

We want to construct a dimensionless conductance and define

1

G0
=

~

e2
=

1.05 · 10−34Ws2

(1.6)2 · 10−38(As)2
= 410Ω (5.63)

so that we have in the metallic regime

lim
L→∞

g(L) = lim
L→∞

G(L)

G0
∝ Ld−2 (5.64)

In the localized regime we expect
lim

L→∞
g(L) ∝ eL/r0 → 0 (5.65)

The scaling hypothesis now consists in postulating that in all dimension and whether there is localization
or not g(L) can be represented as

g(L) = g0L
β or inversely β(g) =

d ln g

d lnL
(5.66)
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1

−1

0

β(g)

g

where β(g) is supposed to be a universal

function of g. If β(g) is known, one can
desice from the sign of β, whether

lim
L→∞

g(L)







−→ ∞ metallic for β > 0

−→ 0 localized for β < 0
(5.67)

How can β(g) look like? For large g we
have

lim
g→∞

β = d− 2 (5.68)

Abrahams et al. calculated the corrections to this asymptotic law:

β(g) = d− 2 − cons.

g
(5.69)

On the other hand, we have for small g g(L) ∝ e−L/r0, from which follows

lim
g→0

β(g) = ln g − const. (5.70)

Result:

The scaling transformation (increasing L) leads to a vanishing conductance in d = 1and ind = 2. This
means that, in these dimensions, for any disorder there is always localization, i.e. limL→∞ g(L) = 0. In
d = 3 this limit depends on the degree of disorder: if in a sample of a certain size L the dimensionless
conductance is smaller than the critical one it will scale towards zero. If it is larger, it will scale towards
infinity. The point, where β(g) crosses the zero line is an unstable fixed point of the scaling transformation.
These findings have been backed up by a field-theoretical treatment of the Anderson transition by F.
Wegner and other authors. Within the field-theoretical formalism the scaling transformation corresponds
to the renormalization group transformation.
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