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1 Disordered structures

1.1 Introduction

<A>

A(x)

x

Fig. 1:

Spatially fluctuating physical quantity A(x)

By disorder we mean a spacial disorder, which is defined as
a spatial fluctuation of some physical variable A(x)

A(x) = 〈A〉+ ∆A(x) (1.1)

The most important characterization of the fluctuations
∆A(x) is the correlation function

CAA(x) = 〈A(x + x0)〉 (1.2)

〈. . . 〉 means an average with respect to some distribution
in a Gibbsian ensemble (ensemble average).

One can also define a spatial average:

A
∆x

(x0) =
1

∆x

∫ x0+
∆x
2

x0−
∆x
2

dxA(x) (1.3)

For not too large ∆x the function A
∆x

(x0) is called smoothed or coarse-grained version of A(x). If for

∆x→∞ A
∆x

approaches the ensemble average 〈A〉 we call A self-averaging. This property is the spatial
variant of the ergodic property of dynamically fluctuating variables A(t).
Another important concept is the distinction between quenched and annealed disorder. By annealed
disorder we mean spatial fluctuations which arrise as a result of thermal equilibrium e.g. in a liquid. It
is characterized by the usual equilibrium distribution functions. By quenched disorder a “frozen” spatial
variation is meant, which is characterized e.g by its correlation functions (1.1) or by an equilibrium
distribution function of an annealed system with the temperature given by that from which the system
was quenched (annealing temperature).

1.2 Topological disorder and disorder in crystals

1.2.1 Molecular distribution functions

The structure of a liquid is governed by the statistical distribution of the centers of gravity of the atoms or
molecules. Of course the latter keep moving, but we can ask about the atomic distributions if one could
perform a snapshot of the atomic arrangements. This is what we call the (static) structure of the liquid.
We now pose the question of how a collection of N ≈ 1023 atoms or molecules (or much less in a computer
simulation) are distributed inside a certain volume V . We call the probability for these particles to occupy
volume elements d3r1, d

3r2, . . . d
3rN around positions r1, r2, . . . rN

P (r1, r2, . . . rN )d3r1, d
3r2, . . .d

3rN . (1.4)

P (r1, r2, . . . rN ) is the probability density of the configuration {r1, r2, . . . rN} and is normalized to 1:

∫

V

N∏

α=1

d3rαP (r1, r2, . . . rN ) = 1 . (1.5)

If a physical quantity A depends on the position of the particles the configurational average can be
calculated as

〈A〉 =

∫

V

N∏

α=1

d3rαA(r1, r2, . . . rN )P (r1, r2, . . . rN ) . (1.6)

One can select n < N particles in order to define the reduced n-particle densities

ρ(n)(r1, r2, . . . rN ) =
N !

(N − n)!

∫

V

N∏

i=n+1

d3rαP (r1, r2, . . . rN ) , (1.7)
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In the case of a complete random arrangement, which is only realized in an ideal gas we have

ρ(r1, r2, . . . rN ) =

(
N

V

)n

≡ ρn0 . (1.8)

where ρ0 is called the homogeneous density of the liquid. The deviation from this random distribution is
given by the n-particle correlation functions g(n), which are defined as follows

ρ(n)(r1, r2, . . . rN ) = ρn0 g
(n)(r1, r2, . . . rN ) . (1.9)

In homogeneous systems we have
ρ(1)(r1) = ρ0 (1.10)

g(1)(r1) = 1 . (1.11)

In a homogeneous and isotropic material we have

g(2)(r1, r2) = g(|r1 − r2|) (1.12)

g(r) is called radial pair correlation function or radial pair distribution function and can, as we shall see
in the nect section, be determined by neutron or x-ray diffraction.

1.2.2 Scattering theory

Ωd

k2
k1

q = k
2

k1

region where V = 0

We want to describe the scattering of X-rays or neutrons from
a simple liquid sample. We study an ingoing plane wave (1st
term) and an outgoing scattered spherical wave (2nd term) of the
following asymptotic form

ψ(r)
|r|→∞

= eik1·r + f(θ)
1

r
eik2r (1.13)

The scattering cross-section into the solid angle element dΩ in
the direction of k2 is then given by the modulus-square of the
scattering amplitude

dσ

dΩ
= |f(θ)|2 (1.14)

If the scattering potential (the potential between the scattered rays and the particles) can be decomposed
as

V(r) =

N∑

α=1

v(r− rα) (1.15)

the scattering amplitude is given in 2nd approximation (Born approximation)

f(θ) = − m

2π~2
〈k2|V|k1〉 = − m

2π~2
V(q) = − m

2π~2

N∑

α=1

eiq·rαv(q) ≡
N∑

α=1

eiq·rαf(q) , (1.16)

f(q) is called form factor and has the unit of length. In the case of energy unresolved neutron or X-ray
diffraction there is no net energy exchange with the sample, i.e. |k1| = |k2|. In an isotropic material the
form factor depends only on the modulus of the exchanged momentum, which is given by

q = |k1 − k2| = k1

√

2[1− cos(θ)] =
4π

λ
sin

(
θ

2

)

, (1.17)

where θ is the angle between k1 and k2 and λ = 2π
|k1| is the wavelength.

In the case of neutrons, which scatter from the nuclei, whose potential v(r) is extremely short-ranged,
f(q) does not depend on q (in the range of interest q < 20 Å−1) and is called scattering length and is
denoted by the letter b.
Inserting (1.16) into (1.14) and averaging over an ensemble of different configurations we obtain

dσ

dΩ
= |f(q)|2

〈
N∑

α,β=1

eiq·[rα−rβ ]

〉

≡ |f(q)|2NS(q) , (1.18)
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where S(q) is the static structure factor

S(q) =
1

N

〈
N∑

α,β=1

eiq·[rα−rβ ]

〉

(1.19)

It can be shown that S(q) is related to the pair correlation function by a simple Fourier transform

S(q) = 1 + ρ0

∫ ∞

−∞

d3reiqr[g(r)− 1] (1.20)

which can - because g and S depend only on the moduli of their arguments - be simplified as

S(q) = 1 +
4πρ0

q

∫ ∞

0

dr r sin(qr)[g(r) − 1] (1.21)
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Corresponding pair distribution function cal-
culated via Fourier-back transform from (1.21)
with ρ0 = 0.05

1.2.3 Models of disordered structures

1.2.4 Liquid structure and thermodynamics

We are now assuming that the liquid under consideration can be described by a classical Hamiltonian

H =

N∑

α=1

1

2
mṙ2

α +
1

2

∑

α6=β

φ(|rα − rβ |) . (1.22)

There are the following thermodynamic relationships (equations of state):
Potential Energy

1

N
〈Epot〉 = 2πρ0

∫ ∞

0

dr r2φ(r)g(r) (1.23)

Pressure

〈P 〉 V

NkBT
= 〈P 〉 1

ρ0kBT
= 1− 2πρ0

3kBT

∫ ∞

0

dr r3φ′(r)g(r) (1.24)

Number fluctuations and isothermal compressibility κT

〈N〉2 − 〈N2〉
N

= ρ0kBT

(

− 1

V

∂V

∂P

)

T

= ρ0kBTκT (1.25)

= S(q = 0) = 1 + 4πρ0

∫ ∞

0

dr r2[g(r)− 1] (1.26)
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1.2.5 Direct correlation function

The static structure factor can be split in an obvious way into a self and distinct part by separating the
α 6= β term in the summation over the particles:

S(q) =
1

N

〈
N∑

α,β=1

eiq·[rα−rβ ]

〉

= 1 +
1

N

〈
N∑

α6=β

eiq·[rα−rβ ]

〉

≡ 1 + ρ0h(q) (1.27)

The self part is just equal to unity, and the distinct part is ρ0 times the Fourier transform of the deviation
of g(r) from unity, i.e.

h(r) = g(r)− 1 . (1.28)

We now sub-divide the correlation function h(r) into a part which involves only a particular pair of atoms,
say r1 and r2 and a part which involves more than two atoms. Following Ornstein and Zernike, the first
term is called direct correlation function. The second part can be generated by combining several direct
functions in the following way:

h(r12) = c(r12) + ρ0

∫

d3r3c(r13)c(r32) + ρ2
0

∫

d3r3

∫

d3r4c(r13)c(r34)c(r42) + . . . (1.29)

The terms under the r3 integral can be summed again to give the function h(r32):

h(r12) = c(r12) + ρ0

∫

d3r3c(r13)h(r32) (1.30)

This is the so-called Ornstein-Zernike equation. It is the starting point for some integral equation theories
for g(r) (See section 2.7).
If we introduce the Fourier transform c(q) of c(r) and use the convolution theorem we obtain

h(q) =
c(q)

1− ρ0c(q)
(1.31)

which finally leads to

S(q) =
1

1− ρ0c(q)
(1.32)

1.2.6 Integral equation theories for g(r)

We recall again the Ornstein-Zernike (OZ) relation between g(r) = 1 + h(r) and the direct correlation
function c(r) (in a slightly modified form):

h(r) = c(r) + ρ0

∫

d3r′h(|r− r′|)c(r′) (1.33)

The function c(r) can, on the other hand, be calculated by functional integral and functional derivative
techniques. Using such techniques and an appropriate diagram formalism one can come up with a second
relation between c(r) and g(r) which is called the closure relation and constitutes a specific integral equa-
tion theory for g(r) The most popular closure relations are

Percus-Yevick (PY):

c(r) = g(r)
[

1− eβφ(r)
]

(1.34)

Hypernetted-Chain (HNC):
c(r) = −βφ(r) + h(r) − ln g(r) (1.35)

These closures together with the OZ relation constitute a self-consistent set of integral equations for h(r)
or g(r).
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1.2.7 PY solution for hard spheres
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Fig. 4a and Fig. 4b: Hard-sphere PY structure factors S(q) and pair correlation functions g(r)

We now consider the hard-sphere potential

φHS(r) =

{
∞ r < d
0 r > d ,

(1.36)

where d is the hard-sphere diameter. In this case the PY integral equation can be solved exactly. The
solution is given in terms of the packing fraction

η =
volume filled with spheres

total volume
=
π

6
d3ρ0 (1.37)

and the dimensionless variable x = r/d

c(r) =







λ1 − 6ηλ2x+ 1
2ηλ1x

3 x < 1

0 x > 1 ,
(1.38)

with

λ1 = (1 + 2η)2/(1− η)4 (1.39a)

λ2 = (1 +
1

2
η)2/(1− η)4 (1.39b)

1.2.8 disorder in crystals

1.3 Fractals

1.3.1 Logistic map and Mandelbrot set

1.3.2 Fractals and fractal dimension

In his book “The fractal geometry of nature”, which appeared in 1977, the french mathematician Benoit
Mandelbrot coined the word fractal for geometrical objects, which do not have an inherent length scale,
i.e. they are self similar. They just look the same at very different length scales. Such object are trees,
sponges, termination deltas of rivers, tidal streaming traces, clouds, mountains – and coast lines. Although
Mandelbrot made fractals a fashionable subject in physics, self-similar objects have been studied much
earlier, e.g some 150 years ago by people like David Hilbert, Giuseppe Peano or Georg Cantor.
Let us start with coast lines. How long is the coast line of England/Scotland? You may measure it with
conventional geodesic wooden sticks to come up with a number of about ten thousand km. (The figure
given by www.coastalguide.org is 13560 km.) However, if you make your measuring device smaller, so
that you can follow all small wrinkles you might be able to double the number: The length of the coast
line depends on the scale of the measuring device, or, in other words, if you want to draw the coast line
its length depends on the thickness or the sharpness of the pencil. In fact a coastline is a typical fractal
object: It has similar wrinkles at different length scales.
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In discussing the length of the coast line we found that there is some difficulty to indentify it as a one-
dimensional object, as it has a typical property of an object with dimensionality greater than one: It
length depends on something else: For an area this is the width, for the coast line it is the thickness of the
pencil. In fact fractals turn out not to have an integer dimensionality. Its dimensionality is a non-integer
number df , which is called fractal dimension. Let us resume, how in “normal” geometry the dimension
is defined: If we multiply the linear size L of a d-dimensional object by a factor b the mass of the object
changes by a factor bd:

M(bL) = bdM(L) (1.40)

The first 4 iterations of the Koch curve

Let us discuss a regular geometric coast line, which is the
Koch curve depicted in the figure. A straight line is divided
into 3 and the inner part is replaced by the upper part of
an equilateral triangle. This procedure is repeated for all
4 new sides. As the Koch curve is iteratively constructed
from lines, i.e. one-dimensional objects its “mass” is just
its length. This length steadily increases as the iteration is
continued, just as in the coastline example. For the Koch
curve we can deduce the value of the fractal dimension:
Every time the length is increased by a factor of 3 its length
increases by a factor of 4. If we call the length of the Koch
curve also M we have

M(3L) = 4M(L) (1.41)

We want to define the fractal dimension just as in (1.40)

M(bL) = bdfM(L) (1.42)

comparing (1.41) with (1.42) we obtain

df = ln 4/ ln 3 = 1.26185954 · · · (1.43)

The first 4 iterations of the Sierpinski gasket

Instead of augmenting a one-dimensional object we can also
deplete a two-dimensional object as done with the so-called
Sierpinski gasket: An equilateral triangle of half the linear
size of a bigger triangle is punched out of the middle of the
big triangle. This procedure is repeated with all sucessively
appearing triangles. For the “mass”, which is here the area,
we have obviously

M(2L) = 3M(L) ⇔ df = ln 3/ ln 4 = 1.58496249 · · ·
(1.44)
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The 3 rd iteration of the Sierpinski sponge
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n = 0

n = 1

n = 2

n = 3

The first 4 iterations of the Cantor set

A similar procedure can also repeated with a square or a
cube. For the latter (“Sierpinski sponge”)

M(3L) = 20M(L) ⇔ df = ln 20/ ln 3 = 2.72683311 · · ·
(1.45)

Note that this number is now between 2 and 3.
One even can generate fractals with dimensions below 1.
These are point-like objects, called dusts by Mandelbrot.
The Cantor set is iterated by taking just the middle third
out of the unity interval, and then this procedure is re-
peated for every remaining interval. For the remaining dust
we have the scaling relation

M(3L) = 2M(L) ⇔ df = ln 2/ ln 3 = 0.630929768 · · ·
(1.46)

One can show that from a topological point of view the
Cantor set has the Lebesgue measure 0, but its elements
are not countable, i.e. it can not be mapped onto the set
of integers.
In cases, in which the scaling law is not obvious one can
calculate df empirically by the so-called box counting algo-
rithm. For this we need to define the imbedding dimension,
which is just called d The imbedding dimension is the di-
mension is the dimension of the space, in which the defining
algorithm of the fractal is formulated. So for the Cantor set
d = 1, for the Koch curve and the Sierpinski gasket d = 2,
and for the Sierpinski sponge d = 3. We have strictly

df ≤ . .

For the fractal, for which one wants to determine df one
sets up a mesh of boxes inside a big hypercube of length L,
which are hypercubes of “mass” (ǫL)d, where ǫ = L/n and
n is the number of boxes along one edge of the big box.
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Box-counting determination of the fractal di-

mension

One then determines the number of boxes Zn, which are
filled or partially filled by the fractal object for several n.
One then obtains from a log-log plot lnZn vs. lnn a straight
line, the slope of which is df :

Zn = lim
n→∞

ndf ⇔ df =
lnZh
lnn

(1.47)

On the other Hand we can define Zn to be the ratio of the
“mass” of the fractal for a particular n M(L), divided by
the “mass” of an ǫ-pixel (or “voxel”) Zn = M(L)/M(ǫL)
From this and n = L/ǫ we obtain

df = lim
ǫ→0

ln[M(ǫL)/M(L)]

ln ǫ
(1.48)

One can show that the static structure factor has a small-q dependence according to

S(q) ∝ q−df (1.49)

This means that we can measure the fractal dimension of a real fractal can be measured by X-ray or
neutron diffraction.
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1.3.3 Percolation

An important model for a metal-nonmetal transition in a random mixture of a metal with a nonmetal is the
Percolation model. At the same time it is a “toy model” for a thermodynamic phase transition. It has two
versions, namely the site percolation model and the bond percolation model. In the site percolation model
the sites of a d-dimensional lattice is occupied randomly by metal atoms according to the concentration
p. If two neighboring sites are occupied they are called connected. Connected sites form a cluster. If
a cluster extends through the system of linear extension L it is called percolation cluster. The critical
concentration pc for the metal-nonmetal transition is defined to be the smallest concentration for which a
percolation cluster exists in the limit L→∞.

percolation clusters for 3 different concentrations p.

site bond
d = 2

square l. 0.6 1
2

triangular l. 1
2 0.35

honeycomb l. 0.7 0.65
d = 3

simple c. 0.31 0.25
f.c.c 0.20 0.12
b.c.c 0.25 0.18
simple c. 0.31 0.25
diamond 0.43 0.39

Fractal dimensions df of the site and bond per-

colation model

Lattice β ν
quadratic 5

36
4
3

simple c. 0.417 0.875

Critical dimensions β and ν corresponding

to the order parameter P (p) and correlation

length ξ(p). bond percolation model

In the bond percolation model bonds are randomly dis-
tributed on the elementary bonds on the lattice. All sites
belonging to a bond are metallic sites and belong to a clus-
ter of connected sites.
As can be seen from the table the percolation concentra-
tions pc depend not only on dimensionality but on the type
of lattice and whether we have site percolation.
Right at p = pc the percolation cluster forms a fractal.
The fractal dimension is universal as it depends only on
the embedding dimension. For d = 2 we have df = 1.9, for
d = 3 df = 2.55.
As in thermodynamic phase transitions one can define an
order parameter P (p), which is the probability of a site to
belong to the percolation cluster. Obviously P (p) = 0 for
p < pc. For p ≥ pc we have

P (p) ∝ (p− pc)β (1.50)

for p near pc.
For p ≈ 1 the percolation cluster is obviously not a fractal,
as there are only a few vacancies which do not involve a
scaling law. As in the theory of phase transitions one can
define a correlation length ξ(p), which has the property that
for length scales L < ξ the percolation cluster looks like a
fractal, i.e. M(L) ∝ Ldf , whereas for L > ξ M(L) ∝ Ld

holds. Near pc we have the critical law

ξ(p) ∝ (p− pc)−ν (1.51)
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1.4 Diffusion equation and mean-square displacement

We consider the diffusion process of a Brownian particle in a solvent, which is historically the first “random
walk”, which was treated in one of Einstein’s seminal papers of 1905.
We first consider only motions in the x-direction. We start with the continuity equation for the time
dependence of the particle density ρ(x, t) and the current density j(x, t) = ρv, which holds due to the
conservation of the total number of Brownial particles:

∂ρ

∂t
+
∂j

∂x
= 0 . (1.52)

For the current density we have Fick’s law, which states that the compensating diffusion current flows
always against a momentary concentration gradient. The proportionality constant is called diffusion
constant D.

j(x, t) = −D∇ρ(x, t) (1.53)

if we then insert (1.53) into (1.52) we obtain the (one-dimensional) diffusion equation

∂ρ

∂t
−D∂2ρ

∂x2
= 0 . (1.54)

Going over to a spatial Fourier transform

ρ(k, t) =

∫ ∞

−∞

dx eikxρ(x, t) (1.55)

and a temporal Laplace transform

ρ(k, p) =

∫ ∞

0

dt e−ptρ(k, t) (1.56)

we obtain from (3.3)
pρ(k, p)− ρ(k, t=0) +Dk2ρ(k, p) = 0 (1.57)

with the solution

ρ(k, p) =
ρ(k, t=0)

p+Dk2
= ρ(k, t=0)G(k, p) (1.58)

where we have introduced the special solution G(k,t), which has the initial condition

G(k, t=0) = 1 (1.59)

corresponding to
G(x, t=0) = δ(x) (1.60)

G(x, t) can be interpreted as the probability density of a Brownian particle which started his journey at
t = 0 at the origin x = 0 (see next subsection). The back transforms of G(k, p) are

G(k, t) = e−Dk2t (1.61)

and

G(x, t) =
1√

4πDt
e−x

2/4Dt (1.62)

An important quantity is the mean square distance walked by the Brownian particle at a certain time t.
It can be calculated from the function G(x, t) as

〈
x2(t)

〉
=

∫ ∞

−∞

dxx2G(x, t) (1.63a)

= − ∂2

∂k2

∫ ∞

−∞

dx eikxG(x, t)

∣
∣
∣
∣
k=0

(1.63b)

= − ∂2

∂k2
e−Dk2t

∣
∣
∣
∣
k=0

(1.63c)

= 2Dt (1.63d)
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This is the second formula in the theory of Brownian motion which carries Einstein’s name. It states
that the distance a Brownian particle moves away on the average from its starting point grows with the
square-root of time.
The diffusion equation and its solution are easily generalized to the three-dimensional case. The diffusion
equation reads

∂ρ(r, t)

∂t
−D∇2ρ(r, t) = 0 . (1.64)

with solution

G(k, t) =

∫ ∞

−∞

d3r eik·rG(r, t) = e−Dk2t , (1.65)

subject to the initial condition G(k, t=0) = 1⇔ G(k, t=0) = δ(r). We now have k2 = |k|2 = k2
x+k2

y+k2
z .

The solution in r space has the form

G(r, t) =

[
1√

4πDt

]3

e−r2/4Dt (1.66)

with r2 = |r|2 = x2 + y2 + z2. For the three-dimensional mean-square distance we obtain the Einstein
relation

〈
r2(t)

〉
=

∫ ∞

−∞

d3r
(
x2 + y2 + z2

)
G(r, t) (1.67a)

= −
(
∂2

∂k2
x

+
∂2

∂k2
y

+
∂2

∂k2
z

)∫ ∞

−∞

d3r eik·rG(r, t)

∣
∣
∣
∣
kx=ky=kz=0

(1.67b)

= −
(
∂2

∂k2
x

+
∂2

∂k2
y

+
∂2

∂k2
z

)

e−Dk2t
∣
∣
∣
∣
kx=ky=kz=0

(1.67c)

= 6Dt (1.67d)

1.5 Random walk on a lattice

A random walker on a two-dimensional lattice

The motion of a Brownian particle can be visualized
by that of a “random walker”, e.g. by a drunken
person, who changes its direction at random after
every step. The statistics of such a motion can be
easily worked out on a lattice. We start with this on a
one-dimensional array of points with lattice constant
a. the time steps are called τ . The propabilities
P (x = a, t = τ) and P (x = −a, t = τ) are 1/2, those
for one time step for |x| > a are zero. The non-zero
probabilities for the νth time step are (1/2)ν times
the number of ways one can reach the site xn = na
on the triangle.
This number increases from 1 at the maximum dis-
tance |x|max = νa with k = (|x|max − |x|)/a as

(
n
k

)
,

which can be represented as

12
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1

6 4 1

15101051

21

41

x 2

x 2

x 2

x 2

x 2

−1

x 2
−2

−3

−4

−5

−6

x

t

31 3 1

P(x,t)

0
Pascal’s triangle for a 1d random walk. The number of

ways a time-space point can be reached from the bot-

tom is given by Pascal’s algorithm, i.e. each number

is the sum of the two numbers underneath.

P (xn, ντ) =

(
1

2

)ν (ν

k

)

k =

[
1

2
(n+ ν)

]

,

(1.68)
where [ν] is the smallest integer κ with κ ≥ ν. It is
worth wile to note that at an even/odd time step ν
only even/odd random walk sites xn can be reached.

We consider now the recursion formula for the bino-
mial coefficients

(
n+ 1

k

)

=
(n

k

)

+

(
n

k − 1

)

(1.69)

We re-write this recursion formula with the help of the probabilities P (nx, ντ):

P (xn, t+ τ) =

(
1

2

)ν+1(
ν + 1

kn,ν+1

)

=
1

2
P (xn+1, t) +

1

2
P (xn−1, t) (1.70)

This can be re-written as

P (xn, t+ τ)− P (x, t)

τ
= D

[
P (xn + a) + P (xn − a, t)− 2P (x, t)

a2

]

(1.71)

with

D =
a2

2τ
(1.72)

We take now the double limit τ → 0 and a→ 0 keeping the ratio D = a2/2τ fixed. This leads to

∂P (x, t)

∂t
= D

∂2

∂x2
P (x, t) (1.73)

This is just the diffusion equation for the Brownian motion encountered in the previous section. So the
Function G(x, t) is just the continuum limit of the random walk probability.
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1.6 Random Walks and polymers

x

φ
θ

y

Thre segments of a polymer chain with bond angles

θ and azimuthal angle φ by which the bond can be

directed into the trans and the gauche direction

On a microscopic level a polymer chain mainly consists of a
backbone of beads to which some side groups are attached.
In addition there can be branching and cross-linking.
There is usually a very limited range of possible bond an-
gles between the beads. The angle θ between the beads is
usually fixed, but the azimuthal or Dieder angle φ can have
different values, e.g. φ = 0◦ (cis), φ = 60◦ (gauche), or
φ = 180◦ (cis), where the latter is usually the most sta-
ble position. Between the bond angle positions there are
energetic barriers ∆ǫ, which the chain has to overcome for
changing the angle. If the temperature is much higher than
these energy barriers, the chain will acquire some freedom
to form a curvature, i.e. the directions of the beads will
start to fluctuate statistically. Let us denote by bn the vec-
tor pointing from one chain connection to another. Let us
assume that they have all the same length a. Then we can
be interested in the following correlation function

C(ν) = 〈bn+ν · bn〉 (1.74)

This function will decay exponentially with increasing ν
with a characteristic decay constant ν0 = ℓ0/a, where ℓ0 is
the decay length. For length scales larger than ℓ0 the chain
will behave as an ideal polymer chain i.e. like a random
walk if we for a moment disregard the volume exclusion
condition.

In particular, we can calculate the radius of gyration R0, which is the square-root of the mean square
end-to-end distance:

R2
0 =

〈[
N∑

n=1

bn

]2〉

= Nb2 +

N∑

n=1

νmax∑

ν=1

[C(ν) + C(−ν)] = Nb2 (1.75)

The second equality holds, because the correlations have all values between a2 and −a2 with equal prob-
ability, i.e they average to zero. However, in reality this might not be so, but in cases, where one can
neglect the volume exclusion of the polymer chain the radius of gyration will be proportional to

√
N and

we use a instead of b for the proportionality coefficient:

R2
0 = a2N (1.76)

So – for the time being – we can state that a polymer chain behaves like an ideal chain as modelled by a
random walk with

2Dt = Na2 (1.77)

Let us discuss relation (1.6) for a moment. It states that the size of a random walk or ideal polymer chain
scales with its “mass” as

N(L) ∝ L2 (1.78)

This means that the fractal dimension df of a random walk is equal to 2 in any embedding dimension.
In order to do statistical mechanics of Polymers we would like to calculate the statistical wheight for
averaging over different ways of random walks with a fixed end-to-end distance R. We first calculate the
probability that a walker ist inside a sphere with radius R

PR = 4π

∫ R

0

drr2P (r,N) (1.79)

The desired quantity is
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Z(R,N) =
dPR
dR

= 4πR2[2πR2
0]

−3/2e−R
2/2R2

0 (1.80)

From this we obtain the entropy

Sid(R,N) = kB ln[Z(R,N)] = −kB
R2

2R2
0

+ kB ln[4πR2]− (3/2)kB ln[2πR2
0] (1.81)

and free energy

Fid = −TSid = kBT
R2

2R2
0

− kBT ln[4πR2]− (3/2)kB ln[2πR2
0] = F0 + kBT

R2

2R2
0

(1.82)

From this we can calculate for example the distance x the chain will be elongated if an external force f
in x direction is applied. The corresponding potential is φf = −fx so that the free energy is

Ff = −fx+ F0 + kBT
x2 + y2 + z2

2R2
0

(1.83)

Minimizing Ff with respect to x yields

x = f
R2

0

kBT
= f

Na2

kBT
(1.84)

A quantity of interest is the radial pair correlation function of monomers g̃(r) which is just the counter
part of this quantity in simple liquids. In simple liquids g(r) was defined in such a way that for large r
the integral

ρ04π

∫ Rmax

0

dr r2g(r) =
4

3
R3

max

N

V
= N (1.85)

where ρ0 = N/V is the number density of molecules. Here we indentify ρ0 with the number density of
monomers and include the factor ρ0 in the definition of the correlation function:

g̃(r) = ρ0g(r) (1.86)

so that we have

4π

∫ ∞

0

dr r2g̃(r) = N (1.87)

We now try to figure out a scaling form of g̃(r). As this function has the dimension Length−3 we make
the ansatz

g̃(r) = A
N

R3
0

f(
r

R0
) (1.88)

We now realize that inside a sphere of radius r∗ we must have

4π

∫ r∗

0

dr r2g̃(r) = n , (1.89)

where n is the number of monomers inside the sphere of radius r∗. According to the random walk rule of
the ideal chain we must have

(r∗)2 ∝ na2 , (1.90)

which can only be reconciled with (1.89) if the function f(x) is proportional to x−1. We therefore obtain

g̃(r) = A
N

R3
0

R0

r
= A

1

ra2
. (1.91)

This is the so-called Debye correlation function. It has the Fourier transform

S̃(k) = 4πA
1

q2
. (1.92)
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1.7 The fractal dimension of a self-avoiding walk

In subsection 1.6 we mentioned that the random walk if studied as a function of the steps N is, in fact a
fractal with df = 2 in any imbedding dimension d. Such an object might be a model for a polymer, if –
and this is an important if – it were not for the fact that a polymer cannot intersect itself, i.e. the chain
cannot occupy more than once the same portion of space. A random walk which never uses the same site
is has already used is called a self-avoiding random walk. In a real polymer the excluded-volume property
is, of course, due to a repulsive potential φ(|r − r′|) between two monomer units at locations r and r′.
Flory has calculated the relation between the length N and the extension R of a self-avoiding random
chain by a thermodynamic argument.
We estimate the mean repulsive energy as follows:

E = ρ2
0

∫

V

d3r

∫

V

d3r′g(|r− r′|)φ(|r − r′|) (1.93)

Here V = R3, g(r) is the radial pair distribution function of the monomers and ρ0 = N/V = NR−3 is
their density. As g(r) is 0 for |r − r′| < d (where d ≈ a is the distance of nearest approach) and φ(r) is
supposed to drop quickly to 0 beyond d we can make the approximation

g(r)φ(r) ≈ ǫδ(r − d) , (1.94)

where ǫ has the dimension of an energy times a volume. We obtain

E = ρ2
0V ǫ = ǫN2/R3 (1.95)

We can now write down the free energy

F = E − TS
= ǫN2/R3 + kBT ln[Z(R,N)]

= ǫN2/R3 + kBT
R2

2a2N
− kBT ln[4πR2]− (3/2)kB ln[2πa2N ] (1.96)

We now seek the equilibrium value of R for a self-avoiding random walk of N steps, which, is obtained by
that value of R which minimizes F , i.e.

0 =
∂F (R,N)

∂R
= −3

ǫN2

R4
+
kBTR

a2N
− 2kBT

R
, (1.97)

from which follows
R2

Na2
= 3

N2ǫ

R3kBT
+ 2 (1.98)

In the limit of large N and R (and for temperatures equal or smaller than ǫN2/R3) the constant term 2
is negligible, and we obtain

N(R) =

[
kBT

3ǫa2

]1/3

R5/3 (1.99)

1.8 Cayley tree and gelation

We now no more consider polymers with monomer units that have bonds to Z = 2 nearest neighbors but
branched macromolecules with Z > 2. Of course the branching may occur in reality only every Nmth
monomer unit with Nm ≫ 1. This can be easily incorporated into the considerations by rescaling the
fundamental length scale.
One can take a d-dimensional lattice with coordination number Z, which is for a hypercubic lattice just
Z = 2d and consider the case that only a fraction of p nearest-neighbor bonds are completed. This just
defines a bond percolation model as discussed in section 4.6. if p is very small, only isolated clusters appear.
A system of network-forming polymer units, in which only a small fraction has formed clusters of finite
size is called a sol. Beyond a critical concentration pc the network extends through the entire system and
a gel is formed. The percolation transition in the gelation process is called sol-gel transition and is – as
the percolation transition – a second-order phase transition, although the control parameter is not the
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temperature but the bond concentration. However, if one considers a bond-breaking mechanism, which is
thermally activated

q = 1− p ∝ e−EA/kBT (1.100)

one has transformed the p controlled phase transition to an ordinary T controlled transition, in which the
sol phase is the high-temperature phase. In other important gelation processes (e.g. rubber vulcanisation
egg boiling, baking) the bond forming is thermally activated, which leads to gelation at high temperatures.

Left: Bethe lattice or Cayley tree with Z = 3 and n = 4. Right: Cayley tree as drawn by Antoine de Saint-Exupéry

The first mean-field-type ideas in discussing this transition have been formulated by Flory and Stockmayer
(1943), who considered a network without closed loops. Such a network is called a Bethe lattice (or Cayley
tree, see the Figure) with branching order (or functionality) Z: One starts with a point from which Z
branches start. These branches lead at every vertex to Z − 1 further outgoing branches. The number of
nodes N increases with the number n of generations as

∆N(n) = N(n)−N(n− 1) = Z(Z − 1)n−1 (1.101)

One can now consider the case in which the bonds are formed with probability p. In this case ∆N is given
by

∆N(p, n) = pZ[p(Z − 1)]n−1 (1.102)

If p < pc = 1/(Z− 1) the series N(n) can be summed, i.e. on the average one obtains only a finite Cayley
tree of size

〈N〉 = 1 +
pZ

1− p(Z − 1)
=

1 + p

1− p(Z − 1)
= pc

1 + p

pc − p
. (1.103)

For p → pc 〈N〉 diverges, which is then identified with the gelation threshold. As we did not make any
assumption for the angles between successive bonds they are to be taken randomly, so that the size of the
cluster will obey the random walk rule and is proportional to

√

〈N〉:

RZ ∝ ξ ∝ (pc − p)−ν (1.104)

with ν = 1/2, which is the Flory-Stockmayer mean-field correlation length exponent.

We are now going to discuss the regime inside the gel phase. Let Q be the probability for the termination
of a branch which emanates from a certain node. If the bond is absent (probability 1 − p) Q = 1. If te
bond is present (probability p) Q is equal to the probability for the termination of Z−1 further branches.
Therefore we have

Q = 1− p+ pQZ−1 , (1.105)

which is a closed equation for Q, albeit a nonlinear one. Obviously Q = 1 for p < pc. For p > pc Q must
be smaller than one. For p→ pc the deviation from 1 will be infinitesimally small:

Q = 1− ǫ (1.106)
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so that we can linearize (1.105):
1− ǫ = 1− p+ p[1− (Z − 1)ǫ] (1.107)

Equating the coefficients of ǫ yields again pc = 1/(Z − 1).

0 0,2 0,4 0,6 0,8 1
p

0

0,2

0,4

0,6

0,8

1
Q

Z = 9

Z = 3

0 0,2 0,4 0,6 0,8 1
p

0

0,2

0,4

0,6

0,8

1

P

Z = 3

Z = 9

Left: Probability Q for termination of a branch for Z = 3 to Z = 9. Right: Probability P for a node to be part of an

infinite cluster for Z = 3 to Z = 9.

The numerical solution of (1.105) for Q(p) is depicted in the left part of the figure. For Z = 3 the self
consistent equation (1.105) can be evaluated analytically, as it is in this case a quadratic equation. The
two solutions are

Q1(p) = 1 Q2(p) =
1− p
p

= 1− 2
p− pc
p

(1.108)

They coincide at p = pc = 1/2. As Q cannot be larger than one and must be smaller than one for p > pc
the physical solution is Q1(p) for p < pc and Q2(p) for p > pc
In the gel phase p > pc we can be interested in the probability P for a given node to be part of an infinite
cluster. This probability together with its critical exponent β has already been introduced in the section
on percolation. It is the order parameter of the percolation transition. In the Flory-Stockmayer Cayleytree
model this probability is, of course, zero for p < pc. For p > pc there is a finite probability that all three
branches terminate, which is just

1− P = QZ ⇒ P = 1−QZ . (1.109)

In the case Z = 3 we obtain from (1.108)

P = 6
p− pc
p

+O(|p− pc|2) , (1.110)

i.e. β = 1. As one can see from the right part of the figure, obviously β = 1 holds also for Z > 3. This
result can be obtained rigorously in the following way: From (1.105) we can obtain the inverse of the
function Q(p) ≡ 1− ǫ:

p(Q) =
1−Q

1−QZ−1
=

ǫ

1− (1− ǫ)Z−1
≈ 1

Z − 1

1

1− 1
2 (Z − 2)ǫ

≈ 1

Z − 1

(

1 +
1

2
(Z − 2)ǫ

)

(1.111)

From P = 1− (1− ǫ)Z ≈ Zǫ we obtain

P =
2Z

Z − 2

p− pc
pc

, (1.112)

which, interestingly enough, becomes independent of Z for large Z.
The critical exponent of the mean-field theory of the Flory-Stockmayer model are, of course, quite different
from those of the percolation model, wich includes closed loops. However, in the vulcanization transition
of rubber both the chain length Nm in between the cross-linking nodes as well as the functionality Zeff is
so high that the effect of closed loops in the network is negligible. So the Cayley-tree model gives quite
realistic results for this case. In other cases the percolation theory is more adequate.
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2 Green’s functions and the electronic structure of disordered

systems

2.1 Model Hamiltonians

2.1.1 Tight-Binding models

Tight-binding models of disordered systems start usually with an “ordered” Hamiltonian of a simple-cubic
lattice

H0 =
∑

i6=j
n.N.

t|i >< j| (2.1)

where t is the tight-binding matrix element, < r|i > are Wannier functions corresponding to the lattice
site at ri and “n.N” denotes “nearest Neighbor”. The eigenvalues (band structure) are

E(k) = −2t

[

cos(akx) + cos(aky) + cos(akz)

]

(2.2)

where a is the lattice constant. Near the lower band edge at E0 = −6t E(k) can be expanded around
k = 0 to give

E(k) = E0 + ta2

[

k2
x + k2

y + k2
z

]

≡ ~
2k2

2m∗
(2.3)

where the effective mass is given by m∗ = 1/2t~2a2. By this identification one can has a correspondence
with models starting from a free-electron Hamiltonian (see next paragraph).
The disorder can now inserted by adding a local potential Ei = v(ri):

H = H0 +
∑

i

Ei|i >< i|
︸ ︷︷ ︸

V

(2.4)

E

P(E )i

i

W

Anderson model

E

P(E )i

i

x

x

EE

A

A B

B

Alloy model

The Ei are random variables with a continuous distribution (density) P(E) of Width W , which can be a
rectangular or a Gaussian distribution:

P (E) =
1

W

{
−W2 ≤ E for ≤ W

2
0 else

P (E) =
1

W
√

2π
e−E

2/2W 2

(2.5)

This Hamiltonian has become very famous, as P. W. Anderson published 1958 his famous paper 1 stating
that electrons in a random potential can become “localized”, i.e. their diffusion coefficient, which is related
to their conductivity become zero if W exceeds a certain value (see chapter 4).
Another type of disorder is alloy disorder

P (E) = xAδ(E − EA) + xBδ(E − EB) (2.6)

with xA + xB = 1.
We assume that the fluctuating potentials are uncorrelated

< EiEj >= W 2δij or < v(ri)v(rj) >∝W 2δ(ri − rj) (2.7)

1P. W. Anderson, Absence of diffusion in certain random latticesPhys. Rev. 109, 1492 (1958)
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so that we have

P (E1, . . . , EN ) =

N∏

i=1

P (Ei) (2.8)

One can also make the non-diagonal term disordered, which mimicks a covalently bonded disordered solid:

H =
∑

i6=j
n.N.

t(|ri − rj |)|i >< j| (2.9)

The distribution for this type of disorder is just given by the probability density P (r1, . . . , rN ) introduced
in the last chapter.

2.1.2 Nearly-free-electron model

Starting point for this type of model Hamiltonians of disorder is the free-electron Hamiltonian

H=

∑

k

~
2k2

2m
|k >< k| (2.10)

where

< r|k >=
1√
V
eikr (2.11)

are free electron wave functions normalized in a box of volume V with periodic boundary conditions, so
that the k sum is performed as

∑

k = V
(2π)3

∫
d3k. The nearly-free electron model (for amorphous metals)

now adds a weak Pseudopotential at the atomic sites, from which the electrons are scattered:

H = H0 + V = H0 +
∑

k

∑

q

W (q)|k + q >< k| (2.12)

V is as in the tight-binding case a sum of potentials centered at the atomic sites.

V =
N∑

i=1

v(r− ri) (2.13)

The disorder enters via that of the sites as in the tight-binding model with off-diagonal disorder. W (q) is
the matrix element < k|V |k + q >, which is evaluated as

W (q) = < k|V |k + q >=

∫

d3r
1

V
e−ikr

N∑

i=1

v(r− ri)e
i(k+q)r

=
1

V

N∑

i=1

eiqriv(q) (2.14)

where v(q) is the Fourier transform of v(r).
In the theory of metals the concept of pseudopotentials have been developed, because they take care of
the fact that the outer valence electrons of the metals, the conduction electrons must avoid the bound
electrons of the ionic core, because of the Pauli principle. More mathematically, their wave functions have
to be orthogonal to the core functions. This “screens” the very deep nuclear potential, so that a most
simple pseudopotential has been invented by Ashcroft2 replaces just the Coulomb potential by zero inside
a suitable core radius Rc

v(r) =

{ − Ze
4πǫ0r

for r > Rc
0 else

(2.15)

A further modification of the disorder-induced scattering potential is introduced by the screening of
the conduction electrons. The most important effect of the repulsive Coulomb interaction between the
negatively charged electrons has been shown to be the mutual screening of their interaction, turning it to
a short-ranged interaction of the type

− Ze

4πǫ0r
→ − Ze

4πǫ0r
e−λ (2.16)

2N. W. Ashcroft, Phys. Lett. 23, 48 (1966)
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where λ is the Debye-H”uckel-Thomas-Fermi screening length given by

λ2 =
e2

ǫ0

∂n

∂µ
(2.17)

where n is the number of charge carriers per volume and µ is the chemical potential. For classical charged
particles in a plasma ∂n/∂µ = n/kBT , for a degenerate electron gas ∂n/∂µ = N(EF ) = ng(EF ), which
is the density of states at the Fermi level EF = µ. Our model expression for w(q) now becomes

w(q) = − 1

ǫ0

Ze2

q2 + λ2
. (2.18)

2.2 Green’s functions

2.2.1 Definition

In the field of disordered materials the Green’s function concept is indispensabe.
We start with the one-electron Schrödinger equation

Hψ(r, t) = i~
∂

∂t
ψ(r, t) (2.19)

As one wants to make use extendedly of models with Hamiltonians H = H0 + V , where V describes the
disorder, one wants to treat the part Vψ like an unknown source term, i.e. one treats the Schrödinger
equation like an inhomogeneous differential equation. Special solutions of inhomogeneous differential
equations are given in terms of the Green’s function, which obeys the inhomogeneous equation with a δ
function inhomogeneity:

(

i~
∂

∂t
−H0 ∓ iǫ

)

G
(0)
± (r, r′, t, t′) = δ(r − r′)δ(t− t′) (2.20)

The term ∓iǫ has been inserted, because in its absence the term inside the bracket would be singular.
One can also define the full Greens’ function as

(

i~
∂

∂t
−H ∓ iǫ

)

G±(r, r′, t, t′) = δ(r− r′)δ(t− t′) (2.21)

G+ is called advanced Green’s function, G− retarded Green’s function,
We now assume that H is stationary, so that we obtain the Eigenvalue problem

H|ψn >= En|ψn (2.22)

and we have
ψ(r, t) = e−

i
~
Ent ψn(r)

︸ ︷︷ ︸

<r|ψn>

(2.23)

One can show (Exercises!) that (2.21) is solved by

G±(r, r′, t, t′) = ± i
~

∑

n

ψn(r)ψ
∗
n(r′)e−(i/~)[En±iǫ](t−t′)θ

(
∓ (t− t′)

)
(2.24)

As the Green’s function depends only on the time difference τ = t− t′ we can perform a Fourier transform
with respect to τ :

G±(r, r′, ω) =

∞∫

−∞

dτ eiωτ G±(r, r′, τ) =
∑

n

ψn(r)ψ
∗
n(r′)

~ω ∓ iǫ
︸ ︷︷ ︸

z±

−En
(2.25)

We define now the resolvent operator (or “Green operator”) as

G(z) =
[
z1−H]−1 ≡ 1

z −H (2.26)
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from which we obtain

G±(r, r′, ω) =< r| 1

z± −H
|r′ >=< r|G(z±)|r′ > (2.27)

One can, of course also consider matrix elements of G(z) in an arbitrary basis |α >

Gαβ(z) =< α|G(z)|β > . (2.28)

In particular we shall make use of the plane wave basis normalized with the sample volume V and periodic
boundary conditions

< r|k >=
1√
V
eikr ; < k|r >=

1√
V
e−ikr . (2.29)

Relation to the density of states Let us consider the difference of the trace of the resolvent taken with z
just above and below the real axis:

Tr
{
G(z+)− G(z−)

}
=

∑

n







1

~ω
︸︷︷︸

E

−iǫ− En
− 1

~ω
︸︷︷︸

E

+iǫ− En







= 2i Im

{

Tr
{
G(z+)

}
}

= −2i Im

{

Tr
{
G(z−)

}
}

=
∑

n

2iǫ

(E − En)2 + ǫ2
ǫ→0−→ 2πi

∑

n

δ(E − En) (2.30)

In the limit ǫ→ 0 we obtain

g(E) =
1

n
N(E) =

1

πN
Im

{

Tr
{
G(z+)

}
}

= − 1

πN
Im

{

Tr
{
G(z−)

}
}

(2.31)

2.3 Approximation methods

2.3.1 Perturbation expansion and self-consistent Born approximation (SCBA)

We now consider a Hamiltonian of the form

H = H0 + V (2.32)

From the operator identity 1
A+B = 1

A (1− B
A+B ) we obtain

G(z) =
1

z −H0

(

1 + V 1

z −H

)

= G0(z)

(

1 + VG(z)
)

, (2.33)

which one can iterate to obtain

G = G0 + G0VG0 + G0VG0G0VG0 + . . .

= G0 + G0
V

1− VG0
G0

≡ G0 + G0T G0 , (2.34)

where we have defined the scattering matrix or T-matrix T .

We now consider a disordered metal composed of atoms centered at rn in an irregular way, so that the {rn}
do not form a lattice. The structural information is contained in the probability distribution P (r1, . . . rNa),
(where Na is the number of atoms) and in particular the radial pair distribution function g(|ri − rj |) and
its Fourier transform S(q) = 1 + ρ

∫
d3reiqr[g(r) − 1] (see paragraph 2.1.1). The electron-atom potential

is assumed to have the form

V(r) =

Na∑

n=1

v(|r− rn|) (2.35)
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from which follows

< k + q|V |k >=
1

V

Na∑

n=1

eiqrnv(q) (2.36)

where v(q) = v(q) is the Fourier transform of v(r) = v(r). The electronic Hamiltonian is then composed
as

H = H0 + V (2.37)

where H0 is assumed to be a free-electron Hamiltonian

H0|k >= E
(0)
k |k >=

(~
2k2

2m
+ C)|k > (2.38)

where C is an arbitrary constant.
We further denote an average over the distribution P{rn} by 〈. . . 〉.
Before we proceed further we interest ourselves in the average 〈V〉 of the potential. This is just a number
and we shift our energy scale (i.e. the parameter C such that this number is set to zero:

〈V〉 = 0 (2.39)

In order to be able to calculate the density of states of the disordered metal we become interested in the
configuationally averaged resolvent

G(z) = 〈G(z)〉 =

〈
1

z −H0 − V
〉

≡ 1

z −H0 − Σ(z)
(2.40)

Here we have introduced an unknown operator Σ(z) which looks like an effective potential of a ficticions
system which is not disordered but, instead, depends on a complex parameter z. This (yet unknown)
operator is called self-energy operator. We now insert the perturbation expansion (2.34) into (2.40) and
solve for Σ(z):

Σ(z) = z −H0 −
1

〈G(z)〉

=
1

G0
− 1

G0 + G0 〈V〉
︸︷︷︸

0

G0 + G0〈VG0G0V〉G0 + . . .

=
1

G0

(

1− 1

1 + 〈VG0V〉G0 + · · ·

)

(2.41)

To second order in V we get

Σ(z) =
1

G0(z)

〈

VG0(z)V
〉

G0(z) . (2.42)

We now use the |k > basis. The density of states is given by

N(E) =
1

πV

∑

k

< k|G(z+)|k >
︸ ︷︷ ︸

G(k,z)

(2.43)

G(k, z) is at the same time the Fourier transform of the averaged Green’s function

〈G(r, r′, z)〉 = G(r − r′, z) (2.44)

with respect to the variable r− r′. The relation (2.44) holds because the averaged material is assumed to
be homegeneous. This is tantamount to stating that both G(z) as well as Σ(z) are diagonal in the |k >
representation.
We now can write down the diagonal element of the self-energy operator, which is called the self-energy
function to second order in V :

Σ(k, z) = < k|Σ(z)|k >=
∑

q

1

G0(k, z)

〈

< k|V |k|+ q > G0(|k + q|, z) < k + q|V |k >
〉

G0(k, z)

=
N

V 2

∑

q

1

N

〈
∑

ℓm

eiq(rℓ−rm)

〉

︸ ︷︷ ︸

S(q)

∣
∣v(q)

∣
∣
2
G0(|k + q|, z) = Σ′(k,E) + iΣ′′(k,E) (2.45)
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This approximation is known as the Born approximation for disorder in the literature.
Let us discuss our result:
The real part of Σ(k, z) produces a shift (“renormalization”) of the “band structure”:

Ek ≡ E(0)
k + Σ′(k,E) (2.46)

The density of states now takes the form

N(E) =
1

πV

∑

k

Σ′′(k,E)

[Ek]2 + [Σ′′(k,E)]2
(2.47)

The imaginary part of Σ(k, z) introduces a new element into the density of states of our amorphous metal:
The function Ek is no more sharply defined but is “washed out” by the disorder-induced imaginary part of
Σ(k,E). This is so, because neither a lattice k vector nor the free-electron k vector can serve as a “good
quantum number” for labeling the electronic states. However, tha latter serves as “aproximate quantum
number” but one has to deal with the fact that in this “approximate” basis the Ek resonances are washed
out by disorder.

2.3.2 Single-site t matrices

We study now a Hamiltonian with “impurity disorder”, i.e. the disorder enters via a fluctuating energy,
which is diagonal at a certain site i

V =
∑

i

Ei|i >< i| ≡
∑

i

vi (2.48)

We now consider again the expansion of the resolvent (2.34) and insert (??)

G(z) = G0 + G0VG0 · · · = G0

∑

i

viG0

= G0 +
∑

i

(

G0viG0 + G0viG0 + . . .

+
∑

j 6=i

G0viG0vjG0 + · · ·+
∑

k 6=j,i

. . .

)

= G0 +
∑

i

G0tiG0 +
∑

i

∑

j 6=i

G0tiG0tjG0

+
∑

i

∑

j 6=i

∑

k 6=j,i

G0tiG0tjG0tkG0 . . . (2.49)

Here we have introduced the so-called single-site t matrix

ti = vi

∞∑

ν=0

(viG0)
ν =

vi
1− viG0

. (2.50)

Because the matrix element of vi are taken with respect to the same sites i ti is diagonal, i.e t is a complex
number

ti = vi

∞∑

ν=0

(viG0)
ν =

vi
1− viGii0

. (2.51)

where Gii0 is the matrix element of G0 with respect to i.

2.3.3 Lattice disorder: The coherent-potential approximation (CPA)

We study now a tight-binding Hamiltonian, which can be formally written as

Htb =

Na∑

i=1

|i > Ei < i|+
∑

i6=j

|i > tij < j| (2.52)
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where Ei are the diagonal elements and tij the off-diagonal elements. < r|i >= a(r − ri) ≈ ψat(r − ri)
are orbitals associated with the site i. We now consider a simple cubic lattice and assume that the local
energies (“local potentials”) fluctuate from site to site, say with a Gaussian distribution

P (Ei) =
1√
2πσ

e
1

2σ2 (Ei−E0)
2

(2.53)

or, alternatively, with a binary-alloy distribution

P (Ei) = cAδ(Ei − EA) + cBδ(Ei − EB) (2.54)

with cA + cB = 1. The off-diagonal elements are assumed to be constant and the reference energy E0 is
assumed to be zero (in the alloy case E0 = cAEA + cBEB = 0).The Hamiltonian now takes the form

Hdis =
∑

i

|i > Ei < i|+ t
∑

i6=j

|i >< j| (2.55)

We now define an effective medium, in which the Green’s function is equal to the averaged Greens function
and the on-site energies are set equal to a complex number Σ(z), so that we obtain an effective frequency-
dependent Hamiltonian of the effective medium

Heff(z) =
∑

i

|i > Σ(z) < i|+ t
∑

i6=j

|i >< j| (2.56)

We now “dig a hole” into the effective medium near a specific site i0, where we replaxe the uniform self
energy by the fluctuating energy Ei. This introduces a “Perturbation” into the effective medium at site
i0

Hhole = Heff(z) + |i0 >
(

Ei0 − Σ(z)

)

< i0|
︸ ︷︷ ︸

Vi0

(2.57)

We now want to have (CPA postulate)

Geff(z) =
1

z −Heff(z)

=

〈
1

z −Hhole(z)

〉

= Geff +

〈

Geff +

(

V i0Geff + Vi0GeffV i0Geff + . . .

)〉

= Geff + Geff

〈 Vi01− Vi0Geff
︸ ︷︷ ︸

T-matrix

〉

Geff (2.58)

Since the T-matrix series contains only diagonal < i0| . . . |i0 > matrix elements the T-matrix becomes
diagonal < i0|T |i0 >≡ ti0 so that the CPA postulate becomes

< ti0 > =

〈 Vi0
1− Vi0 < i0|Geff(z)|i0 >

︸ ︷︷ ︸

G0(z)

〉

=

〈
Ei − Σ(z)

1−
[
Ei − Σ(z)

]
Go(z)

〉

= 0 (2.59)

We can re-write this equation as follows
〈

Σ(z)

1−
[
Ei − Σ(z)

]
G0(z)

〉

=

〈
Ei

1−
[
Ei − Σ(z)

]
G0(z)

〉

= Σ(z)








1 +

〈 [
Ei − Σ(z)

]
G0(z)

1−
[
Ei − Σ(z)

]
G0(z)

〉

︸ ︷︷ ︸

=0








= Σ(z) (2.60)

25



We now consider the case of small fluctuations of Ei, so that we can expand the denominator with respect
to
[
Ei − Σ(z)

]
. Taking into account 〈Ei〉 = 0 we obtain to lowest nonvanishing order

Σ(z) = 〈(Ei)2〉G0(z) (2.61)

which is just the SCBA result.
We still have the task to evaluate the effective-medium Green’s function. We have

G0(z) =< i0|
1

z −Heff(z)
|i0 > (2.62)

Taking the diagonal element with respect to a lattice site is equivalent to a sum over the first Brillouin
zone:

G0(z) =
∑

k∈BZ

1

z − Σ(z)− Ek

= Glattice(z − Σ(z)) (2.63)

where Ek is the simple-cubic tight-binding band structure

Ek = −2t
[
cos(akx) + cos(aky) + cos(akz)

]
(2.64)

and Glattice is the diagonal lattice tight-binding Green’s function.

2.3.4 Muffin-Tin potentials and KKR method

In order to study random alloys of crystalline metals a very interesting - and, in fact powerful - model has
been established, namely the “Muffin-tin” model. The tin is the form in which the muffin is baked and
restricts the muffin to a certain volume. The muffin-tin potential is restricted to be finite only inside a
sphere, outside it is zero:

V =
∑

n

v(|r − rn|) ≡
∑

n

vn vMT(r) =

{
v(r) r < RMT

0 else
, (2.65)

where RMT is the so-called muffin-tin radius. We now consider a “metallic” Hamiltonian of the form

H = H0 + V = k2 +
∑

n

vn (2.66)

where we have set m = 1/2 for simplicity. We now return to the expansion (??), in which we used the
fact that vi is “diagonal” with respect to the “site” n. We now identify the site n with the center of
the muffin-tin potential and represent the t matrix of the potential vi by a partial-wave description and
restrict ourselves to the “energy shell” represented by k =

√
E

< k|tn|k >=
∑

lm

< k|ℓm > tℓn(k) < ℓmk > (2.67)

Here < k|ℓm >= 2πYℓm(k̂), where Yℓm are the spherical harmonics with respect to k space. The partial
wave amplitudes are given by

tℓn(k) = −1

k
eiδℓ(k) sin δℓ(k) (2.68)

We further assume that the muffin-tin spheres Ki are non-overlapping i.e.

⋂

i

Ki = ∅ (2.69)

So outside the union
⋃

iKi the Hamiltonian is H0, so we consider plane waves from scattering centers at
sites i. This method is due to J. Korringa3 and W. Kohn, N. Rostoker4, and therefore called KKR-method.
Due to the condition (2.69) we can represent the total t matrix as

T = G0
V1 + VG0

=
∑

n

tn +
∑

n

tnG0T
{n} , (2.70)

3J. Korringa, Physica 13, 392 (1947)
4W. Kohn, N. Rostoker, Phys. Rev. 94, 1111 (1954)
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where T {n} is the t matrix, where n is missing. T can now be written as a double sum

T =
∑

n1n2

Tn1n2
(2.71)

Tn1n2
= tn1

δn1n2
+ tn1

G0tn2
+

∑

n3
6=n1 6=n2

tn1
G0tn3

G0tn2
+ . . . (2.72)

= tn1
δn1n2

+
∑

n3
6=n1 6=n2

tn1
G0Tn3n2

(2.73)

Expanding with respect to the angular-momentum basis |L >≡ |ℓm > we obtain5

TLL
′

nn′ (κ) = tℓn(k)

(

δnn′δLL′ +
∑

n1L1

BLL1

nn1
(κ)TLL1

nn1
(κ)

)

(2.74)

where κ =
√
z. The matrix elements of the free propagator are given by

BLL1

nn1
(κ) =

(

1− δnn1

)
4πκ

i

∑

L3

iℓ−ℓ1−ℓ2CLL1L2
YL2

(rn − r1)hℓ1(κ|rn − r1) (2.75)

with
hℓ(z±) = jℓ(z±)± nℓ(z±) (2.76)

where jℓ(z), hℓ(z), and nℓ(z) are the spherical Bessel, Hankel, and Neumann functions, resp. . CLL1L2

are the so-called Gaunt coefficients

CL1L2L3

∫

dΩYL1
(Ω)YL2

(Ω)YL3
(Ω) (2.77)

The density of states is now given as the sum of the free density of states and the imaginary part of the t
matrix, which can in principle be calculated, if the scattering phases δℓ and the positions rn are known.
We can now make the following correspondence:

Tight-binding KKR

En ←→ tℓn

tnn′ ←→ BLL1

nn′

(2.78)

In the case of a random crystalline alloy the rn are fixed on the lattice and we have scattering phases
corresponding to A and B. In most cases it is sufficient to restict ℓ to 0, 1 and 2, so that for an alloy
one has three phases, which represent each alloy partner. One can then cast the CPA equation via the
correspondence (2.78) into an equation in which the fluctuating tℓ enter. The solution of this equation
for evaluating the electronic structure of alloys has nowadays become an industry like band structure
calculations for ordered crystals.
However, using random arrangements rn of atoms the KKR method has not yet been applied. Here is
something to do for you, the readers!

3 Vibrational excitations in disordered systems

3.1 Why is the sky so blue?

(Rayleigh scattering)

5H. Ehrenreich, L. M. Schwartz, Solid State Physics, Vol. 31, H. Ehrenreich, Ed. Springer-Verlag 1975
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We start with Maxwell’s equations in a medium, which allows for spatial fluctuations of the dielectric
constant (e.g. air in the sky):

∇ ·B = 0 ∇ · E = 0

∇×B(r, t) =
ǫ(r)

c2
∂

∂t
E(r, t) (3.1)

∇×E(r, t) = − ∂

∂t
B(r, t)

from which we obtain the wave equation

∂2

∂t2
B(r, t) = −∇×

D(r)
︷︸︸︷

c2

ǫ(r)
∇×B(r, t) (3.2)

= ∇ ·D(r) · ∇B(r, t)

From now on we study for simplicity the scalar wave equation

ψ̈(r, t) = ∇D(r)∇ψ(r, t) − ω2ψ(r, t) = ∇D(r)∇ψ(r, t) (3.3)

We can take the average D0 of D(r) outside and define

D(r) = D0 + δD(r) (3.4)

The Green’s function of (3.3) obeys the equation of motion

(s−D0∇2)G(r, r′, s)−∇δD(r)∇G(r, r′, s) = δ(r− r′) (3.5)

Fourier-transformed we obtain

sG(kk′, s)− δ(k + k′) +D0k
2G(kk′s) = − 1

(2π)3

∫

d3k1 k·k1δD(k− k1)G(k1k
′, s) (3.6)

We now define

G0(kk′s) =
1

s+Dk2
δ(k + k′) ≡ G0(k, s)δ(k + k′) (3.7)

to be the Green’s function without fluctuations so that we have

G(kk′s)

G0(k, s)
= 1− 1

(2π)3

∫

d3k1 k·k1δD(k− k1)G(k1k
′, s) (3.8)

We represent the averaged Green’s function, which contains fluctuations, by means of a self-energy function
Σ(k, s) as follows

G(k, s) ≡
〈
G(s,kk′)

〉
δ(k + k′) =

1

s+D0k2 − Σ(k, s)
=

1
1

G0(k,s) − Σ(k, s)
(3.9)

From this we obtain

Σ(k, s) =
1

G0(k, s)
− 1

〈G(kk′, s)〉 =
1

G0(k, s)

(

1− G0(k, s)

〈G(kk′, s)〉

)

(3.10)

Inserting (3.8) and expanding the denominator with respect to the fluctuations δD we get

Σ(k, s) =
1

G0(k, s)

〈
1

(2π)3

∫

d3k1 k·k1δD(k− k1)G(k1k
′s)

〉

(3.11)

Inserting (3.8) again, recognizing that the average over a fluctuation is 0 and restricting ourselves to lowest
(second) order in the fluctuations we obtain

Σ(k, s) =

〈
1

(2π)3

∫

d3k1 k·k1δD(k− k1)G0(k1)

× 1

(2π)3

∫

d3k2 k1 ·k2δD(k1 − k2)G0(k2)

〉

(3.12)
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The correlation function of the fluctuations is

K(r1, r2) = 〈δD(r1)δD(r2)〉 = K(r1 − r2) (3.13)

Its Fourier transform obeys

K(k1,k2) = 〈δD(k1)δD(k2)〉 = K(k1)(2π)3δ(k1 + k2) (3.14)

from which we obtain the identification

k− k1 = k2 − k1 ⇒ k2 = k (3.15)

So we finally obtain

Σ(k, s) =
1

(2π)3

∫

d3k1K(k− k1)(k·k1)
2G0(k1, s) (3.16)

We now assume short-range correlations

K(r1, r2) = ∆2δ(r1 − r2) ⇔ K(k) = ∆2 (3.17)

and define a frequency dependent speed of light by

c2(ω) = c20 − Σ(s) (3.18)

with

Σ(ω) =
1

k2
Σ(k, s)

∣
∣
∣
∣
k=0

=
∆2

6π2

∫ ∞

0

dk1
k4
1

s+D0k2
1

︸ ︷︷ ︸

∝s3/2

(3.19)

We further define a frequency dependent wave number by

κ(ω) =
ω

c(ω)
=

ω
√

c20 − Σ′(0)
︸ ︷︷ ︸

−iΣ′′(ω)

c2

=
ω

c

1

1− iΣ′′(ω)/c2
≈ ω

c

(

1 + i
1

2

Σ′′(ω)

c2

)

≡ k̄ + i
1

2ℓ(ω)
(3.20)

Here c is the speed of light in the medium. Now the averaged Green’s function can be written as

G(k, ω) =
1

c(ω)2
1

κ(ω)2 − k2
≈ 1

c2
1

κ(ω)2 − k2
(3.21)

which has a Fourier transform

G(r, ω) =
1

4πc2r
eiκ(ω)r =

1

4πc2r
eik̄re−r/2ℓ(ω) (3.22)

For the scattered intensity we obtain
∣
∣
∣
∣
G(r, ω)

∣
∣
∣
∣

2

∝ e−r/ℓ(ω) (3.23)

with a mean-free path
1

ℓ(ω)
∝ ωΣ′′(ω) ∝ ω[ω2]3/2 = ω4 , (3.24)

From this we conclude (as Lord Rayleigh) that the blue light rays are much stronger scattered than the
red ones.
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3.2 Elements of random matrix theory

3.2.1 Integrability in classical mechanics and level statistics in quantum mechanics

Suppose we have a classical-mechanics system with f degrees of freedom. If the number s of invariants,
i.e. physical observables Ai with

d

dt
Ai = 0 i = 1 . . . s (3.25)

is equal to f , and, in addition, these quantities are in involution, i.e.

{Ai, Aj} = 0 i, j = 1 . . . s , (3.26)

where {. . . , . . . } is a Poisson bracket, the system is called integrable. In this case the f invariants (energy
is always one of them) can be chosen as generalized momenta, and - as demonstrated in the theory of
Hamilton and Jacobi - the motion in phase space is on an f -torus, where the f radii are given by the
constant values of the invariants. So the motion of the system is known, once the initial conditions
are given. In particular, if the initial conditions are only known approximately, the motion can still be
predicted - just with the precision of the initial conditions.
On the other hand, if the number of invariants (in involution) s is smaller than f , the system is called
non-integrable. Such a system can exhibit sensitive dependence on initial conditions. This case is called
chaos in physics slang. It means that the distance of two trajectories q1(t) and q2(t) which were separated
from each other at t = 0 by a very small amount ǫ will grow exponentially according to

|q1(t)− q2(t)| ∝ eλt , (3.27)

where λ is the Lyapunov exponent. This sensitive dependence on initial conditions, which applies in
particular to nonlinear dynamic systems like the atmosphere or water currents, inhibits any prediction of
the dynamics for a longer time than tλ = 1/λ. For the earth-near atmosphere tλ is of the order of a few
days.
We turn now to quantum-mechanical systems corresponding to the cases considered above. In the in-
tegrable case (involution means now commutability) all eigenvalues are f-fold degenerate. On the other
hand, if the only invariant is the energy, no eigenvalue is degenerate. In this case the energy levels are
said to “repel” each other (level repulsion). This is the case for an atomic nucleus. For the description
of nuclear spectra Wigner, Dyson and Mehta developed a model of random matrices and found that the
nuclear spectra could be described in terms of Hamilton matrices with elements taken from a (Gaussian)
statistical distribution. Here we give a pedagogical discussion of the energy level statistics of a random
Hamiltonian.

3.3 Isotropic solids: Debye model

In 1912 Debye realized that something was inconsistent with the Einstein model. It was well known that
low-energetic excitations of a solid material were not oscillations of a single atom, but collective vibrations,
which are sound waves. Such waves were well known from elasticity theory. The main object of elasticity
theory is the generalized Hooke law between the stress tensor σij and the strain tensor ǫkℓ

σij =
∑

kℓ

Cijkℓǫkℓ i, j, k, ℓ = 1, 2, 3 (3.28)

The stress tensor is defined in terms of a force in i direction acting on a surface element dAj with normal
vector in j direction

dFi =
∑

j

σijdAj (3.29)

The strains are defined in terms of infinitesimal displacements ui(r) at r in i direction

ǫij =
1

2

(
ui|j + uj|i

)
ui|j =

∂ui
∂xj

(3.30)

In an isotropic system the Hooke tensor Cijkℓ has only 2 independent entries and we have

Cijkℓ = λ δijδkℓ + µ

(

δikδjℓ + δiℓδjk

)

(3.31)
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The general Lagrangian density is (ρ = N/V )

L(r, t) =
1

2
ρ u̇·u̇− 1

2

∑

ijkℓ

ui|jCijkℓuk|ℓ

=
1

2
ρ u̇·u̇− λ

2

(
∑

i

ǫii

)2

− µ
∑

ij

ǫ2ij (3.33)

(3.33)

where the second equality holds for the isotropic system.
λ and µ are Lamé’s elastic constants. µ is identical with the shear modulus, in other textbooks also called
G. The bulk modulus, which is the inverse of the compressibility is given by

K = λ+
2

3
µ =

E

2
(
1− 2ν

) (3.34)

where E is Young’s modulus and ν the Poisson number.

The equations of motion are

3∑

i=0

∂

∂xi

∂L
∂uk|i

− ∂L
∂uk

= 0 x0 = t k = 1, 2, 3 (3.35)

They can be refomulated as

ρüi =
3∑

ℓ=1

Aiℓuℓ (3.37)

Aiℓ = λ∂i∂ℓ + µ

(

∂ℓ∂i +∇2δiℓ

)

(3.38)
(3.38)

With the Ansatz
u(r, t) = uei[kr−ωt] (3.39)

we obtain the matrix eigenproblem

ω2ui =
∑

ℓ

Diℓuℓ (3.41)

Diℓ =
1

ρ

[
(
λ+ µ

)
kikℓ + µk2δiℓ

]

(3.42)

(3.42)

D is called the dynamical matrix We easily obtain the eigenvalues of this matrix by rotating into a system
in which the z axis coincides with the direction of the vector k. In this system k = (k, 0, 0), and we have

D =
1

ρ





µk2 0 0
0 µk2 0
0 0 (λ+ 2µ)k2



 (3.43)

We see that we have three independent sound waves, two transverse ones (u ⊥ k) with sound velocity
cT =

√

µ/ρ and one longitudinal one (u||k) with sound velocity cL =
√

(λ+ 2µ)/ρ.
We return now to the ideas of Debye. Her realized that the number of vibrational modes (of a particular
polarization direction) cannot exceed the number of atoms. So he imposed a wavenumber cutoff kD (k-
Debye) by demanding N =

∑

k, where the sum is carried out with the help of the Born-von-Karman
boundary conditions (just as in the calculation of the Fermi wavenumber):

N =
∑

k
|k|<kD

=
V

(2π)3

∫

|k|<kD

d3k =
V

2π2

∫ kD

0

dk k2 =
V

6π2
k3
D (3.44)
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⇒ kD = 3
√

6π2N/V (3.45)
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ω

k

kD

transverse

longitudinal

Dispersion of the Debye model

The Debye model now states that the solid, com-
posed of N atoms allows for two transverse sound
modes and one longitudinal one with wavenumbers
k ≤ kD.
The total energy of the Debye solid is

E =
2∑

λ=1

∑

k

~ωkλ
ex − 1

ωkλ = cλk

=
∑

λ

cλ
V

2π2

kD∫

0

dk
k3

ex − 1
x = ~cλk/kBT ≡ ΘD/T

=
∑

λ

(kBT )4

(~cλ)3
V

2π2

ΘD/T∫

0

dx
x3

ex − 1
(3.47)

(3.47)
ΘD is called the Debye temperature.

For T → 0 the integral over x becomes a constant I = 6.43. In this limit, therefore we can write

E

N
=

V

N

I

2π2

1

~3

(
1

c3L
+

2

c3T

)
(
kBT

)4

=
3I

(~kD)3

(
1

c3L
+

2

c3T

)
(
kBT

)4
(3.49)

(3.49)

⇒ CN =
3IkB

(~kD)3

(
1

c3L
+

2

c3T

)
(
kBT

)3
(3.50)

This is the famous T 3 law of Debye. As a matter of fact this is not an approximation but it holds rigorously
for any insulating crystalline material.

3.4 Harmonic approximation and interatomic potentials

Until now the fact that the crystalline (or non-crystalline) material is composed of atoms or molecules
entered only via the Debye cutoff wavenumber kD. We are now going to formulate a microscopic theory
of atomic vibrations in a solid.
Considering displacements of atoms from their equilibrium positions in a lattice leads to the question:

• What does the lattice hold together in the first place?

This question ist intimately related to the nature of the chemical bond.
We know from elementary chemistry that there are four fundamentally different kinds of bonds (forces)
which hold the atoms together

– Van-der-Waals bonds (rare gases and polymers)

– Ionic bonds (ionic crystals and glasses)

– Covalent bonds (insulating homopolar materials)

– Metallic bonds (metals)
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In almost all of these different cases one can formulate the concept of an effective interatomic potential
φ(rij), rij = |ri − rj |, such that the total energy of cohesion of the solid can be written

E = E0 +
1

2

N∑

i,j=1

i6=j

φ(rij) (3.51)

Such potentials can have very different form.
Let us now assume that all atoms have their equilibrium positions on a lattice site Ri and we perform a
Taylor expansion of the lattice energy

E = E0 +
1

2

N∑

i,j=1

i6=j

φ(Rij) +
1

4

∑

ij

[
(
ui − uj

)
· ∇
]2

φ(rij)

∣
∣
∣
∣
rij=Rij

(3.52)

with Rij = |Ri − Rj| and ui = ri − Ri. The latter are the displacement vectors. The linear term in
the expansion does not exist, because we assume that the Ri are equilibrium positions of the atoms. The
quadratic term is called the harmonic part of the lattice energy and has the form

Eharm =
1

4

∑

ij
µν

(
uiµ − ujµ

)
φijµν
(
uiν − ujν

)
(3.54)

φijµν =
∂

∂xµ

∂

∂xν
φ(rij)

∣
∣
∣
∣
rij=Rij

(3.54)

The φijµν are called harmonic force constants. We can re-write Eharm as

Eharm =
1

2

∑

ij
µν

uiµD
ij
µνujν (3.56)

with Dii
µν =

∑

ℓ

φiℓµν

Dij
µν = −φijµν i 6= j .

(3.56)

We can now write down the equation of motion for the displacements

Müiµ = −
∑

j

Dij
µνujν (3.57)

which is the microscopic version of Hooke’s law. Dij
µν is the dynamical matrix.

3.5 Phonon dispersions in crystals

The task is, of course, to diagonalize Dij
µν . The eigenvectors are called normal modes of the lattice. The

eigenvalues in reciprocal space are the squares of the characteristic frequencies ωα(k), which are called
phonon dispersions.

3.5.1 Normal modes of a monatomic three-dimensional lattice

We recall the expression for the harmonic part of the cohesion energy

Eharm =
1

2

∑

ij
µν

uiµD
ij
µνujν (3.58)

which corresponds to the set of equations of motion

müiµ(t) = −
∑

jν

Dij
µνujν (3.59)
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The dynamical matrix has the symmerties

Dij
µν = Dji

νµ (3.61)

Dij
µν = Dji

µν (3.62)
∑

i

Dij
µν =

∑

j

Dij
µν = 0 (3.63)

(3.63)

We seek solutions of the form
uiµ(t) = uµe

i(k·Ri−ωt) (3.64)

Due to the periodic boundary condition the reciprocal space is discretized again in such a way that we
can write

k =
n1

N1
b1 +

n2

N2
b2 +

n3

N3
b3 (3.65)

where the bi are the reciprocal basis, Li = aNi are the edges of the sample volume and ni, Ni are integers.
We obrain the characteristic equations

mω2uµ =
∑

ν

Dµν(k)uνDµν (3.66)

Dµν(k) =
∑

ℓ
lattice

eikRℓDµν(Ri −Rj)

∣
∣
∣
∣
Rℓ=Ri−Rj

(3.67)

Taking advantage of the symmetries (3.60) of the dynamical matrix we re-write (3.67) as follows

Dµν(k) =
1

2

∑

ℓ

eikRℓ

[

Dµν(Rℓ) +Dµν(−Rell)

]

−
∑

ℓ

Dµν(Rℓ)

︸ ︷︷ ︸

=0

(3.69)

=
1

2

∑

ℓ

Dµν(Rℓ)
[
coskRℓ − 1

]
=
∑

ℓ

Dµν(Rℓ) sin2
(1

2
kRℓ

)
(3.70)

(3.70)

The matrix
↔

D (k) has 3 eigenvalues γ1, γ2, γ3 and 3 eigenvectors, which can be orthogonalized us·us′ = δss′ ,
so that we have

ωs(k) =

√

1

m
γs(k) with

↔

D (k)us = γsus (3.71)

Phonon dispersions of Al and Cu. The points are experimental data obtained by inelastic neutron scattering.

The lines are obtained by electronic structure calculations of the adiabatically deformed crystal.

The phonon dispersions ωs(k) can be directly measured by inelastic neutron scattering, where the trans-
ferred energy is just ∆E = ~ω(k) and the transferred momentum is ∆p = ~k. In materials, where it is
possible to apply the density-functional theory the force constants entering into the dynamical matrix can
be calculated by applying the adiabatical principle: the crystal inside the computer is deformed according
to the vibrational mode considered. Then the corresponding change in the total energy is calculated,
which yields the force constants (“frozen phonon” method).

34



3.5.2 Vibrational density of states

The normalized density of vibrational frequencies (density of states, DOS) is given by

g(ω) =
1

3N

∑

s

∑

k

δ
(
ω − ωs(k)

)
=

1

3N

∑

s

1

(2π)2

∫

d3k δ
(
ω − ωs(k)

)
(3.72)

For the Debye model

ωs(k) =

{
csk k ≤ kD
0 k > kD

(3.73)

This gives

g(ω) =
V

6π2N

∑

s

kD∫

0

dk δ
(
ω − kcs

)
(3.75)

=
∑

s

V

6π2Nc3s
ω2 (3.76)

= 3
ω2

ω3
D

(3.77)

(3.77)

where we have introduced the Debye frequency

ωD = kD

[
1

c3L
+

2

c3L

]−1/3

≡ kDcD (3.78)

Instead the dynamical matrix
↔

D we can also introduce a modified dynamical matrix

Kij
µν =

1

mi
Dij
µν (3.79)

which allows for different masses, and define the eigenvalues of
↔

K as

λu =
↔

K u (3.80)

Then we have ωs(k) = λs(k). The density of eigenvalues is then

g̃(λ) =
1

3N

∑

s

∑

k

δ
(
λ− λs(k)

)
(3.81)

and we have

g(ω) =
dλ

dω
g̃(λ) = 2ωg̃(λ) (3.82)

Use of the density of states Let us consider the vibrational energy per atom

EN =
1

N

3∑

s=1

∑

k

~ωs(k)
1

e~ωs(k)/kBT − 1
(3.84)

= 3

∫

dω
1

3N

∑

sk

δ
(
ω − ωs(k)

) ~ωs(k)

e~ωs(k)/kBT − 1
(3.85)

= 3

∫

dωg(ω)
~ω

e~ω/kBT − 1
(3.86)

⇒ CN = 3

∫

dωg(ω)~ω
∂

∂T

(
1

e~ω/kBT − 1

)

(3.87)

(3.87)

The density of states appears if one wants to consider the frequency dependence of the contributions to
the energy instead the k dependence. This point of view becomes important in disordered solids, where it
is in general not possible to label the vibrational states by means of the components of a wave vector k.
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3.6 Harmonic vibrational dynamics in disordered Solids

3.6.1 Disordered cubic lattice and coherent-potential approximation (CPA)

Let us consider masses of value M fixed to a cubic lattice which are connected with springs the Hooke
constants (force constants) MKij of which fluctuate according to a distribution density P (Kij).
We simplify the system further by considering the displacements ui(t) at site i to be scalar quantities.
The equation of motion of this system is

d2

dt2
ui(t) = −

∑

j

Kij

(
ui(t)− uj(t)

)
(3.88)

The green’s function of this equation Gij(t, t′) obeys the equation

d2

dt2
Gij(t, t′) +

∑

ℓ

Kiℓ(Gij − Gℓj) = δijδ(t− t′) (3.89)

Defining a ”Hamiltonian Matrix”

Hij =







−∑j Kij i = j

Kij i 6= j
(3.90)

and Fourier transforming we obtain the following matrix equation for the Green matrix < i|G(ω)|j >=
Gij(ω)

(
z̃ −H

)
G =

(
− ω2 + iǫ̃−H

)
G = 1 (3.91)

where we, again introduced a complex frequency variable z̃ which is, for convenience, constructed with
respect to ω2.
If we look carefully at these equations they turn out to be identical to the Schrödinger equation of tight-
binding electrons with transfer integrals Kij and on-site energies Ei = Hii = −∑j Kij . So we can make
use of the approximation schemes which have been invented in the literature to deal with electrons in
disordered systems with such a type of Hamiltonian.
One of the most powerful mean-field theories of disorder is the coherent-potential approximation, CPA.
The CPA is derived as follows:
We invent an effective medium, which is not disordered (i. e. it has the cubic symmetry), but the force
constants are frequency dependent:

Keff
ij (z̃) = Γ(z̃). (3.92)

Let Z = 6 be the coordination number of the sites. Then effective-Medium Hamiltonian is

Hij =







−∑jK
eff
ij (z̃)− ZΓ(z̃) i = j

Keff
ij (z̃) = Γ(z̃) i 6= j

(3.93)

and the Green’s function of the effective medium obeys the equation of motion

z̃Gij − δij = ZΓ(z̃)(Gℓj −Gij) ℓ arbitrary neighboring site (3.94)

As in the Lorentz theory of dielectric polarizability1 we now ”dig a hole” into the effective medium. As we
deal with pairs of sites this hole must contain a pair (i0, j0). Inside the hole we replace the effective-medium
force constant Γ(z̃) by the actual one Ki0j0 so that we obtain a ”perturbation” vi0j0(z̃) = Ki0j0 − Γ(z̃).
The corresponding perturbing Hamiltonian matrix V has four non-zero entries, namely Vi0i0 , Vj0j0 , Vi0j0 ,
and Vj0i0 . In the i0j0 subspace we have

V =





−vi0j0(z̃) vi0j0(z̃)

vi0j0(z̃) −vi0j0(z̃)



 (3.95)

We now demand that introducing this perturbation should have on the average no influence on the effective
medium which is equivalent to demanding that the Green’s function of the effective medium should be equal

1The first version of the CPA has been devised by Bruggeman, 1937 for composite dielectrica.
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to the configuratonally averaged Green’s function of the disordered system. One can again reformulate
this postulate in demanding that the averaged T-matrix

〈T 〉 = 〈 V

1− V G 〉 (3.96)

should vanish. Working out the 2 × 2 inverse and using (3.94) with i = j we obtain the following CPA
self-consistent equation for Γ(z̃)

〈 K − Γ(z̃)

1 + (K − Γ(z̃) 2
ZΓ(z̃)(1 − z̃Gii(z̃)

〉 = 0 (3.97)

which can be reformulated as

Γ(z̃) = 〈 K

1 + (K − Γ(z̃) 2
ZΓ(z̃) (1 − z̃Gii(z̃)

〉 (3.98)

We now define the local Green’s function of the simple cubic lattice (Z = 6) as

G
(0)
ii (z̃) =

∑

k∈BZ

1

z̃ + 6− E(k)
(3.99)

with the simple-cubic band structure

E(k) = 2[cos(kxa) + cos(kya) + cos(kza)] (3.100)

where a is the lattice constant and BZ is the 1st Brillouin zone. Then we have for the local Green’s
function of the effective medium

Gii(z̃) =
1

Γ(z̃)
G

(0)
ii

(
z̃

Γ(z̃)

)

(3.101)

(3.98) and (3.101) now establish a self-consistent set of equations which can (and have to be) solved on a
computer.
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ω
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Density of states /ω2

numerical diagonalization
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"Boson peak"

Fig. 8: Density of states, divided by ω2 of a simple-cubic lattice with a Gaussian distribution of force
constants with width parameter σ/K0 = 0.6. The full line is a CPA calculation (solution of (3.98) and

(3.101) ), the points are the result of numerical diagonalizations of systems with periodic boundary
conditions, averaged over different box sizes.

The density of states is obtained from the Green’s function according to

g(ω) = 2ωg(ω2) = −2ω

π
ℑm{G(z̃)} (3.102)
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in Fig. 8 we have plotted the so-called reduced density of states g(ω)/ω2 resulting from a numerical
diagonalization of a model with a Gaussian P (K) with width-to-mean ratio σ/K0 = 0.6 together with
the CPA calculation. Clearly the CPA gives a good account of the data. It also is seen that there are no
van-Hove singularities as in the ordered system (see the curve ”σ = 0” in Fig. 9), but instead a maximum,
which can be identified as the so-called boson peak.
We are now giving a physical explanation of the forming of such a peak in the reduced density of states
of disordered solids. First we note that if we increase the width of the distribution P (K) the system
becomes unstable, because some atoms are now sitting on top of a potential hill instead at the bottom
of a potential well. This instability manifests itself by the exixtence of negative eigenvalues ω2

i in the
numerics, or, in the CPA, by the appearance of a portion of the density of states for negative values of
ω2. To have a ”fine-tuning” of this instability we introduced a lower cutoff Kmin in the Gaussian and put
σ = K0. The result is shown in Fig. 9

0.0 1.0 2.0 3.0 4.0 5.0
ω

0.00

0.05

0.10

0.15

g(
ω

)/ω
2

Kmin=-0.6
Kmin=-0.5
Kmin=-0.4
Kmin=-0.3
Kmin=-0.2
Kmin=  0.
Kmin= 0.3
Kmin= 0.6
CPA
σ=0

Fig. 9: Density of states, divided by ω2 of a simple-cubic lattice with a varying lower cutoff Kmin and
width parameter σ/K0 = 1. The full line is a CPA calculation (solution of (3.98) and (3.101) ), the
points are the result of numerical diagonalizations of systems with periodic boundary conditions,

averaged over different box sizes.

It is seen that the more negative force constants we put in, the stronger becomes the boson peak. So it
looks as if the boson peak is the precursor of the mentioned instability. This conclusion will be thoroughly
corroborated in the rest of the present lectures.

3.6.2 The self-consistent Born approximation, SCBA

We would like to simplify the CPA by the following steps:

• getting rid of the unphysical cubic lattice by replacing the dispersion by a Debye law

6K2
0 [6− E(k)]→ c20k

2θ(k − kD)

• expanding the CPA equation with respect to the deviations δK = K −K0 and δΓ = Γ−K0
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Fig. 10: Density of states, divided by ω2 for a generalized Debye model with fluctuating elastic constants
K̃ ≡ c2 calculated for different disorder parameters γ ∝ 〈δK̃2〉/〈K̃〉2, calculated in SCBA and CPA

If we limit the expansion to second order in δK and δΓ we obtain the so-called self-consistent Born
approximation, SCBA

δΓ(z̃) = −γ
∑

|k|<kD

k2

z̃ + k2[c20 + δΓ(z̃)]
(3.103)

where γ ∝ 〈(δK)2〉/〈K〉2 In Fig. 10 we compare the CPA for a Gaussian P (K) with the SCBA with the
same width parameter. The difference is not striking, so that we can use safely the SCBA instead of the
CPA, especially if we don’t want to compare our results to a simulation on a lattice. It is clear from Fig.
10 that the boson peak has nothing to do with a broadened van-Hove singularity as claimed sometimes in
the literature, because all lattice-specific features have been removed from the theory. To understand the
origin of the boson peak we further simplify the SCBA equation (7.149) by replacing the sum over k by
its dominant term at the maximum |k| = kD. If we use frequency units where c0 = kD = 1 we obtain

δΓ(z̃) = Γ(z̃)− 1 = −γ 1

z̃ + Γ(z̃)
(3.104)

which is a quadratic equation for Γ(z̃)

/ )(

γ

1

2ω 0c

’’Γ ω(    )

Fig. 11: Imaginary part of the ”self

energy” Γ(z̃ for the simplified SCBA

equation (3.104). If γ becomes larger

than unity the system becomes

unstable.

The solution of this equation yields a semicircular law for the imaginary
part of the self energy Γ (Fig. 11) which is proportional to the ”density
of levels” g(ω2). if the variance-to mean square ratio γ becomes com-
parable to unity the system becomes unstable. If it is smaller a rapid
rise of the spectrum occurs for ω2 ≈ c20[1 − γ], which actually is the
boson peak. The gap below this value occurs, because we omitted the
k summation. If included, there is a crossover from the Debye behavior
to the semicircular behavior. However, as we know from random matrix
theory, the occurrance of a semicircular spectrum with width propor-
tional to the mean of the distribution density of the matrix elements is
a generic property of any random matrix.

So we can state that the boson peak marks the crossover from Debye’s law (which is actually dictated by
the translational symmetry of the equation of motion) to the semicircular law of the random Hamiltonian.
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If the variance of its matrix elements exceeds their mean the system is unstable. The boson peak can be
interpreted as the precursor of this instability.

4 Electron transport in disordered metals

4.1 Scattering, diffusion and Drude formula

mean free path l

Scattering path of a nearly free electron

We now consider nearly free electrons in a
metal, which are occasionally scattered by
an impurity or a lattice vibration (phonon),
which passes by (see our figure). The elec-
tronic velocity is its momentum pF = ~kF ,
divided by its mass

vF =
1

m
~kF (4.1)

So, during the repeated scattering the electron
performs a kind of random walk, and we make
the ansatz

D =
1

3
ℓ2

1

τ
(4.2)

Here ℓ is the mean-free path of the electron, i.e. the length an electron moves freely (on average) without
being scattered. 1/τ is the (average) scattering rate per uni time, which is related to ℓ via

ℓ = vF τ , (4.3)

so that we have

D =
1

3
ℓvF =

1

3
v2
F τ . (4.4)

From the degenerate version of the Einstein relation (??) we obtain

σ = N(EF )e2D =
3

2

n

EF
e2

1

3

~
2k2
F

m2
τ =

1

m
ne2τ (4.5)

This is the Drude formula for the electric conductivity of a metal, which can be derived from kinetic
theory as well. We shall do so in the next paragraph. Here we have emphasized the random-walk aspect,
which states, that a repeated scattering process is equivalent to a diffusion mechanism.

4.2 Boltzmann equation

We now consider the repeated scattering process of electrons in a metal more formally. As the transport
phenomena do not involve wave functions but electronic densities and currents one considers Wigner’s
generalized phase space function

fk,s(r, t) =
∑

q

eiqrψ∗
s

(
k− q

2

)
ψs
(
k +

q

2

)

=

∫

d3~ρei~ρkψ∗
s

(
r− ~ρ

2

)
ψs
(
r +

~ρ

2

)
(4.6)

r, ~ρ are center-of-mass and relative coordinates, resp.:

r =
1

2

[
r1 + r2

]
~ρ = r2 − r1 (4.7)

The scattering of a wave of wave vector k can be accounted for by making a bilance of “scattering in and
out of the k channel” in the following manner:

∂

∂t
fk,s(r, t)

∣
∣
∣
∣
coll

= − 1

V

∑

k′,s′

W ss′

kk′fk,s
[
1− fk′,s′

]
+

1

V

∑

k′,s′

W s′s
k′kfk′,s′

[
1− fk,s

]
(4.8)
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The index “coll” means that this is the collisional change of the electronic phase space density due to
collisions with an impurity or a phonon.
We now disregard the spin index and consider the quantities r and p = ~k in fk(r, t) ≡ f(p, r, t) as
classical quantities r(t) and p(t). Then the collisional change of f(p, r, t) should be equal to the total time
derivative of f(p, r, t):

∂f

∂t

∣
∣
∣
∣
coll

=
∂f

∂t
+

3∑

α=1

∂f

∂pα

∂pα
∂t

+

3∑

α=1

∂f

∂xα

∂xα
∂t

=
∂f

∂t
+ F · ∇pf + v · ∇rf

(4.9)

(4.9), together with the spinless version of (4.8) form the celebrated Boltzmann equation of electronic
transport. F is the force on the electron, which — in “semiclassical approximation” — is taken to be the
Lorentz force

F = −e
[
E + v ×B

]
(4.10)

In the relaxation time approximation one writes (see exercise 9.1)

∂f

∂t

∣
∣
∣
∣
coll

= −1

τ

(
f − f0

)

with
1

τ
=

1

V

∑

k′

Wkk′

(
1− ek · e′k

)
∣
∣
∣
∣
|k|=|k′|=kF

(4.11)

Here f0 is the equilibrium Fermi distribution. We now call f − f0 = f1 and assume that f1 is created by
the small external electric field E, so that f1 can be neglected in the force term. We further assume an
uniform spatial distribution of the scattered electrons, i.e. ∇rf = 0, and no explicit time dependence, i.e.
∂f/∂t = 0, so that we get the following strongly simplified version of the Boltzmann equation

F · ∇pf0 = −f1
τ

(4.12)

We re-arrange ∇pf0 as

∇pf0 = ∇pE
︸ ︷︷ ︸

v

∂f

∂E

⇒ f1 = τ

(

− ∂f
∂E

)

v · F = −eτ
(

− ∂f
∂E

)

v ·E
(4.13)

For the field-induced current density we finally obtain

j = −2e

V

∑

k

f1v

=
2e2τ

V

∑

k

(

− ∂f
∂E

)

v ·Ev
︸ ︷︷ ︸

v2ez if j||EE||ez

(4.14)

from which we obtain the quantum Drude formula

σ =
2e3τ

3V

∑

k

(

− ∂f
∂E

)

v2

Exercise 9.2−→ ne2τ

m∗
for E =

~
2k2

2m∗

(4.15)
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4.3 Quantum interference effects

We consider again the scattering of the electrons as a random walk and construct a time variable along
the walk as we have done in discussing the polymer chains. in terms of this time variable the diffusivity
is given as

D = lim
t→∞

1

2t
〈r2(t)〉 = lim

t→∞

∫

d3r
r2

2t
P (r, t) (4.16)

where P (r, t) is the diffusion probability density. Defining ǫ to be the Laplace variable (instead of p) we
have

D = lim
ǫ→0

ǫ2

2
〈r2(ǫ)〉 = lim

ǫ→0

ǫ2

2

∫

d3rr2P (r, ǫ) (4.17)

Now there exists a relation by Kubo and Greenwood

D ∝ lim
ǫ→0

ǫ2

2

∫

d3rr2Pquantum(r, ǫ)

with Pquantum(r1 − r2
︸ ︷︷ ︸

r

, ǫ) = 〈G+(r1 − r2, ǫ)G−(r2 − r1, ǫ)〉disorder
(4.18)

G±(r1, r2, ǫ) =< r1|G|r2 >=< r1|
1

E ∓ iǫ−H|r2 > is our old friend, the Green’s function, which can be

represented as a multiple-scattering expansion with respect to the fluctuating potential V as

G = G0 + G0V G0 + . . .

= G0TG0

(4.19)

The scattering operator T involves all possible scattering processes, which can be decomposed into scat-
tering processes from specific impurities, located at a site i, associated with a single-site T matrix ti.
The Green’s function can then be decomposed as (we drop all ǫs from now on)

G(r, r′) =
∑

paths
from r to r′

G0(r01)t1G0(r12)t2G0(r23) . . . tn−1G0(rn−1,n) (4.20)

with r0 = r and rn = r′.
If, now, we approximate |G|2 in such a way that we put

∣
∣
∣
∣

∑

paths

G0t1G0t2 . . . tn−1G0

∣
∣
∣
∣

2
→
=
∑

paths

|G0|2|t1|2|G0|2|t2|2| . . . |tn−1|2|G0|2 (4.21)

we obtain the diffusion propagator for Pquantum(r, ǫ). with τ−1 ∝ |ti|2. By this procedure all interferences
have been assumed to be cancelled out by the impurity averages, i.e. one has assumed that the Tij =
Aije

iφij have all random phases φij , which cancel out by the impurity average. As the free Green’s
functions have the form

G0(rν,ν+1) ∝ eikF rν,ν+1 (4.22)

the phases φij are just given by kF times the length sij of the path from i to j. This fact leads to an
important exception from the rule that the interference terms cancel out:
Assume that a multiple-scattering path contains a loop. As the positions of the impurities do not change
in time, the phases along this path are fixed once forever. Let us now consider two paths one, which leads
clockwise around the loop, the other anticlockwise. The phases along both paths are exactly the same so
that we have for the intensities of the two processes

42



1.

2.

∣
∣T1 + T2

∣
∣
2

=

∣
∣
∣
∣
A1e

iφ1 +A2e
iφ2

∣
∣
∣
∣

2

=
∣
∣A1

∣
∣
2

+
∣
∣A2

∣
∣
2
+ 2A1A2 cos(φ1 − φ2)

︸ ︷︷ ︸

=1 for φ1=φ2

= 4
∣
∣A1|2 for A1 = A2

(4.23)

In the incoherent approximation (4.21) one would obtain |T1 + T2|2 = 2|A1|2 instead. in the incoherent
approximation, which treats the quantum propagator Pquantum(r, ǫ) as classical diffusion propagator the
closed-loop interferences are missing. Obviously there must be a correction to the scattering rate due to
the closed-loops:

τ−1 = τ−1
0 + ∆τ−1 (4.24)

which is of the form

∆τ−1 ∝
y∑

loops

t1G0t2G0 · · ·
x∑

loops

t1G0t2G0 . . . (4.25)

which can be approximated as

∆τ−1 ∝ Gdiff(r = 0, ǫ→ 0) = lim
ǫ→0

∫ ∞

0

dt
1

[
4πD0t

]d/2
e−ǫt (4.26)

where we have used the expression for the d dimensional diffusion propagator

Gdiff(r, t) =
1

[
4πD0t

]d/2
e−r

2/4Dt (4.27)

For evaluating the interference contribution (4.26) we first consider d = 3:

∫ ∞

0

dt t−3/2e−ǫt = ǫ1/2Γ(−1/2)
ǫ→0−→ 0 (4.28)

So the contribution vanishes, unless there is a maximum loop length, given by the inelastic mean-free path
ℓin due to scattering from phonons. In this case ǫ is replaced by τ−1

in = vF /ℓin. Assuming2 τ−1
in ∝ T p we

obtain a correction with a temperature dependence ∝ T p/2.
Let us now consider the case d = 2. The integral

∫∞

0
dt
t certainly diverges. This is a first indication for

a disorder and interference induced localization transition in d = 2, which we shall discuss in the next
subsection. If we insert a minimal and maximal scattering time (the minimal one corresponding to the
elastic mean-free path ℓ0 = vF τ0) we obtain

∆τ−1 ∝ ln τin/τ0 ∝ − lnT (4.29)

Such a behavior is, indeed observed in two-dimensional devices.

4.4 Anderson localization

In 1958 P. W. Anderson published his famous paper “Absence of diffusion in certain random lattices”,
in which he showed that the diffusion coefficient of an electron in a random potential V can be zero
if the spatial fluctuations measured by < (V− < V >)2 > /(< V >)2 exceed a certain critical value.
This happens roughly when the mean free path due to the potential fluctuations becomes as short as the
electronic wavelength or (equivalently) an interatomic distance. In 1979 Abrahams, Anderson, Licciardello
and Ramakrishnan showed that this localization effect is due to a quantum interference effect first discussed
by Langer and Neal in 1966. We just discussed this effect in the previous subjection.

2The exponent p can vary between 2 and 5, depending on the type of material.
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We now discuss the Anderson localization transition (or metal-nonmetal transition) from the point of view
of electrons in a random environment and present the scaling ideas of Abrabahams et al. .
In his original paper Anderson considered a tight-binding Hamiltonian with a spatially fluctuating local
energy ǫi representing the fluctuations of the external potentials:

H = H1 +H0 =
∑

i

ǫi|i >< i|+ t
∑

ij
n.N.

|i >< j| (4.30)

We assume that the on-site energies ǫi = ǫi+∆ǫi are random variables with average ǫ0 and relative variance
σǫ = 〈(∆ǫi)2〉/σ2

0 . Near the lower band edge H0 can be represented by a free-electron Hamiltonian with
effective mass m∗ = ~

2/2ta2, where a is the lattice constant of a simple-cubic lattice.
Anderson found that there exists a critical amount σc of disorder. For σǫ < σc the mean-square dis-
placements of the electrons increases linearly with time, whereas for σǫ > σc it has an upper bound
r20 :

〈
r2(t)

〉







∝ t σǫ < σc Diffusion

≤ r20 σǫ > σc Localization
(4.31)

r0 is called localization length, and, in the localized state the electronic wave function has an envelope,
which decays exponentially beyond r0:

ψ(r) =
∑

α

aW (r)e−|r−rα|/r0 (4.32)

where aW (r) is a Wannier function and rα are some random points in the disordered material. The
important point is, if one considers a piece of disordered material, the conductance G of the material will
decay exponentially with the length L of a bar

G(L) ∝ e−L/r0 (4.33)

We now turn to the scaling argument of Abraham et al.:
We consider the length dependence of the conductance a metallic piece of material of size Ld of resistivity
ρ

LL L

d = 1 d = 2 d = 3

G ∝ 1

ρL
G ∝ 1

ρ
G ∝ L

ρ
(4.34)

We want to construct a dimensionless conductance and define

1

G0
=

~

e2
=

1.05 · 10−34Ws2

(1.6)2 · 10−38(As)2
= 410Ω (4.35)

so that we have in the metallic regime

lim
L→∞

g(L) = lim
L→∞

G(L)

G0
∝ Ld−2 (4.36)

In the localized regime we expect
lim
L→∞

g(L) ∝ eL/r0 → 0 (4.37)

The scaling hypothesis now consists in postulating that in all dimension and whether there is localization
or not g(L) can be represented as

g(L) = g0L
β or inversely β(g) =

d ln g

d lnL
(4.38)
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1

−1

0

β(g)

g

where β(g) is supposed to be a universal
function of g. If β(g) is known, one can
decide from the sign of β, whether

lim
L→∞

g(L)







−→ ∞ metallic for β > 0

−→ 0 localized for β < 0
(4.39)

How can β(g) look like? For large g we
have

lim
g→∞

β = d− 2 (4.40)

Abrahams et al. calculated the corrections to this asymptotic law:

β(g) = d− 2− cons.

g
(4.41)

On the other hand, we have for small g g(L) ∝ e−L/r0, from which follows

lim
g→0

β(g) = ln g − const. (4.42)

Result:
The scaling transformation (increasing L) leads to a vanishing conductance in d = 1and ind = 2. This
means that, in these dimensions, for any disorder there is always localization, i.e. limL→∞ g(L) = 0. In
d = 3 this limit depends on the degree of disorder: if in a sample of a certain size L the dimensionless
conductance is smaller than the critical one it will scale towards zero. If it is larger, it will scale towards
infinity. The point, where β(g) crosses the zero line is an unstable fixed point of the scaling transformation.
These findings have been backed up by a field-theoretical treatment of the Anderson transition by F.
Wegner and other authors. Within the field-theoretical formalism the scaling transformation corresponds
to the renormalization group transformation.

4.5 Quantum-Hall effect, QHE

4.5.1 Normal Hall effect and the QHE

We write down the Boltzmann equation in relaxation-time approximation for an electron with momentum
p = ~k in static electric and magtetic fields E = (Ex, Ey, 0) and B = (0, 0, B):

0 = −
[

eE +
1

m
p×B

]

− 1

τ
p (4.43)

We introduce the cyclotron frequency ωc = eB/m and obtain component-by-component

0 = −eEx − ωcpy −
px
τ

0 = −eEy + ωcpx −
py
τ

(4.44)

With j = −nep/m and σ0 = ne2τ/m we obtain

σ0Ex = ωcτjy + jx

σ0Ex = −ωcτjx + jy
(4.45)

i.e.

σ0E =

(
1 ωcτ
−ωcτ 1

)

j (4.46)
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which we re-write as

E =
↔
ρ

(
ρ0 −RHB

RHB ρ0

)

j (4.47)

Here

RH = − 1

ne
(4.48)

is the Hall-coefficient and we have

|ρxy| =
B

ne
=

eB

~
︸︷︷︸

ℓ2B

1

n

~

e2
=

2πℓ2B
n

︸ ︷︷ ︸

1/ν

h

e2
(4.49)

ν is the so-called fill factor, and it turns out that the Hall resistivity for large fields is quantized in such a
way that ν takes only integer numbers3.

4.5.2 Quantum Mechanics: Landau Levels

Here we review the quantum mechanics of an electron in a magnetic field (without taking spin effects into
account). The Schrödinger equation for a electron (living in the x − y plane) in a magnetic field in z
direction is given by

[
1

2m
(i~∇+ eA)2 + V (r)

]

ψ(r) = Eψ(r) (4.50)

Here the Landau gauge is used A = (−By, 0) If we further assume V to be only y dependent the Schrödinger
equation is separable:

ψ(r) = eikxχ(y) (4.51)

In x direction the solutions are plane waves. In y direction the solution can, of course, only be given if
V (y) is specified.

F
E

y

E

Landau levels in a confining potential V (y)

We first set V = 0 and obtain

[

− ~
2∂2
y

2m
+

(eBy + ~k)2

2m
︸ ︷︷ ︸
1
2
mω2

c(y−Y )2

]

χ(y) = Eχ(y) (4.52)

Here Y = −~k/eB = −ℓ2Bk is the “mid-point coordinate”
of an effective one-dimensional harmonic oscillator with an-
gular frequency ωc. The energy levels are, of course

En = (n+
1

2
)ωc (4.53)

and the wave-functions are given by

χ(y) = e−
1
2
(y−Y )2/ℓ2BHn

(
y−Y
ℓB

)

(4.54)

where Hn are the Hermite polynomials.
We now turn to the inclusion of V (y). If the field B is big enough 1st-order perturbation theory is
sufficient, and we have

∆En = < χ(0)
n |V |χ(0)

n >

=

∫

dy(χ(0)
n )2(y − Y )V (y) ≈ V (Y )

EN = En(Y ) = E(0)
n + V (Y )

(4.55)

We now assume that V (y) specifies the profile of a confining potential in y direction, i.e. we consider a
lead in x direction. The corresponding band structure in y direction is depicted in the figure.

3For very large fields it can also take rationally fractional numbers (fractional QHE)
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y

x

Edge states

The Edge states are localized, where

the band structure “pinches” through

EF

It is clear that the wave functions, which belong to the
distorted Landau levels and which are contributing to the
electric current must correspond to Eigenvalues near the
Fermi level:

EF = E(0)
n + V (y) (4.56)

In space they are, therefore, localized near the edge of the
lead channel and are called edge states. The electrons in a
conducting channel in a strong magnetic field can only move
along the edge-state lines, depicted in the second figure.

We now generalize the above reasoning. In another gauge one has

En = E(0)
n + V (R) (4.57)

where R = (X,Y ) is the midpoint coordinate of a cyclotron orbit. We now assume that the potential, in
addition to the confining part, has a spatially fluctuating part as in the Anderson problem:

V (r) = Vedge(y) + ∆V (r) (4.58)

For the states contributing to the electric current we now have the condition

EF = E(0)
n + Vedge(Y ) + ∆V (R) (4.59)

σxx

ωc

Schematic dependence of σxx on ωc

We now consider the appearance or disappearance of an
edge channel, which occurs by changing the magnetic field
(i.e. ωc). If the bottom of the surface defined by En(R)
moves to the vicinity of EF the situation may occur, in
which a conducting path can lead in y direction. This path
is the result of a percolation transition. By changing ωc,
first EF touches the “valleys” in ∆V (r), leading to “is-
lands”, around which conducting edges exists. At the per-
colation transition the islands turn to land paths and the
“water passages” turn to “lakes”. Just at the transition
the edges of the land paths co-existing with water passages
form conducting paths in y direction. This leads to a spike
in the x− x conductivity as depicted in the 3rd figure.

4.5.3 Landauer-Büttiker formula and the QHE

Geometry for the Landauer formula

We consider quantum-mechanical electrons traveling along
some “quantum channels” in a 2-dimensional plane and
coming across some “obstacles”, which give rise to reflec-
tion and transmission of the channel waves. The influ-
ence of such an obstacle can be treated like a resistance
R12 = 1/g12, i.e.

I = g12(V1 − V2) (4.60)

where the conductance is given by

g12 = 2
e2

h
T12 (4.61)

The factor 2 takes each spin into account. T12 = |t12|2 is the quantum-mechanical transmission probability
though the obstacle, where t12 = t12(EF ) is the transmission amplitude. Landauer realized that the voltage
drop of microscopic electrons in a quantum environment is only governed by scattering processes and is
not associated with dissipation4. The dissipation of the complete circuit in a device occurs exclusively in
the thermal bath connected to the device. This version of Ohm’s law is called Landauer formula.

4The residual resistance of a metal is also a zero-temperature property of the ground state of the metal and is exclusively
related to scattering processes of the electrons from the impurities.
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I2

I1

I 4

Geometry for the Landauer-Büttiker

formula

One can generalize the Landauer formula for an obstacle
connected to more than two leads, where one counts - as in
Kirchhoff’s laws - the in-going currents as positive:

Im = −
∑

n

gmnVn (4.62)

From current conservation we have
∑

n gmn = 0⇔ gmm =
− ∑

n6=m

gmn so that the Landauer-Büttiker formula takes the

form
Im =

∑

n6=m

gmn(Vm − Vn) (4.63)

The coefficients of resistance at the Quantum-Hall device are defined by

Rkℓ,mn =
Vm − Vn

I
I = Ik = −Iℓ (4.64)

Ik is the source current, Iℓ the drain current.

4

31

2

Geometry for the quantum Hall-effect

The edge states now form channels along which the electron
can move. Each channel gives a quantum contribution to
the conductance, so that we have

g12 = g23 = g34 = g41 = gc = 2N
e2

h
(4.65)

gij = 0 else

N is the number of channels and the factor 2 accounts for
the spin degrees of freedom. The Hall resistance, therefore,
is given by

RHall = R13,42 =
V4 − V2

I2
(4.66)

From the Landauer Formula we have

I2 = gc(V2 − V3) = 0 ⇒ V2 = V3

I4 = gc(V4 − V1) = 0 ⇒ V4 = V1

I1 = gc(V1 − V2) = gc(V4 − V2)

So we finally obtain

RHall = R13,42 =
1

gc
=

h

2Ne2 (4.67)

On the other hand, if the voltage leads are not transverse to the current, e.g. at 3,4

I3 = gc(V3 − V4) = 0 ⇒ V3 = V4

I4 = gc(V4 − V1) = 0 ⇒ V4 = V1

⇒ R12,34 =
V3 − V4

I1
= 0 etc.. . .

This scenario is valid if EF is not in the vicinity of the bottom of the potential V (y), where the fluctuations
lead to the percolation transition discussed above.
How is the Fermi level EF determined? We have for the density of electrons

ne =

∫ EF

−∞

N(E)dE (4.68)

where N(E) is the density of states. In the absence of disorder we would have

N0(E) ∝
∑

n

δ(E − En) (4.69)
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In this case the Fermi level would be “pinned” at one of the En and could never be situated between the
Landau levels. In the presence of disorder we have

N(E) ∝
∑

n

Γ

Γ2 + (E − En)2
(4.70)

The states in between the levels are localized, so that now EF can take any position, depending on the
applied field B or the gate voltage. If one of these parameters is changed, such that EF passes one of the
En a step in RHall occurs.
For large field strength B the localized states are the edge states corresponding to the fluctuating potential
V (x, y) = V0(y) + ∆V (x, y). For B smaller than the application range of the semiclassical approximation
a version of Anderson localization theory including an applied field must be used in order to devise a
theory for the QHE. Such a theory has been outlined5, but not yet satisfactorily been established.
It should be noted, that for very large fields the fractional quantum Hall effect is observed, i.e. steps in
RHall with fractional filling factors of the form N = 1/ν, where ν are odd numbers6.

5 Theory of hopping transport in doped semiconductors

6 Field-theoretical treatment of quenched disorder

6.1 Gaussian integrals

6.2 Functional-integral representation of the Green’s function

6.3 Configurational average and replica trick

6.4 Effective field theory for the Anderson problem

6.5 Effective field theory for the scalar phonon problem

5M. Janssen, O. Viehweger, U. Fastenrath, J. Hajdu, Introduction to the theory of the integer quantum Hall effect, Verlag
Chemie, 1994

6D.C. Tsui, H.L. Störmer, and A.C. Gossard, Phys. Rev. Lett. 48, 1559 (1982); R.B. Laughlin, Phys. Rev. Lett. 50,
1395 (1983)
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7 Elasticity theory with fluctuating shear modulus

We consider an inhomogeneous disordered solids in which we allow the Lam’e constants λ and µ to
fluctuate in space. This leads to the Lagrange density

L =
m0

2

∑

i=x,y,z

u̇i (~r, t)
2 − λ (~r)

2

(
∑

i

ǫii (~r, t)

)2

(~r, t)− µ (~r)
∑

ij

ǫij (~r, t)
2
. (7.1)

The strain tensor is defined as above

ǫij (~r, t) =
1

2
(∂iuj (~r, t) + ∂jui (~r, t)) i, j = x, y, z (7.2)

Combining (7.2) and (7.1) leads to

L =
m0

2

∑

i

u̇i (~r, t)
2 − λ (~r)

2

∑

ij

∂iui (~r, t) ∂juj (~r, t) (7.3)

−µ(~r)

2

∑

ij

(

(∂iuj(~r, t)∂iuj(~r, t) + ∂iuj(~r, t)∂jui(~r, t)

)

. (7.4)

With the help of the Euler-Lagrange equations

∑

l=x,y,z,t

∂l

(
∂L

∂ (∂luk)

)

− ∂L
∂uk

= 0, k = x, y, z

we obtain the equations of motion

m0üi (~r, t)−
∑

j

[

∂iλ (~r) ∂juj (~r, t) + ∂jµ (~r) ∂iuj (~r, t) + ∂jµ (~r) ∂jui (~r, t)

]

= 0 i = x, y, z (7.5)

Now we transform into frequency space with the transformation rules

uj (~r, t) =
1

2π

∫ ∞

−∞

dωξ uj (~r, ωξ) · e−iωξt (7.6)

uj (~r, ωξ) =

∫ ∞

−∞

dt uj (~r, t) · eiωξt (7.7)

ωξ := ω + iξη (7.8)

where ξ = ±1, η→ 0. The equations of motion can be written as

Aij (~r, ωξ)uj (~r, ωξ) = 0 i = x, y, z (7.9)

with
Aij (~r, ωξ) = −ω2

ξδij −m−1
0 (∂iλ (~r) ∂j + ∂jµ (~r) ∂i + ∂lµ (~r) ∂lδij) . (7.10)

In the following λ (~r) is assumed to be constant while µ (~r) is assumed to fluctuate randomly in space.
The reason for this is motivated by the fact that µ (~r) would be zero in liquids as liquids do not have a
shear modulus. So we expect µ (~r) to have strong fluctuations in amorphous solids.
Now we want to split (7.10) into a constant part and a part which depends on the location. So we replace

λ (~r) = m0 · λ̄0 (7.11a)

µ (~r) = m0 · (µ̄0 + ∆µ̄ (~r)) (7.11b)

where m0 · µ̄0 is the average of µ (~r)
m0 · µ̄0 = 〈µ (~r)〉 . (7.12)

This means also that the average of ∆µ̄ (~r) is zero

〈∆µ̄ (~r)〉 = 0. (7.13)
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We now introduce a complex variable
zξ = −ω2

ξ (7.14)

and drop the suffix ξ further on. We further split Aij (~r, z) into a spatially fluctuating part A1(~r)ij and
an “unperturbed” part A0 (z)ij which does not fluctuate in space

Aij(~r, z) = A0(z)ij +A1 (~r)ij (7.15a)

A0 (z)ij = −z2δij − (λ̄0 + µ̄0)∂i∂j − µ̄0δij∂l∂l (7.15b)

A1 (~r)ij = −∂j∆µ̄ (~r) ∂i − δij∂l∆µ̄ (~r) ∂l (7.15c)

7.1 Fluctuations of the elastic constants

The elastic constant µ (~r) fluctuates in space. Although the average of ∆µ̄ (~r) is defined to be zero,
〈

∆µ̄ (~r)
2
〉

is expected to have a finite value. As we are interested in average values of all quantities, we

define the configurational average 〈. . .〉. The configurational average of a quantity A is defined to be

〈A〉 ≡
∫

D [∆µ̄ (~r)]P ([∆µ̄ (~r)])A ([∆µ̄ (~r)]) . (7.16)

∫
D[∆µ̄ (~r)] is a functional integral over all possible functions ∆µ̄ (~r). A system with a specific function

∆µ̄ (~r) is defined to be a configuration [∆µ̄ (~r)]. P ([∆µ̄ (~r)]) is then the probability density for this
configuration to occur. A ([∆µ̄ (~r)]) is the value the quantity A takes with this configuration. So the

configurational average of ∆µ̄ (~r0)
2

is expected to be independent of ~r0
〈

∆µ̄ (~r0)
2
〉

≡
〈
∆µ̄2

〉
(7.17)

Additionally the fluctuations of ∆µ̄ (~r0) and ∆µ̄ (~r0 + ~r) can be correlated. So we introduce the correlation
function γ (~r)

γ (~r) := 〈∆µ̄ (~r0)∆µ̄ (~r0 + ~r)〉 (7.18)

Now we need an ansatz for the probability P ([∆µ̄ (~r)]) for a certain configuration [∆µ̄ (~r)]. The main
condition for this function P ([∆µ̄ (~r)]) is that the resulting integrals of the kind (7.16) can be evaluated
somehow. As this is only the case for a Gaussian function we make the ansatz

P ([∆µ̄ (~r)]) = P0 · e−
1
2

R

d3rd3r′∆µ̄(~r)∆µ̄(~r′)B(~r,~r′) (7.19)

where the function B (~r, ~r′) is still to be determined. P0 is a normalization constant which has to be
chosen in such a way that the equation

∫

D [∆µ̄ (~r)]P ([∆µ̄ (~r)]) = P0

∫

D [∆µ̄ (~r)] e−
1
2

R

d3rd3r′∆µ̄(~r)∆µ̄(~r′)B(~r,~r′) !
= 1 (7.20)

is fulfilled.
In order to simplify the notation we introduce Dirac’s bra and ket notation. As there are some different
possibilities for the normalization of the bra and ket vectors their main properties are summed up in the
following:

• |~r〉 and
∣
∣
∣~k
〉

are eigenvectors of the real and momentum space, respectively, with

〈

~r|~k
〉

=
1√
V
ei
~k~r. (7.21)

The ket vector of an arbitrary function ψ (~r) has the properties

〈~r|ψ〉 = ψ (~r) (7.22a)
〈

~k|ψ
〉

=
1√
V
ψ
(

~k
)

=
1√
V

∫

d3r e−i
~k~rψ (~r) . (7.22b)
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Nonlocal functions A (~r, ~r′) can be defined in terms of operators Â with the properties

〈~r| Â |~r′〉 = A (~r, ~r′) (7.23a)
〈

~k
∣
∣
∣ Â
∣
∣
∣~k′
〉

=
1

V
A
(

~k,~k′
)

=
1

V

∫

d3r d3r′ e−i
~k~r+i~k′~r′A (~r, ~r′) . (7.23b)

If 〈~r| Â |~r′〉 depends only on the distance between ~r and ~r′

〈~r| Â |~r′〉 = A (~r − ~r′) (7.24)

you can write
〈

~k
∣
∣
∣ Â
∣
∣
∣~k′
〉

= δ~k,~k′A
(

~k
)

(7.25)

with

A
(

~k
)

=

∫

d3r e−i
~k~rA (~r) (7.26)

• The bra and ket vectors fulfil the following orthogonality relations

〈~r|~r′〉 = δ(3) (~r − ~r′) (7.27a)
〈

~k|~k′
〉

= δ~k,~k′ (7.27b)

• The bra and ket vectors fulfil the following completeness relations
∫

d3r |~r〉 〈~r| = 1̂ (7.28)

∑

~k

∣
∣
∣~k
〉〈

~k
∣
∣
∣ = 1̂ (7.29)

where 1̂ is the unity operator with
1̂ |ψ〉 = |ψ〉 (7.30)

for any |ψ〉.

• The trace of an operator Â is defined to be

TrÂ :=

∫

d3r 〈~r| Â |~r〉 =
∑

~k

〈

~k
∣
∣
∣ Â
∣
∣
∣~k
〉

(7.31)

The dimension N of the Hilbert space is then

N = Tr1̂ =

∫

d3r
∑

|~k|<kD

〈

~r|~k
〉〈

~k|~r
〉

=
V

(2π)
3

4π

3
k3
D . (7.32)

The Debye cutoff is needed to take care of the fact that the disordered solid is composed by N atoms,
which restricts the number of modes to 3N .
Equation (7.19) can now be written as

P ([∆µ̄ (~r)]) = P0 · e−
1
2
〈∆µ̄|B̂|∆µ̄〉 (7.33)

and the functional integrals are denoted by
∫

D [∆µ̄ (~r)]→
∫

D |∆µ̄〉 . (7.34)

We now make use of the integral transform theorems (see above)
∫

D |u〉 e− 1
2
〈u|Â|u〉e〈j|u〉 =

√
2π

N
e−

1
2
Tr ln Âe

1
2
〈j|Â−1|j〉 (7.35)
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or equivalently ∫

D |u〉 e− 1
2
〈u|Â|u〉e〈j|u〉 = e

1
2
〈j|Â−1|j〉

∫

D |u〉 e− 1
2
〈u|Â|u〉 (7.36)

We now obtain for the correlation function

〈∆µ̄ (~r0)∆µ̄ (~r0 + ~r)〉 =

= P0

∫

D |∆µ̄〉 〈~r0|∆µ̄〉 〈~r0 + ~r|∆µ̄〉 e− 1
2
〈∆µ̄|B̂|∆µ̄〉 (7.37a)

= P0
∂

∂ 〈~r0|j〉
∂

∂ 〈~r0 + ~r|j〉

∫

D |∆µ̄〉 e− 1
2
〈∆µ̄|B̂|∆µ̄〉e〈j|∆µ̄〉

∣
∣
∣
∣
|j〉=0

(7.37b)

=
∂

∂ 〈~r0|j〉
∂

∂ 〈~r0 + ~r|j〉e
1
2
〈j|B̂−1|j〉P0

∫

D |∆µ̄〉 e− 1
2
〈∆µ̄|B̂|∆µ̄〉

∣
∣
∣
∣
|j〉=0

(7.37c)

= 〈~r0| B̂−1 |~r0 + ~r〉 (7.37d)

where in the step from (7.37b) to (7.37c) equation (7.36), and from (7.37c) to (7.37d) equation (7.20) was
used. To fulfil (7.18) we have to presume

〈~r0| B̂−1 |~r0 + ~r〉 !
= γ (~r) = 〈~r0| γ̂ |~r0 + ~r〉 (7.38)

which also means that
B̂ = γ̂−1. (7.39)

So we arrive for the probability for a certain configuration (7.19)

P (|∆µ̄〉) = P0 · e− 1
2
〈∆µ̄|γ̂−1|∆µ̄〉 . (7.40)

7.2 The Green’s function

The Green’s function is in fact something very simple. If the equations of motion for a field |u〉 can be
written in the form

Â (z) |u (z)〉 = 0 (7.41)

then the Green’s function
G (~r, ~r′, z) = 〈~r| Ĝ (z) |~r′〉 (7.42)

is just defined as the spatial matrix element of the inverse of the operator Â(z)

Â(z)Ĝ(z) = 1̂ (7.43)

where the properties of the unity operator 1̂ were defined in (7.30). Multiplying (7.43) with 〈~r| . . . |~r′′〉
and using (7.28) this can be written in real space

∫

d3r′A (~r, ~r′, z)G (~r′, ~r′′, z) = δ(3) (~r − ~r′′) (7.44)

and in momentum space equivalently

∑

~k′

A
(

~k,~k′, z
)

G
(

~k′, ~k′′, z
)

= V 2δ~k,~k′ . (7.45)

If the system is translationally invariant7

A (~r, ~r′, z) = A (~r − ~r′, z) (7.46a)

G (~r, ~r′, z) = G (~r − ~r′, z) (7.46b)

which also means that Â and Ĝ are diagonal operators in momentum space

A
(

~k,~k′, z
)

= V δ~k,~k′A
(

~k, z
)

(7.47a)

G
(

~k,~k′, z
)

= V δ~k,~k′G
(

~k, z
)

(7.47b)

7This holds only for a homogenous, not disordered system
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with

A
(

~k, z
)

=

∫

d3r e−i
~k~rA (~r, z) (7.48a)

G
(

~k, z
)

=

∫

d3r e−i
~k~rG (~r, z) (7.48b)

then the following is valid

A
(

~k, z
)

G
(

~k, z
)

=

=
〈

~k
∣
∣
∣ Â (z)

∣
∣
∣~k
〉〈

~k
∣
∣
∣ Ĝ (z)

∣
∣
∣~k
〉

=
∑

~k′

〈

~k
∣
∣
∣ Â
(

~k, z
) ∣
∣
∣~k′
〉〈

~k′
∣
∣
∣ Ĝ
(

~k, z
) ∣
∣
∣~k
〉

=
〈

~k
∣
∣
∣ Â
(

~k, z
)

Ĝ
(

~k, z
) ∣
∣
∣~k
〉

=
〈

~k|~k
〉

= 1 (7.49)

where (7.29) and (7.43) have been used. If A
(

~k, ω
)

is a two-dimensional tensor, the previous equation

can be written as
Aij

(

~k, z
)

Gjk

(

~k, z
)

= δik (7.50)

with the Kronecker delta δik. Not disordered systems (which means we set ∆µ̄ (~r) = 0) are translationally
invariant. If we set without loss of generality

~k = k · ~ez (7.51)

we obtain immediately from (7.15a) to (7.15c)

GL

(

~k, z
)

:= Gzz

(

~k, z
)

= lim
ε→0

1

z + k2
(
λ̄0 + 2µ̄0

) (7.52)

and

GT

(

~k, z
)

:= Gxx

(

~k, z
)

= Gyy

(

~k, z
)

= lim
ε→0

1

z + k2µ̄0
. (7.53)

The density of states is given by

g (ω) =
2ω

π
ImTrĜ+ (ω) =

2ω

πk3
D

Im

∫ kD

0

dk ~k2
∑

i

Gii

(

~k, z+

)

(7.54)

7.3 Relation of the Green’s function to the dynamic susceptibility

The response function is defined as follows: If a term V (t) is added to the Hamilton function

H = H0 + V (t) (7.55)

with

V (t) = −
∫

d3r B (~r) f (~r, t) (7.56)

and the expectation value of the observable value A changes by the amount

〈δA (~r, t)〉 ≡ 〈A (~r, t)〉 − 〈A0〉

=

∫ ∞

−∞

dt′
∫

d3r′ χAB (~r, ~r′, t, t′) f (r′, t′) (7.57)

then the function χAB (~r, ~r′, t, t′) is the response function. Because of causality it has to be valid

χAB (~r, ~r′, t, t′) = 0 for t < t′. (7.58)
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For systems where the original Hamilton operator is time independent and invariant under translations
this equation can be Fourier transformed

δA
(

~k, ω
)

= (7.59)

=

∫ ∞

−∞

dt

∫

d3r e−i
~k~r+iωt 〈δA (~r, t)〉

=

∫ ∞

−∞

dt

∫

d3r e−i
~k~r+iωt

∫ ∞

−∞

dt′
∫

d3r′ χAB (~r − ~r′, t− t′) f (r′, t′)

= χAB

(

~k, ω
)

f
(

~k, ω
)

with

χAB

(

~k, ω
)

=

∫

d3r dte−i
~k~r+iωtχAB (~r, t) (7.60)

χAB

(

~k, ω
)

is also known as dynamic susceptibility. It will become important in the theory of light

scattering. In the following sections we evaluate the dynamic susceptibilities for displacements and for
strain of an elastic medium.

7.3.1 Dynamic susceptibility for displacements

If we want to calculate the dynamic susceptibility for the displacement field of an elastic medium, then
we have to set

A = ui (~r) (7.61a)

B = uj (~r) . (7.61b)

Now we add

V (t) = −
∫

d3r uj (~r) fj (~r, t) (7.62)

to the Hamilton function. This is equivalent to replacing the Lagrange density L0 by

L (~r, t)L0 (~r, t) + uj (~r) fj (~r, t) . (7.63)

So the original equations of motion

Aij

(

~k, ω
)

uj

(

~k, ω
)

= 0 (7.64)

are replaced by

Aij

(

~k, ω
)

uj

(

~k, ω
)

= fi

(

~k, ω
)

. (7.65)

This means that uj

(

~k, ω
)

, which fulfils the original equations of motion, has to be replaced by

uj

(

~k, ω
)

+ δuj

(

~k, ω
)

(7.66)

with
Aij

(

~k, ω
)

δuj

(

~k, ω
)

= fi

(

~k, ω
)

. (7.67)

Setting

δuj

(

~k, ω
)

= G+
jk

(

~k, ω
)

fk

(

~k, ω
)

(7.68)

leads to

Aij

(

~k, ω
)

δuj

(

~k, ω
)

=

= Aij

(

~k, ω
)

G+
jk

(

~k, ω
)

fk

(

~k, ω
)

= δikfk

(

~k, ω
)

= fi

(

~k, ω
)

(7.69)
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where the property of the Green’s function

Aij

(

~k, ω
)

G+
jk

(

~k, ω
)

= δik (7.70)

was used. This proves that (7.68) fulfils the equations of motion (7.65). Comparing (7.59) with (7.68)
this leads to

χujuk

(

~k, ω
)

= G+
jk

(

~k, ω
)

. (7.71)

So the dynamic susceptibility for displacements is just the retarded Green’s function.

7.4 Dynamic susceptibilities for strain

7.4.1 Dynamic susceptibilities for density fluctuations

If we want to calculate the susceptibility for the density fluctuations of an elastic medium, then we have
to set

A = ∂iui (~r) (7.72a)

B = ∂juj (~r) (7.72b)

Now we have to add

V (t) = −
∫

d3r ∂juj (~r) f (~r, t) (7.73)

to the Hamilton function. This is equivalent to replacing the Lagrange density L0 by

L (~r, t)L0 (~r, t) + ∂juj (~r) f (~r, t) . (7.74)

So the original equations of motion

Aij

(

~k, ω
)

uj

(

~k, ω
)

= 0 (7.75)

are replaced by

Aij

(

~k, ω
)

uj

(

~k, ω
)

= −ikif
(

~k, ω
)

. (7.76)

This means that uj

(

~k, ω
)

, which fulfils the original equations of motion, has to be replaced by

uj

(

~k, ω
)

+ δuj

(

~k, ω
)

(7.77)

with
Aij

(

~k, ω
)

δuj

(

~k, ω
)

= −ikif
(

~k, ω
)

. (7.78)

Setting

δuj

(

~k, ω
)

= −iG+
jk

(

~k, ω
)

kkf
(

~k, ω
)

(7.79)

or respectively

ikjδuj

(

~k, ω
)

= kjG
+
jk

(

~k, ω
)

kkf
(

~k, ω
)

(7.80)

leads to

Aij

(

~k, ω
)

δuj

(

~k, ω
)

=

= −iAij
(

~k, ω
)

G+
jk

(

~k, ω
)

kkf
(

~k, ω
)

= −iδikkkf
(

~k, ω
)

= −ikif
(

~k, ω
)

(7.81)

where the property of the Green’s function

Aij

(

~k, ω
)

G+
jk

(

~k, ω
)

= δik (7.82)
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was used. This proves that (7.79) fulfils the equations of motion (7.65). Comparing (7.59) with (7.80)
this leads to

χL

(

~k, ω
)

≡ χ∂juj ,∂kuk

(

~k, ω
)

= kjGjkkk

(

~k, ω
)

=
(

~k
)2

GL

(

~k, ω
)

(7.83)

where GL is the longitudinal part of the Green’s function. So the dynamic susceptibility for density
fluctuations is just the product of the square of the wavenumber and the longitudinal part of the Green’s
function.

7.4.2 Dynamic susceptibilities for shear fluctuations

In order to calculate the susceptibility for the shear fluctuations of an elastic medium, we have to set

Ai = εikl∂kul (7.84a)

Bj = εjmn∂mun (7.84b)

with the totally antisymmetric Levi-Civita tensor εijk. Now we add

V (t) = −
∫

d3r εjmn∂munfj (~r, t) (7.85)

to the Hamilton function, which is equivalent to replacing the Lagrange density L0 by

L (~r, t)L0 (~r, t) + εjmn∂munfj (~r, t) . (7.86)

So the original equations of motion

Aij

(

~k, ω
)

uj

(

~k, ω
)

= 0 (7.87)

are replaced by

Aij

(

~k, ω
)

uj

(

~k, ω
)

= iεimnkmfn

(

~k, ω
)

. (7.88)

This means that uj

(

~k, ω
)

, which fulfils the original equations of motion, has to be replaced by

uj

(

~k, ω
)

+ δuj

(

~k, ω
)

(7.89)

with
Aij

(

~k, ω
)

δuj

(

~k, ω
)

= iεimnkmfn

(

~k, ω
)

. (7.90)

Setting

δuj

(

~k, ω
)

= iG+
jk

(

~k, ω
)

εklmklfm

(

~k, ω
)

(7.91)

or respectively

iεinjknδuj

(

~k, ω
)

= −εinjknG+
jk

(

~k, ω
)

εklmklfm

(

~k, ω
)

(7.92)

leads to

Aij

(

~k, ω
)

δuj

(

~k, ω
)

=

= iAij

(

~k, ω
)

G+
jk

(

~k, ω
)

εklmklfm

(

~k, ω
)

= iδikεklmklfm

(

~k, ω
)

= iεilmklfm

(

~k, ω
)

(7.93)

where the property of the Green’s function

Aij

(

~k, ω
)

G+
jk

(

~k, ω
)

= δik (7.94)

was used. This proves that (7.91) fulfils the equations of motion (7.90). Comparing (7.59) with (7.92)
this leads to

χAiBj

(

~k, ω
)

= εimnkmG
+
nl

(

~k, ω
)

εjklkk. (7.95)
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Setting without loss of generality

~k =





k
0
0



 (7.96)

leads to

↔

G =





GL 0 0
0 GT 0
0 0 GT



 (7.97)

where GL is the longitudinal and GT is the transverse part of the Green’s function. From this the dynamic
susceptibility for shear fluctuations can be seen to be

χT

(

~k, ω
)

= χA2B2

(

~k, ω
)

= χA3B3

(

~k, ω
)

= ~k2GT

(

~k, ω
)

. (7.98)

So the dynamic susceptibility for shear fluctuations is just equivalent to the product of the square of the
wavenumber and the transverse part of the Green’s function.

7.5 Determination of the configurationally averaged Green’s function

We know now how useful the Green’s function is in order to evaluate the properties of any solid. So
we want to calculate the configurationally averaged Green’s function for disordered solids. As we want
to have an expression for both the retarded and advanced Green’s function, the operator of the Green’s
function Ĝ (z) is defined by

Â (z) Ĝ (z) = 1̂ (7.99)

Â (z) is constructed to have the matrix elements given by (7.15a) - (7.15c) and describes therefore the
equations of motion. The required Green’s function is the matrix element of the inverse of this operator

Ĝ (z) = Â (z)
−1
. (7.100)

This can formally be written as

〈~n1| Ĝ (z) |~n2〉 =
∂2

∂
〈

~n1| ~J
〉

∂
〈

~n2| ~J
〉e

1
2 〈 ~J|Â−1(z)| ~J〉

∣
∣
∣
∣
∣
∣

|~J〉=0

. (7.101)

∣
∣
∣ ~J
〉

represents a real vector field, while |~n1〉 and |~n2〉 are elements of a full orthonormal system

∑

~n

|~n〉 〈~n| = 1̂ (7.102)

representing the real or momentum space variable and the Cartesian components, for example:

|~n〉 = |~r, ~ei〉 (7.103)

with
∫

d3r

3∑

i=1

|~r, ~ei〉 〈~r, ~ei| = 1̂ (7.104)

and
〈~r, ~ei| Ĝ (z)

∣
∣~r′, ~e′j

〉
= Gij (z, ~r, ~r′) . (7.105)

Equation (7.101) can be proven easily by using (7.104) and by taking into account the symmetry

〈~n1| Â−1 (z) |~n2〉 = 〈~n2| Â−1 (z) |~n1〉 . (7.106)

The inverse of the operator Â (z) is not known. So we have to transform the quantity

e
1
2 〈 ~J|Â−1(z)|~J〉 (7.107)
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that appears in (7.101) in a way that it contains not the inverse of the operator Â (z), but the operator
Â (z) itself. This can be done with the help of (7.36). The result is

e
1
2 〈 ~J|Â−1(z)|~J〉 =

∫
D |~u〉 e− 1

2
〈~u|Â(z)|~u〉e〈

~J|~u〉

∫
D |~u〉 e− 1

2
〈~u|Â(z)|~u〉

. (7.108)

An averaging over different configurations cannot be performed in (7.108) as it contains Â (z) both in
the enumerator and in the denominator. This problem can be solved by defining a generating functional

Z
(∣
∣
∣ ~J
〉)

Z
(∣
∣
∣ ~J
〉)

:=

∫

D |~u〉 e− 1
2
〈~u|Â(z)|~u〉e〈

~J|~u〉. (7.109)

From (7.108) it can be seen that the term appearing in (7.101) is equivalent to

e
1
2 〈 ~J|Â−1(z)|~J〉 =

Z
(∣
∣
∣ ~J
〉)

Z
(∣
∣
∣ ~J
〉

= 0
) . (7.110)

(7.101) can therefore be written as

〈~n1| Ĝ (z) |~n2〉 =
∂2

∂
〈

~n1| ~J
〉

∂
〈

~n2| ~J
〉 lnZ

(∣
∣
∣ ~J
〉)

∣
∣
∣
∣
∣
∣

| ~J〉=0

. (7.111)

We now introduce a different generating functional Z̃, where the relationship between this new generating
functional and the Green’s function is given by

〈~n1| Ĝ (z) |~n2〉 =
∂

∂ 〈~n1| Ĵ (z) |~n2〉
ln Z̃

(

Ĵ
)
∣
∣
∣
∣
∣
Ĵ=0

(7.112)

In order to obtain the same Green’s function as given by (7.111) and (7.109), the new generating functional
can be defined as

Z̃
(

Ĵ
)

:=

∫

D |~u〉 e− 1
2
〈~u|Â(z)−2Ĵ|~u〉. (7.113)

As can be seen easily, both generating functionals lead to the same operator of the Green’s function

Ĝ (z) =

∫
D |~u〉 e− 1

2
〈~u|Â(z)|~u〉 |~u〉 〈~u|

∫
D |~u〉 e− 1

2
〈~u|Â(z)|~u〉

. (7.114)

We will have to perform a functional integral over the matrix elements of the Green’s functions in order to
obtain the configurationally averaged Green’s function. However, we are not able to perform a functional
integral over a logarithm. To evaluate the logarithm in (7.112) we use a trick known as replica trick. The
replica trick is based on the fact that the logarithm of any variable Z can be written as

lnZ = lim
n→0

1

n
(Zn − 1) . (7.115)

The analysis is carried out for finite and integer n, and in the end n is continued analytically. Z̃
(

Ĵ
)

contains a functional integral over one field |~u〉. So Z̃
(

Ĵ
)n

contains the functional integrals over n fields

|~uα〉 , α = 1, . . . , n. The newly introduced indices α have the name replica indices. Therefore the following
relation is valid

ln Z̃
(

Ĵ
)

= lim
n→0

1

n

(
∫ n∏

α=1

D |uα〉 e−
1
2
〈~uα|Â(z)δαα′−2Ĵαα′

˛

˛

˛
~uα′

E

− 1

)

. (7.116)

With this the Green’s function is given by

〈~n1| Ĝ (z) |~n2〉 = lim
n→0

∂

∂ 〈~n1| Ĵ11 (z) |~n2〉
Z̃n
(

Ĵαα
′
)
∣
∣
∣
∣
∣
Ĵ=0

(7.117a)

= lim
n→0

Z̃n−1
(

Ĵ = 0
) ∂

∂ 〈~n1| Ĵ (z) |~n2〉
Z̃
(

Ĵ
)
∣
∣
∣
∣
∣
Ĵ=0

. (7.117b)
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7.5.1 Configurational averaging

Now the configurational averaged Green’s function may be evaluated, i.e.

〈

〈~n1| Ĝ (z) |~n2〉
〉

≡
∫

D |∆µ̄〉P (|∆µ̄〉) 〈~n1| Ĝ (z, [∆µ̄]) |~n2〉

= P0

∫

D |∆µ̄〉 · e− 1
2
〈∆µ̄|γ̂−1|∆µ̄〉 〈~n1| Ĝ (z, [∆µ̄]) |~n2〉 . (7.118)

By using (7.117a) and (7.118) it can be seen that evaluating the configurationally averaged Green’s function
means evaluating the generating functional to the n, averaged over all configurations. So we first have to
calculate the configurational average of the generating functional to the n

〈

Z̃n
(

Ĵαα
′
)〉

=

= P0

∫

D |∆µ̄〉 e− 1
2
〈∆µ̄|γ̂−1|∆µ̄〉Z̃n

(

Ĵαα
′

, [∆µ̄]
)

= P0

∫

D |∆µ̄〉
∫ n∏

α=1

D |~uα〉 e− 1
2
〈∆µ̄|γ̂−1|∆µ̄〉e

− 1
2
〈~uα|Â(z,[∆µ̄])δαα′−2Ĵαα′

˛

˛

˛
~uα′

E

(7.119)

The operator Â (z, [∆µ̄]) can now be split up into a part Â0 (z), independent of ∆µ̄, and a part Â1 (z, [∆µ̄])
depending on the configuration ∆µ̄ (see also (7.15a)).

〈

Z̃n
(

Ĵαα
′
)〉

=

∫ n∏

α=1

D |~uα〉 e−
1
2
〈~uα|Â0(z)δαα′−2Ĵαα′

˛

˛

˛
~uα′

E

(7.120)

·P0

∫

D |∆µ̄〉 e− 1
2
〈∆µ̄|γ̂−1|∆µ̄〉e−

1
2
〈~uα|Â1(z,[∆µ̄])|~uα〉.

For further evaluation we perform an integration by parts

〈~uα| Â1 (z, [∆µ̄]) |~uα〉 =

= −
∫

d3r uαi (~r) (∂j∆µ̄ (~r) ∂i + δij∂l∆µ̄ (~r) ∂l) u
α
j (~r)

=

∫

d3r ∆µ̄ (~r)
(
(∂ju

α
i (~r))

(
∂iu

α
j (~r)

)
+
(
∂lu

α
j (~r)

) (
∂lu

α
j (~r)

))

≡
〈

∆µ̄
∣
∣
∣ ((∂lu

α
i ) (∂iu

α
l ) + (∂lu

α
i ) (∂lu

α
i ))
〉

. (7.121)

To make sure the surface terms vanish it has to be presumed that the solutions of the equations of motion
are either periodical or vanish at the surface. The term in the second line of (7.120), named F in the
following, can therefore be rewritten as

F = P0

∫

D |∆µ̄〉 e− 1
2
〈∆µ̄|γ̂−1|∆µ̄〉e−

1
2
〈~uα|Â1(z,[∆µ̄])|~uα〉 (7.122a)

= P0

∫

D |∆µ̄〉 e− 1
2
〈∆µ̄|γ̂−1|∆µ̄〉e−

〈
∆µ̄
∣
∣ 1
2
((∂lu

α
i )(∂iu

α
l )+(∂lu

α
i )(∂lu

α
i ))
〉

(7.122b)

= P0

(∫

D |∆µ̄〉 e− 1
2
〈∆µ̄|γ̂−1|∆µ̄〉

)

· (7.122c)

·e
1
8
〈(∂lu

α
i )(∂iu

α
l )+(∂lu

α
i )(∂lu

α
i )|γ̂

˛

˛

˛

“

∂mu
α′

j

”“

∂ju
α′

m

”

+
“

∂mu
α′

j

”“

∂mu
α′

j

”E

= e
1
8

R

d3r d3r′ γ(~r−~r′)[(∂lu
α
i (~r))(∂iu

α
l (~r))+(∂lu

α
i (~r))(∂lu

α
i (~r))]· (7.122d)

·
h“

∂mu
α′

j (~r′)
”“

∂ju
α′

m (~r′)
”

+
“

∂mu
α′

j (~r′)
”“

∂mu
α′

j (~r′)
”i

= e
1
8

R

d3r d3r′ γ(~r−~r′)
h

1
2
(∂lu

α
i (~r))

“

∂mu
α′

j (~r′)
”

+ 1
2
(∂lu

α
i (~r))

“

∂ju
α′

m (~r′)
”

+
(7.122e)

+ 1
2
(∂iu

α
l (~r))

“

∂mu
α′

j (~r′)
”

+ 1
2
(∂lu

α
i (~r))

“

∂ju
α′

m (~r′)
”i2

where in the step from (7.122b) to (7.122d) again equation (7.36) was used. The equivalence of (7.122d)
and (7.122e) can be shown by expanding the occurring products explicitly and renaming of the indices.
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So now we have successfully eliminated the function ∆µ̄ (~r) by integrating over all possible configurations.
The problem with (7.122e) is now that it contains terms that are quartic in the field ~uα (~r). So the integral
over the field, which is needed for (7.120), is not of the Gaussian type any more. The solution to this
problem is a Hubbard- Stratonovich transformation. This means using (7.36) again, where

1

2
(∂lu

α
i (~r))

(

∂mu
α′

j (~r′)
)

+
1

2
(∂lu

α
i (~r))

(

∂ju
α′

m (~r′)
)

+ (7.123)

+
1

2
(∂iu

α
l (~r))

(

∂mu
α′

j (~r′)
)

+
1

2
(∂lu

α
i (~r))

(

∂ju
α′

m (~r′)
)

takes the role of |j〉. Some special care has to be taken as (7.123) is a representation of an element of a
product space of the original Hilbert space with the elements ∂lu

α
i (~r). To avoid misunderstandings the

bra and ket notation is not used in this case any more. The newly introduced integrational variable, which
is an element of the same product space, will be named

Λαα
′

ilmj (~r, ~r′, z) . (7.124)

The functional integration over all of these Λαα
′

ilmj (~r, ~r′, z) will be abbreviated by DΛ. The result for this
transformation of (7.122e) is

F = Cn
2

∫

DΛe
− 1

2

R

d3r d3r′ (γ(~r−~r′))−1
“

Λαα′

ilmj(~r,~r
′,z)

”2

·

·e
1
2

R

d3r d3r′ Λαα′

ilmj(~r,~r
′,z)

“

1
2
(∂lu

α
i (~r))

“

∂mu
α′

j (~r′)
”

+ 1
2
(∂lu

α
i (ṙ))

“

∂ju
α′

m (~r′)
”

+

+ 1
2
(∂iu

α
l (~r))

“

∂mu
α′

j (~r′)
”

+ 1
2
(∂lu

α
i (ṙ))

“

∂ju
α′

m (~r′)
””

= Cn
2

∫

DΛe
− 1

2

R

d3r d3r′ (γ(~r−~r′))−1
“

Λαα′

ilmj(~r,~r
′,z)

”2

·

·e
1
2

R

d3r d3r′
“

1
2
Λαα′

ilmj(~r,~r
′,z)+ 1

2
Λαα′

iljm(~r,~r′,z)+ 1
2
Λαα′

limj(~r,~r
′,z)+ 1

2
Λαα′

lijm(~r,~r′,z)
”

(∂lu
α
i (ṙ))

“

∂mu
α′

j (ṙ′)
”

= Cn
2

∫

DΛe
− 1

2

R

d3r d3r′ (γ(~r−~r′))−1
“

Λαα′

ilmj(~r,~r
′,z)

”2

· (7.125)

·e−
1
2
〈uα

i |∂l

“

1
2
Λαα′

ilmj+ 1
2
Λαα′

iljm+ 1
2
Λαα′

limj+
1
2
Λαα′

lijm

”

∂m

˛

˛

˛
uα′

j

E

.

The emerging constants, which are equal to 1 for n→ 0, are combined in the constant Cn
2

. After defining

Aαα
′

ij (z,Λ) := zδijδαα′ − δαα′

(
(λ̄0 + µ̄0)∂i∂j + µ̄0δij∂l∂l

)
− (7.126)

− ∂l
(

1

2
Λαα

′

ilmj (~r, z) +
1

2
Λαα

′

iljm (~r, z) +
1

2
Λαα

′

limj (~r, z) +
1

2
Λαα

′

lijm (~r, z)

)

∂m

we obtain for equation (7.120)

〈

Z̃n
(

Ĵαα
′
)〉

= Cn
2

∫

DΛe
− 1

2

R

d3r d3r′ (γ(~r−~r′))
−1

“

Λαα′

ilmj(~r,~r′,z)
”2

· (7.127)

·
∫ n∏

α=1

D |~uα〉 e−
1
2
〈~uα|Â(z,Λ)αα′

−2Ĵαα′
˛

˛

˛
~uα′

E

.

The integration over ~uα can now be done with the help of (7.35):

〈

Z̃n
(

Ĵαα
′
)〉

=

= Cn
2

C̃n
∫

DΛe
− 1

2

R

d3r d3r′ (γ(~r−~r′))
−1

“

Λαα′

ilmj(~r,~r′,z)
”2

e
− 1

2
Tr ln

“

Âαα′
(z,Λ)−2Ĵαα′

”

= Cn
2

C̃n
∫

DΛeSeff(Λ,Ĵ) (7.128)
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with

Seff

(

Λ, Ĵ
)

=

= −1

2

∫

d3r d3r′
1

γ (~r − ~r′)
(

Λαα
′

ilmj (~r, ~r′, z)
)2

− 1

2
Tr ln

(

Âαα
′

(z,Λ)− 2Ĵαα
′
)

≡ −
3∑

i,l,m,j=1

n∑

α,α′=1

1

2

∫

d3r

∫

d3r′
1

γ (~r − ~r′)
(

Λαα
′

ilmj (~r, ~r′, z)
)2

(7.129)

−1

2

∑

~k

3∑

i=1

n∑

α=1

〈

~k,~ei

∣
∣
∣

(

ln
(

Âαα
′

(z,Λ)− 2Ĵαα
′
)) ∣
∣
∣~k,~ei

〉

7.5.2 Saddle point approximation

Now
〈

Z̃n
(

Ĵαα
′
)〉

is approximated by

〈

Z̃n
(

Ĵαα
′
)〉

≈ Cn2

C̃n
∫

DΛeSeff(Λ0,Ĵ) (7.130)

where Λ0 is the point at which Seff

(

Λ, Ĵ = 0
)

has a saddle point. For the saddle point we make an

ansatz of the form

Λαα
′

ilmj (~r, ~r′, z) = −1

2
Σ (~r − ~r′, z) δαα′ (δimδlj + δijδlm) . (7.131)

This ansatz is motivated by the fact that the self-energy should be translationally invariant. Additionally
it should be diagonal in replica space and may have the same symmetry as the fluctuating part of the
elasticity tensor. With the Fourier transform

Σ
(

~k, z
)

=

∫

d3r e−i
~k~rΣ (~r, z) (7.132)

this leads to

Aαα
′

ij (~k, z) =

= zδijδαα′ + δαα′

(
(λ̄0 + µ̄0)kikj + µ̄0δijklkl

)

−δαα′Σ
(

~k, z
)

(δimδlj + δijδlm) klkm

= δαα′

(

zδij + (λ̄0 + µ̄0 − Σ
(

~k, z
)

)kikj +
(

µ̄0 − Σ
(

~k, z
))

δijklkl

)

(7.133)

and

Seff

(

Λ, Ĵ = 0
)

=

= −1

2
6 · n · V ·

∫

d3r
1

γ (~r)
Σ (~r, z)Σ (~r, z)

−1

2
· n · V

(2π)3

∫

d3k ln
(

z + ~k2
(

λ̄0 + µ̄0 − Σ
(

~k, z
))

+ ~k2
(

µ̄0 − Σ
(

~k, z
)))

−1

2
· 2 · n · V

(2π)3

∫

d3k ln
(

z + ~k2
(

µ̄0 − Σ
(

~k, z
)))

. (7.134)

Hereby it is used that kikj has the single eigenvalue ~k2 and the double eigenvalue 0. The saddle point
satisfies the relationship

∂Seff

(

Σ (~r − ~r′, z) , Ĵ = 0
)

∂Σ (~r − ~r′, z)

∣
∣
∣
∣
∣
∣
Σ(z)=Σ0(z)

= 0 (7.135)
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which leads to

Σ0 (~r, z) =

=
γ (~r)

6
· 1

(2π)
3

∫

d3k

(
~k2

z+~k2(λ̄0+2µ̄0−2Σ0(~k,z))
+

~k2
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)

e−i
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=
γ (~r)

6
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(2π)
3

∫

d3k
(

χL

(
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)

+ χT

(

~k, z
))

e−i
~k~r

=
1

6
γ (~r) (χL (~r, z) + χT (~r, z)) (7.136)

where
∂Σ
(

~k, z
)

∂Σ (~r, z)
= e−i

~k~r (7.137)

and

χL

(

~k, z
)

:=
~k2

z + ~k2
(

λ̄0 + 2µ̄0 − 2Σ0

(

~k, z
)) (7.138)

χT

(

~k, z
)

:=
~k2

z + ~k2
(

µ̄0 − Σ0

(

~k, z
)) (7.139)

was used. The Fourier transform of (7.136) is

Σ0

(

~k, z
)

=

∫

d3r e−i
~k~r Σ0 (~r, z)

=
1

6

1

(2π)3

∫

d3k′′γ
(

~k − ~k′
)(

χL

(

~k′, z
)

+ χT

(

~k′, z
))

(7.140)

with

γ
(

~k
)

=

∫

d3r e−i
~k~rγ (~r) . (7.141)

When evaluating (7.128), (7.129) and (7.133) in saddle point approximation it becomes clear that the
resulting generating functional is just the one of a system where the matrix elements of the operator
that describes the equations of motion is given by (7.133). This operator is diagonal in momentum
space. So we obtain from (7.117b) within the saddle point approximation for the Fourier transform of the
configurationally averaged Green’s function

〈

GL

(

~k, z
)〉

:= 〈G11 (k · ~e1, z)〉 =
1

z + k2
(

λ̄0 + 2µ̄0 − 2Σ0

(

~k, z
)) (7.142)

〈

GT

(

~k, z
)〉

:= 〈G22 (k · ~e1, z)〉 = 〈G33 (k · ~e1, z)〉 =
1

z + k2
(

µ̄0 − Σ0

(

~k, z
)) (7.143)

where GL

(

~k, z
)

is the longitudinal and GT

(

~k, z
)

is the transverse part of the Green’s function. The

influence of the disorder (as compared to the unperturbed Green’s function (7.52), (7.53)) is represented

by the self-energy Σ0

(

~k, z
)

, which has to be evaluated self-consistently as

Σ0

(

~k, z
)

=
1

6

1

(2π)
3

∫

d3k′γ
(

~k − ~k′
)(

χL

(

~k′, z
)

+ χT

(

~k′, z
))

(7.144)

with

χL

(

~k, z
)

= ~k2GL

(

~k, z
)

(7.145a)

χT

(

~k, z
)

= ~k2GT

(

~k, z
)

. (7.145b)

A similar result has been obtained by John et al. for a spatially correlated fluctuation of the mass density
[?]. It has to be noted that (7.145a) and (7.145b) are not the real dynamic susceptibilities. We have
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Figure 1: Lines: Reduced DOS as calculated in SCBA for the disorder parameters (from bottom to top) γ̃µ =

0.13, 0.14, 0.15, 0.16, 0.164, 0.1664. In all calculations we use units in which cT =1, kD = 1, ΘD = 1 (transverse sound

velocity, Debye wave number, Debye temperature). The longitudinal sound velocity is set cL =
√

2cT . For this choice we

have γ̃c
µ = 1/6.

Symbols: measured reduced density of states g(ω)/ω2 for some glasses. The frequency has been scaled with a characteristic

frequency, and the DOS has been multiplied with a scaling factor to obtain a ”universal plot”. ⊲: simulated Lennard-Jones

glass [1]; ◦: metallic glass [2]; △: PMMA [3]; ⋄: OTP [4]; ▽: SiO2 [5].

divided the equations of motions (7.10) by the mass density. So the real dynamic susceptibilities have an
additional factor 1/m0 where m0 is the mass density. We now apply the approximation

Σ0

(

~k, z
)

≈ Σ0

(

~k = 0, z
)

≡ Σ0 (z) . (7.146)

The assumption (7.146) is based on the fact that we expect the renormalized velocities of sound

c2L

(

~k, z
)

= λ̄0 + 2µ̄0 − 2Σ0

(

~k, z
)

(7.147a)

c2T

(

~k, z
)

= µ̄0 − Σ0

(

~k, z
)

(7.147b)

to be only weakly ~k-dependent in the relevant ~k-range. This leads to

Σ0 (z) =
1

6

1

(2π)
3

∫

d3kγ
(

~k
)(

χL

(

~k, z
)

+ χT

(

~k, z
))

(7.148)

These equations establish the vector form of the self-consistent Born approximation (SCBA) for the
disordered elasticity problem. For a short correlation length ξC the correlation function can be replaced
by a single parameter γ̃µ, which is proportional to the variance of δµξ3C . The SCBA then takes the form

Σ(z) = γ̃µ
∑

k<kD

[χL(k, z) + χT (k, z)] ; (7.149)

χL(k, z) = k2GL(k, z) = k2[−z2 + k2(c2L − 2Σ(z))]−1 ;

χT (k, z) = k2GT (k, z) = k2[−z2 + k2(c2T − Σ(z))]−1 .

It is easily seen that Eqs. (7.149) describes longitudinal and transverse sound-like excitations with disper-
sions ΩL(q)2 = [c2L−Re{2Σ(ω)}]q2, ΩT (q)2 = [c2T −Re{Σ(ω)}]q2, and a linewidth Γ(q) ∝ q2Im{Σ(ω)}/ω.
This is in qualitative agreement with the recent experimental and simulational findings However the
present theory is only valid in the low (ω, q) range, in which the detailed microscopic structure of the
material is not important.
As in the scalar model the system becomes unstable if γ̃µ exceeds a critical value γ̃cµ. For γ̃µ < γ̃cµ the
reduced DOS g(ω)/ω2 exhibits a BP that is enhanced and shifted towards lower frequencies as γ̃µ → γ̃cµ
(see Fig. 1). This critical value (γ̃cµ = 1/6 for c2L = 2c2T ) is much smaller than in the scalar version of the
theory (γ̃c = 1/2), which shows that the transverse excitations are much more sensitive to disorder than
the longitudinal ones.
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Figure 2: Insert: Frequency-dependent diffusivity according to the kinetic formula D(ω) ∝ ℓ0(ω) ∝ 1/[ωΣ′′(ω)] (dashed

lines) and according to the present theory D(ω) ∝ ℓ0(ω)ω2/g(ω) (full lines) for the disorder parameters (from right to left)

γ̃µ = 0.15, 0.164, and 0.1664. Main body: Thermal conductivity κ(T ) as calculated from Eqs. (7.149), (7.150), (7.153) and

(7.154) using the same D(ω) as in the insert. The bottom curves correspond to γ̃µ = 0.1664. For the inelastic scattering

parameter we used Cin = 0.02 in our units. (Taking smaller values of Cin results in a shift of the T 2 branch to lower

frequencies.)

It is emphasized that the BP marks the position where the mean free path (see below) starts to become
comparable to the wavelength of the excitations, and where Ω(q) and Γ(q) are of the same order of
magnitude.
Why does the BP appear at such a low frequency, although the elastic constants have a symmetric
distribution around their mean? As noted already in the literature, the disorder affects the vibrational
states in such a way that their eigenvalues become distributed like those of a random matrix The random
hybridization of the states leads to level repulsion so that the states ”need more space” in the frequency
domain than they would without the disorder. So they are both shifted up and down as compared to
a Debye spectrum. This effect becomes stronger with increasing γ̃µ. The BP marks the low-frequency
border of this effect and appears as a shoulder in g(ω). Only in the g(ω)/ω2 representation it appears as
a peak.
It has been noted recently that in most of the experimental DOS data g(ω)/ω2 exhibits an exponential
decrease over a large frequency range. As can be seen from the semilogarithmic representation of Fig. 1
the SCBA is compatible with these findings.
Let us now study the impact of the boson peak on the energy diffusivityD(ω) and the thermal conductivity
κ(T ). The latter can be calculated from the former via

κ(T ) ∝
∫

dωg(ω)D(ω)(ω/T )2
e~ω/kBT

[exp{~ω/kBT } − 1]2
. (7.150)

The energy diffusivity D(ω) can be treated as a classical quantity as long as we do not consider anharmonic
interactions. It can be calculated from the Kubo-type formula

D(ω) ∝ lim
η→0

2η
R

d3
rd3

r′〈(x−x′)2∆E(r,ω,η)∗∆E(r′,ω,η)〉
R

d3
rd3

r′〈∆E(r,ω,η)∗∆E(r′,ω,η)〉
, (7.151)

where ∆E(r′, ω, η) ∝ ∑

ij ǫij(r, z−)∗ǫij(r, z+) is the fluctuating part of the energy density with strain

tensor ǫij(r, z) = 1
2 [∇iuj(r, z) +∇jui(r, z)].

In order to be able to evaluate configurational averages of fourfold products of uj(r, zξ) appearing in Eq.

(7.151) we have to go beyond the saddle-point approximation. Defining the sums Λξξ
′

αα′ ≡
∑

ij Λξξ
′αα′

ijij we

put Λξξ
′

αα′(r, ω) = Λsp + ∆Λξξ
′

αα′(r, ω) and Seff = Sspeff + ∆Seff .

In terms of the spatial Fourier transforms ∆Λξξ
′

αα′(q, ω) of ∆Λξξ
′

αα′(r, ω) this yields a correction to the

effective action of the form ∆Seff =
∑

αα′

∑

ξξ′
∑

q[∆Λξ
′ξ
αα′(q)]∗Cξξ

′

(q, ω)∆Λξξ
′

αα′(q) with Cξξ
′

(q, ω) =

ϕξξ
′

L (q, ω) + 1
2ϕ

ξξ′

T (q, ω)− 1

2γ̃µ
and ϕξξ

′

L,T (q, ω) =
∑

k χL,T (k + q
2 , zξ)χL,T (k− q

2 , zξ′), where the functions
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Figure 3: Scaled thermal conductivity data of several glasses (from top to bottom): PB, PMMA, PET, B2O3, PS, SiO2,

as compiled by Freeman and Anderson [6] together with the full-line calculations of Fig. 2.

χL,T (k, zξ) have to be evaluated in SCBA. By inserting a suitable source field into the effective action we
can convince ourselves that C+−(q, ω) is just the inverse of the Fourier transform of the energy correlation
function that appears in Eq. (7.151) so that we have

D(ω) ∝ − lim
η→0

η
1

C+−(0, ω)
(
∂

∂qx
)2C+−(q, ω)|q=0 . (7.152)

Evaluating the numerator and denominator explicitly by means of the SCBA expressions, Eqs. (7.149),
of χL and χT we find

D(ω) ∝ ℓ0(ω)ω2/g(ω) ≡ D̃(ω) , (7.153)

where ℓ0(ω) ∝ [ωΣ′′(ω)]−1 is an effective scattering mean free path and Σ′′(ω) ≡ Im{Σ(z+)}. Equation
(7.153) is the main result of the present paper. It states that the expression for D(ω) that corresponds
to the SCBA is not equivalent to the kinetic expression D(ω) ∝ ℓ0(ω) used so far in the literature but
contains an “inverse boson peak factor” ω2/g(ω) which reduces the diffusivity in the BP regime in a much
stronger way than obtained from the kinetic expression. This is demonstrated in the insert of Fig. 2,
where we have compared the frequency dependence of the two formulae. Also the behavior above the BP
is quite different in our theory than as obtained from the kinetic formula.
In order to calculate the thermal conductivity by summing over frequency with the proper quantum
weight factor (Eq. (7.150)), we have to overcome a problem common to all harmonic theories of thermal
conductivity, namely the fact that for small frequencies D(ω) diverges as D(ω) ∝ ω−4 (Rayleigh law).
In reality this divergence is cut off by inelastic scattering for which one usually takes the scattering
from two-level systems. As we do not deal with anharmonic phenomena in the present paper we use for
simplicity

D̃eff (ω) = [D̃(ω)−1 + D̃in(ω)−1]−1 (7.154)

with D̃in(ω)−1 = Cinω, where Cin is a constant which should not vary very much from material to material
[?].
In Fig. 2 we compare the results for the thermal conductivity using the kinetic formula and the new
theory (Eq. (7.153) ). It is clear that the latter describes the experimentally observed structure much
better than the kinetic formula. In Fig. 3 we compare the theory with the experimental results for several
glasses as compiled by Freeman and Anderson [6]. It should be mentioned that there is no adjustment
or rescaling of the T/θD axis. It is clearly seen how the BP is related to the plateau: As the disorder
increases the plateau is more pronounced and shifted to lower temperatures. It is interesting to note that
obviously SiO2 is the material with the strongest disorder and that the Freeman-Anderson scaling may
serve as a means to classify glassy materials with respect to their degree of disorder.
In conclusion we have achieved to obtain a mean-field description of the boson peak in terms of transverse
elastic degrees of freedom which are affected by the frozen-in disorder. The high-temperature structure
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of the temperature dependence of the thermal conductivity can be explained by means of this theory as
a result of the strong elastic scattering in the frequency regime of the BP and above.
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