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ABSTRACT

Anderson Localization is an interference effect yielding a drastic reduction of diffusion of wave
packets such as sound, electromagnetic waves, and particle wave functions in the presence of
strong disorder. In optics, this effect has been observed and demonstrated unquestionably only in
dimensionally reduced systems. In particular, transverse localization (TL) occurs in optical fibers,
which are disordered rectangular to, and translationally invariant along, the propagation direction.
The resonant and tube-shaped localized states act as micro-fiber-like single-mode transmission
channels. Since the proposal of the first TL models in the early eighties, the fabrication technology
and experimental probing techniques, took giant steps forwards: TL has been observed in
photorefractive crystals, in plastic optical fibers, and also in glassy platforms, while employing
direct laser writing, it is now possible to tailor and “design” disorder. This review covers all these
aspects that are today making TL closer to applications such as quantum communication or
image transport. We first discuss nonlinear optical phenomena in the TL regime, enabling steering
of optical communication channels. Then we report on experiments concerning the nature of the
transversally localized states, showing a behavior of the localization strength with wavelength
unexpected by the traditional theoretical model. We present a new consistent theoretical approach
capable of describing all aspects of TL. Finally, we report on some quantum aspects, showing
how a single-photon state can be localized in some of its inner degrees of freedom and how
quantum phenomena can be employed to secure a quantum communication channel.
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1 INTRODUCTION
Transverse localization (TL) is found in media in which the refractive index is randomly modulated only
orthogonally to the direction of propagation. In these paraxial systems, AL sustains nondiffracting beams:
confined light tubes showing many potential applications including, fiber optics, quantum communication,
and endoscopic imaging. In this review we will review recent advances in disordered optical fibers, in
which confinement is obtained thanks to localization, discussing the advantages with respect to standard
fibers. First we will report about the latest experimental results on Transverse Anderson Localization: the
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migration of localized states due to nonlinearity, self-focusing, wavefront shaping in the localized regime,
and the single-mode transport in disordered paraxial structures. This last result is particularly important as
it bridges the physics of Anderson Localization to the single-mode properties of optical fibers.

Then we will show how the traditional description of Anderson localization, which was based on the
analogy to electrons in a random potential, turned out to be in error and led to the prediction of a localization
length depending strongly on the wavelength of the light, which was not observed. We also report on the
alternative correct theory, which relies on an analogy to acoustical waves in the presence of random elastic
moduli. Regarding quantum aspects, we will report on how a single-photon state localized in some of its
inner degrees of freedom could be an effective resource in quantum communication and cryptography,
increasing both the amount of information loaded per single particle and the security and performance of
protocols based on localized photon quanta. Finally, we will review the so-called random quantum walks in
which the dynamics of a single particle moving on a lattice conditionally to the state of an ancillary degree
of freedom, display localization under certain conditions. A further aspect of AL of quantum particles is
the behavior of the multi-particle interference and of the particle statistics in quantum walks. In the first
proof-of-principle photonic experiments AL has been observed in the two-photon wavefunction. In this
scenario, it could be possible to simulate even the fermionic statistics by proper manipulation of two-photon
entangled states generated by single-photon sources.

1.1 Modeling transverse localization: the beginning
In the last decades, the idea that Anderson localization could be applied to electromagnetic waves[1, 2] has

drawn the attention of the scientific community, stimulating experiments and conjectures. The excitement
was further propelled by the following observation of the coherent backscattering cone (the so called weak
localization)[3, 4, 5]. Several experiments claimed strong localization of light in buck media [6, 7, 8],
but these results are still today strongly debated [9, 10, 11, 12]. First Abdullaev in 1980[13] and then
De Raedt in 1989 [14] proposed an alternative form of localization for light: the transverse localization.
These authors described an optical system uniform in along the waves propagation direction, together with
refractive index fluctuations distributed in the plane normal to propagation (transverse to it). In this case,
starting from the Helmholtz equation[15] it is possible to obtain a paraxial equation for the slowly varying
envelope of the optical field light, in which the temporal dependence is assumed to oscillate harmonically.

We report here the formulation form De Raedt and coworkers, which will be then harmonized with the
recent results in the field of nonlinear optics. We start from the Helmholtz equation for the scalar field φ(r),
which represents one of the components of the electric field E(r, t)

φ(r) + k2
0n(x, y)φ(r) = 0 (1)

where k0 = ω/c = π/λ, ω is 2π times the frequency, c is the light velocity in the medium λ is the
wavelength and r = [x, y, z]. In the case of spatial longitudinal invariant system, the function n(x, y) is the
(transversely varying) refractive index. One can thus search solutions which have an oscillating envelope
along z (the longitudinal direction) :

φ(r) = a(r) exp (−ik0n0z) (2)

where n0 is the average refractive index in the disordered medium (disordered fiber). Equation 1 becomes
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Eq. (3) becomes

2ik0n0
∂a(r)

∂z
= [∇⊥ + U(x, y)]a(r). (5)

where the potential is defined by spatial distribution of he refractive index: U(x, y) = k2
0[n(x, y)2 − n2

0].
Equation 5 is formally equivalent to the Schrödinger equation driving electron localization[17]. In the case
of the electromagnetic field propagating in the media for light, the role of time is played by the longitudinal
coordinate z, while the role of potential is played by the refractive index distribution.

2 EXPERIMENTS ON TRANSVERSE LOCALIZATION
The first papers on localization where focused on theoretical modeling and numerical simulations. The
experimental realization of the effect, required more than a decade from the paper of De Raedt and
a several technological advances on the fabrication side. The difficulty relies in the realization of the
propagation invariant disorder, which is particularly challenging at optical wavelengths, where it is need to
realized “paraxial defetcts”, (i.e. parallel scattering tubes) with sufficient precision in alignment, invariance
along the symmetry axis for sufficient length and size comparable to that of light. The first approach to be
successful was the“writing methods ” based on photorefractive crystals, enabling to easily produce invariant
system employing Gaussiam beams. On a second stage the TL has been realized employing fiber drawing
technology, which enabled, longer structures, higher refractive indices, and exporting localization to an
application-ready platform. In the last stage, TL met Femtosecond direct laser writing, which enables the
direct control of the defects positioning enabling to investigate effects connected to the designed disorder.
In the following we will describe all this.
2.1 Early experiments

The first experimental observation of TL (and actually one of the most unequivocal manifestation of light
localization) has been reported by Schwartz and coworkers [18] employing photo-refractive media. The
authors employed the optical induction technique, [19] to transform the intensity distribution of an array
of parallel laser beams into a refractive index distribution thanks to the nonlinear response of the glassy
material. The distribution of the beam intensity is controlled with an interference masks thus enabling the
experimentalist to design the disorder configuration. The approach of Schwartz and coworkers induces a
small refractive index change (∆n ∼ 10−4) and a large disorder grain size (∼ 10 µm) thus the expected
transport mean free path ` (the spatial length over which light propagation direction memory is lost) is
large. The weak scattering regime resulting from the large `, is expected to produce a large localization
length ξ (the transversal section of the transmitting light tube) which, in principle, is detrimental for the
observation of the localization phenomenon especially if ξ becomes larger than the transverse extension of
the paraxial system. However this small (transverse) scattering strength is compensated by the very small
transverse wavevector (k⊥ = k0 sin θ), with θ being the incidence angle, see the sketch in Fig. 1).
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Figure 1. Sketch of transverse localization Sketch of the scattering structure and illumination for the
realization of the TL. Light, in the form of a plane wave defined by the wavevector k, is impinging on
the sample, with an azimuthal angle θ. The projection of the wavevetor on the X, Y plane (parallel to
the fiber facet) k⊥ and the projection of the wavevector on the propagation direction Z (kZ )are reported,
together with the spectral parameter

√
(E) = k⊥. The disordered system is typically consisting of a matrix

of refractive index n containing “inclusions” with a different refractive index n1. To work as “paraxial
defects” the inclusions should be in the form of tubes parallel to Z.

The big advantage of the optical induction, is the possibility to completely rearrange the refractive index
distribution, with a simple and fast rewriting procedure. The possibility to perform experiment with several
realizations of the n(x, y) enables to retrieve averaged-over-disorder quantities and this is a critical aspect
to correctly assess the presence of light localization. In particular the author demonstrated a dependence of
the localization length on the degree of disorder, thus demonstrating TL.
2.2 Optical fibers

In 2012, Arash Mafi and coworkers[20], demonstrated TL in a plastic optical fiber. They used a novel
kind of fiber named disordered binary fibers (DBF), based on the random mixing of tens of thousands of
plastic fibers of two types: poly-methyl-methacrylate and polystyrene. The two plastic were merged in
random fashion and then, after the realization into a fiber-drawing tower, a single structure composed by a
random puzzle of the two species was obtained. The binary fiber approach provides several advantages: i)
the disordered refractive index distribution is permanent, ii) the refractive index mismatch between the two
materials (∆n ∼ 0.1) is orders of magnitude higher than in the case of optical lattices iii) the optical fibers
are a mature technology ready for applications based on localization. Mafi and coworkers also fabricated
glass optical fibers hosting transverse disorder and demonstrated TL therein [21]. The glass platform is
extremely favourable for applications, providing very high refractive index contrast together with increased
stability and lower absorption.

2.3 Image Transport
In-fiber implementation of the Anderson localization, enables the propagation of localized beams with

the transverse size comparable to that of cores of commercial single mode optical fibers. Thus a single
disordered fiber with sufficient transverse extension can act as a coherent fiber bundle [22]. In [23] Mafi
and coworkers demonstrated image transport through disordered optical fibers up to 5 cm. The transported
image quality is comparable to or slightly better than the one obtainable with commercially available
multicore image fibres, with disorder reducing the pixelation effect present in periodic structures and
improved contrast. On the other hand, the imaging resolution is limited by the quality of the cleaving and
polishing of the fiber tip, while the transport distance is limited by the optical attenuation and the residual
longitudinal disorder resulting form the imperfect drawing process. In this sense a glass based disordered
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fiber, with an higher filling fraction and much lower losses has the potential to further improve endoscopic
disordered fibers.
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Figure 2. Localized states and nonlinearity Panel A reports the spectrum (blue thick line) retrieved
at the output of a disordered fiber (the collection area is 1 µm). The red thin line represents the source
spectrum. Panel B reports the shape of the most intense mode (at '801 nm), for five values of the input
power. Panel C Shows localization length versus input intensity. All data are from [24].

2.4 Nonlinearity in disordered optical fibers
There is a relevant debate about the fact that nonlinearity [25, 26] may enhance disorder induced

localization. The interplay between disorder and a nonlinear response may strongly modify the process
of disordered induced wave trapping in TL. In particular in the case of nonlocality, while localization
tend to reduce the inter-mode interactions, a nonlinear perturbation, extending beyond the region of the
localized state, could eventually produce some kind of action at a distance. The first experimental evidence
of non-localitiy acting together with Anderson localization in an optical fiber, has been shown in [24].
In that paper, the disordered fiber has been probed with a broadband laser beam, showing a distribution
of sharp peaks in the transmittance, as expected from the “resonant” behavior of the disorder induced
localized states (in Fig. 2a we report the spectrum transmitted from the fiber (blue) compared to the probe
spectrum (red)). The first evidence is that the spatial shape of the localized states is strongly affected by
energy probe beam power. This effect is reported in panel. 2b,c where the localized state shape is reported
as a function of the input power. The mode is seen to shrink when power is augmented.
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This self focusing results from the peculiar interaction between disorder and thermal nonlinearity.
In general, the refractive index of a nonlinear optical material, varies with the optical intensity I as
n = n0 + ∆n(x, y) + n2I , where ∆n(x, y) is the refractive index fluctuation due to disorder and n2

represent the coefficient of the nonlinear perturbation. A positive n2 coefficient results in a converging
wave front that can potentially surpass the diffraction limit. Conversely, a negative value of n2 produces a
de-focusing nonlinearity, thus the expansion of the beam. In plastic binary fibers, one expects the slow
thermal nonlinearity to yield a negative n2 thus de-focusing. However experimental measurements report
instead a focusing nonlinerarity. This unexpected effect is explained in reference [27]. In practice, if the
refractive index reduction is more pronounced in one of the two constituent materials of the binary fiber,
the refractive index mismatch may increase. Thus the overall refractive index reduction is compensated by
a stronger localization (smaller mean free path due to the refractive index mismatch enhancement). This
effect enables a local and optical tunability of the localization length, enabling to drive the position of the
localized states in a form of localization-mediated beam steering. The steering effect is reported in Fig. 3.
Panel 3A, shows light reflected by the fiber input: the probe beam (green spot on the left) and the pump
beam (red spot on the right) present. Panels 3B-D show the shape of the probe beam at the output as a
function of the pump beam power.Here it is possible to note how much the probe beam is attracted towards
the pump one Panel 3E shows the distance of the probe beam center as a function of the input power.
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Figure 3. Light steering in the localization regime. Panel A shows the input of the DBF, showing the
probe beam (green on the left) and the pump beam (red on the right) . Panels B-D report the probe beam
(pump light has been removed from the detector with a spectral filter) for several values of pump power.
Panel E shows the distance between probe and pump beam versus the pump power. Panels F-G, report the
modes density along the X axis and Y axis (respectively) and for several pump powers. Data from [24].
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Nonlocality obviously works also when more than two modes are involved. The behaviour of a group of
localized modes is visualized in panel 3F,G. Here we show (data from [24]) the mode density (number
of localized modes per square µm) along the x and y axis at the output of a fiber. The mode density has
been characterized for various values of the input power. The modes indeed appear to be attracted one
another and then after a “collision” they start to diverge. Following an approach very similar to that already
developed for solitons [28, 29], in the case of a nonlinear medium it is possible to write down a nonlinear
version of equation 5:

− 2ik0n0
∂a(r)

∂z
= [∇⊥ + 2k2

0∆n]a(r). (6)

where ∆n(x, y) = ∆nr(x, y) + ∆nNL(x, y), and the nonlinear part of the refractive index may be
approximated as nNL(x, y) = P (∆n1 + ∆n2|r − rL|2/2) where rL is the transverse position of the
localized state indexed with L (L = 1, 2....N with N the total number of localized states). By searching
solutions of the kind a(x, y, z) = ã(x, y) exp(iβz), eq. 6 becomes

1

k0n0
∇⊥ã− k∆nLã = (β + k∆n1P ) ã. (7)

where we introduced the input power P and the linear index perturbation coefficient ∆nL. Thus the
effect of nonlinearity is that to shift the eigenvalues with respect to the their linear value βL. The power
dependant eigenvalue is thus β(P ) = βL − k0∆nL. This shifting reflects on the localization length ξ in the
form

ξ(P ) = ξ(0)(1− P

2Pc
) (8)

with the critical power PC = |βL|/(2k∆n1).

To model the power dependent spatial displacement of modes, we can resort to the general Ehrenfest
theorem of quantum mechanics stating that for the Hamiltonian H = p2

2m + V (x) the relation m∂2〈x〉
∂t2

=

−
〈
∂V (x)
∂x

〉
(the quantum mechanical equivalent of the Newton law) holds. Applying it to Eq. (6) it is

possible to cast an equation for the positions of the localized states:

PL
∂2rL
∂z2

=

∫
IL(r− rL)∇x,y

∆nNL
n0

dr (9)

In Eq. (9), IL(r−rL) is the intensity profile of a localized state,∇x,y = ∂
∂x + ∂

∂y and PL =
∫
IL(r−rL)dr

plays the role of mass in a Newtonian system. As the various localized states are incoherent (appear at
different wavelengths), thus ∆nNL can be written as the sum of the individual perturbation produced by
each state:

∆nNL =
N∑
l=1

∆nNL,l '
N∑
l=1

Pl(∆n1 +
∆n2

2
(r− rl)

2). (10)

where the n2 behaviour has been approximated with a parabolic behavior ( Taylor series) with respect to
the spatial coordinate centered in the localization positions rl. Now we recall that the intensity distribution
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of each localized state IL(r− rL) is much sharper than the profile of the thermally induced refractive index
modification spatial extension ∆nNL,l thus we are allowed to treat it as a Dirac δ with area PL. Using 10
into 9 we obtain:

PL
∂2rL
∂z2

' −∇xL,yL
N∑
l=1

−|∆n2|PLPl
2n0

|r− rl|2 (11)

in which the constant therm ∆n1 has been discarded due to presence of the∇xL,yL operator. Equation
11 is a gravitation-like equation for the localized states. It predicts a pairwise, attractive, force between
each localized light tube. The force strength is proportional to the product of their power in the same way
the in gravitational force it is proportional to the product of masses. The more intense localized states will
attract the smaller ones, thus tending to collapse to a specific point. Being the system conservative after the
interaction the forces will spread again as shown in panels 3F and 3G.
2.5 Localized states and “single modes”

The Anderson localization (AL) scenario typically comprises a disordered system supporting states which
are strongly localized at different locations in space and at different energies [30]. These disorder induced
resonances, have thus a poor or negligible spatial and spectral overlap so that transverse energy transport is
substantially slowed down.

While the majority of the studies on AL are focused on the measurement of transport related quantities
(such as diffusion or conductance [6, 7, 8, 32]), it is also interesting to study the properties of disorder-
generated localized state. These light structures could be employed for energy storage[33, 26] or super
efficient lasing [34, 35]. Indeed localized states act exactly like a microresonator, with the difference that
the resonance is sustained by a disordered structure instead of a regular one. In photonics this kind of
”lonely” structures are extensively employed in several fields: the most successful applications are in the
field of fiber optics and laser resonators where they are named single mode resonators or single mode fibers.
The principle of operation is for both applications very similar: they are resonant structure designed to host
a single solution (typically the fundamental one) of the wave equation without (or with very small) losses.

In the case of disordered optical fibers one may ask, to which extent a localized state operates as a single
mode hosted in the core of single-mode fibers. This issue has been extensively studied in [31].

In contrast to multi-mode fibers, disordered binary fibres (DBF) show peculiar transmittance maps. The
transmittance map is the total (integrated over the whole fiber tip output) intensity measured as a function of
the injection location, and measured with the setup shown in Fig. 4. Light form a CW laser is tightly focused
into a 0.7 µm diameter spot at the DBF input. The fiber input tip is sustained by a motorized actuator which
enables to scan the injection location (r = [x, y]) along the input plane. The total transmittance T (r), is thus
obtained summing the whole intensity measured on the output plane (R = [X, Y ]) by Camera 2. A typical
transmittance map is reported in panel 4A. It is possible to note that high transmittance locations (green
spots) are appearing in sparse fashion and surrounded by a sea of barely transmitting locations. These
“hotspots” are the locations at which the input (which has a size much smaller than the the localization
length), couples efficiently to a transmission channel corresponding to a transversely localized state. The
fact that the transmittance map is sparse should be thus a consequence of the fact that the coupling condition
are very “strict” (resonance bandwidth is very small) and thus coupling happens only at specific locations.

Now it is interesting to further investigate the nature of these transmittance hotspots. The most accessible
feature is the intensity profile measured at the fiber output: this is reported at Fig. 5 for four different input
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Figure 4. Probing single mode nature of localized states The sketch reports a scheme of the
experimental setup. Legend: CW laser - continuous wave laser; M - Mirror; BS - beam-splitter; OBJ -
objetcive; DBF - disordered binary fiber. Panel A reports the transmittance map in a 10 µm side field of
view. Data from [31].

locations. The input locations are identified by small colored dots labeled (ai bi,ci, di) in Fig. 4A. The
intensity profiles 5B and 5C correspond to injection locations in the same hotspot and they produce two
very similar output intensity profiles. On the other hand, two very close input locations lying in a barely
transmitting area (5C and 5D) produce two very different output intensity profiles. The intensity profile
corresponding to an high efficient transmission channel is thus a fingerprint of the channel. In the same
way the Gaussian profile going out from a single mode fiber is an indistinguishable signature for efficient
coupling of a laser beam to the fundamental mode of the fiber’s core.

To verify this picture, one should observe where the mode’s fingerprint is found while scanning the input
of the fiber. To perform this measurement systematically, the authors engineered a specialized observable
that is the Degree of Similarity Q(r1, r2)

Q(r1, r2) =

∫
I(R, r1)I(R, r2)dR (12)
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Figure 5. Mode Fingerprints Each Panel reports the spatial profile of the intensity found for the
correspondent location in Fig. 4: i.e. panel A shows the fingerprint for location (a), B for location
(b) ecc. Data from [31].

normalized such that Q(r, r) = 1. The fingerprint of a transmission channel is the output intensity profile
retrieved at the location of higher transmittance. So for the transmission channel located at ai produces
a Q-map Q(ra, r2) =

∫
I(R, ra)I(R, r2)dR, where ra corresponds to location of higher intensity of the

mode ai. By computing Q(ra, r2) for all r2 in the field of view, we retrieve the Q-map reported in Fig.
6A. The white/bluish area (where Q ' 1) corresponds to the dwelling area of the mode: the set of input
locations from which the mode can activated. The dwelling area is very sharp, meaning that when the
mode is activated no other modes (which would modify the fingerprint and immediately lower the Q) are
activated.

A B C

Figure 6. Q-maps Panels A, B and C show Q-maps for modes (a) (e) and (c) respectively. Data from [31].

A similar picture is found in Fig. 6B for the mode in ei. The two modes are only barely overlapping:
energy is not flowing from one degree of freedom to the other. The dark area in both maps corresponds to
locations in which no intensity is transferred to the localized state. Note that the small displacements of the
input inside the dwelling area the do not cause any modification in the mode fingerprint. Multi-mode light
structures, would give rise to a pronounced flickering of the image due to the difference in phase delay over
different modes summing in different fashion when input is displaced. The absence of such flickering is a
relevant proof of the single-mode nature of the light structures supported by the DBFs.

On the other hand Fig. 6C, related to mode (ci), provides a Q-map almost entirely empty: in absence of a
transmission channel, retrieved light is not coupled to a localized state. In this case the fiber behaves in
way similar to a (very leaky), large-core multi-mode fiber where a small translation of the input produces
a complete change of the output due to interference (thus an immediate decay of the Q value). Thus: i)
high transmission channels in a DBF are sparse; (ii) they are separated by a barely transmitting “sea”
;(iii) independently on how (and where) light is coupled to a DBF each transmission channel retains its
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fingerprint (output profile ); (iv) modes are excited in alternative fashion (i.e the same input location
activates only a transmission channel at time). In other words localized states of a DBF behave exactly how
single modes from single mode fibers showing the same property: the “resilience to the launch conditions”.
2.6 Designed disorder in Glass fibers

Disorder binary fibers (DBF) are an unique architecture, [36]: a fiber without cores (thus similar to a
multmode fiber) , capable to host localized/single mode solutions. However, the high absorbance of the
plastic component materials, together with fabrication-induced scattering losses, degrades consistently
their transmittance efficiency, which remains very limited especially if compared with the properties of
silica fibers capable to transmit light for kilometer with few losses. It is thus very promising to obtain TL
on disordered glassy fibers. The first observation of transverse Anderson localization in a glass optical
fiber has been obtained by Mafi and coworkers [21]. The glassy disordered fiber has been obtained, in
that case starting form a “porous satin quartz” rod of 8 mm in diameter and 850 mm in length from which
a single 150 m long fiber (diameter 250 µm) has been obtained. In this system, the non homogeneous
distribution of disorder (lower air hole density in the fiber central region), produces localized states only at
the borders of the fiber. This uneven distribution of disorder forbids a complete optical exploitation of the
waveguide section. Moreover the positions of the defects (the air bubbles) is random (it results from the
natural occurrence of pores in the rod) and cannot be tuned by the user at the fabrication stage.

On the other hand the concept of designed disorder [37] is becoming an intense field of research with
applications ranging from the fabrication of waveguides, polarizes or to light harvesting [38, 39, 40]. In
fact, in some cases, disordered structures or solution, even if fully deterministic, can be more favourable in
specific tasks than periodic ones. For example, disordered arrays of defects can be employed to produce a
structure displaying different propagation regimes, (full photonic bandgap, Anderson localization or free
diffusion) depending on the wavelength employed [41].
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Figure 7. Localization length in Direct laser written disorder Localization length ξ versus degree of
disorder χ, measured in a D Glassy substrate in which paraxial defects have been realized with FDLW.
Data from [42].

In order to implant “designed disorder” into glassy optical fibers, the authors of [42] employed the
femtosecond direct laser writing (FDLW) technique. FDLW [43] exists since early nineties, and enables
nanometric resolution in surface ablation. In in transparent materials, bulk micro machining can be achieved
trough nonlinear (two or three photon) absorption thus enabling the fabrication of photonic or microfluidic
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devices. The strong confinement of the nonlinear absorption volume, together with positioning performed
by piezo-actuators with nanometric resolution, enables the fabrication of three-dimensional and complex
structures. The modifications by nonlinear absorption yield local refractive-index change (at low power)
or even void formation (at high power). Importantly the changes produces are permanent, thus the low
power approach enables to produces durable wave guides. The group of A. Szameit and coworkers reported
several experiments on waveguide arrays in which disorder is introduced in the inter-waveguide coupling
factors. This approach enabled to investigate Anderson localization [44, 45, 46, 47], defect localization
[48], and also topological insulation [49]. This wave-guide based approach, indeed, enables to access
a plethora of intriguing physical phenomena, however it requires the individual fabrication of each of
the transmission channels. In this sense DBF support localization in a different manner: they can be,
indeed, seen as a continuous meta-material, potentially hosting localized states at any location, which could
support the resonance condition. The most evident consequence of this difference is that localized states
translate gradually their position when wavelength is changed in DBF, while they can be hosted only at the
waveguides location in waveguides-arrays.
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Figure 8. A) The experimental setup is an evolution of the one shown in Fig. 4, in which probe beam
is generated either by a tunable laser (tunability range 0.690 µm and 1.04 µm) or at a fixed wavelength (
532 nm) laser. The back-reflected light is then visualized by the camera CCD1 through the beam-splitter
(BS) to focus the beam at the fiber entrance. The piezo devices control the laser injection location. The
transmitted light is collected by the objective OBJ2 ad imaged on camera CCD2 with a magnification
of ×50. Panel B reports localization length ξ versus wavelength λ for both numerical simulations and
experiments. Experimental data are from [50] while numerical data are from [51].

In order to transfer the advantage of DBF to glasses Gianfrate and coworkers [42], employed FDLW in a
a non-traditional way. In particular they employed an objective with high numerical aperture ( NA=0.65)
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to generate very small diameter tubes with refractive index larger than the surrounding medium. These
paraxial structures play the role of a transversal scatterer, because their reduced transverse dimension
does not enable to support propagating modes: they act as paraxial defects (see sketch in Fig. 1). This
new generation of optical fibers based on paraxial defects have been studied in [42], where the authors
show how the localization strength depends on the degree disorder properties. The authors demonstrate
that the confinement properties depend on the degree of disorder 0 < χ < 1: a parameter tuned at
the fabrication stage. The paraxial defects are fabricated at the transverse coordinates [XMx , YMy ] =
[δ(Mx + χθMx), δ(My + χθMy)], where Mx and My are integer numbers Between 0 and S, δ is the lattice
size and θ is an uniform random number between [-0.5 and 0.5]. When χ is 0 the paraxial defects are
located in a square lattice with cell side δ and S2 defects (square with side δS). For χ > 0 each defect
is displaced of a random amount δχθMxalong X and δχθMy along y, generating a square lattice with an
increased degree of randomness. Fig. 7 reports the measured localization length ξ as a function of χ. It is
possible to note that the localization length decreases up to 0.6 and then starts to increase again. While the
decrease is naturally expected as a natural consequence of increasing disorder, the increasing behaviour
above χ = 0.6 is resulting from the appearance of overlapping paraxial defects which are effectively
decreasing the defect density.

The realization of localization induced by direct laser written defects is the fist step for a new generation
of glass based optical fibers characterized by low absorption and greater stability with respect to their
plastic counterpart. The possibility to directly tune the defect position will open the possibility to test the
concepts of designed disorder directly in optical fibers, thus paving the way towards potentially disruptive
applications.

2.7 Experimental verification of the theory of Anderson localization
The traditional theoretical description of Anderson localization of light, and, in particular, transverse

Anderson localization [51, 52] predicts a pronounced dependence of the localization length on the of the
light wavelength. This is implied by the dependence of the potential U(r) in Eq. (5) on k0 = 2π/λ. The
authors of [50] investigated this effect experimentally (see a sketch of the setup in Fig. 8A ) in order
to verify the validity of the current theory of Anderson localization of light. The experimental setup
is shown in Fig. 8. Panel 8B reports the the localization length ξ versus the incident-laser wavelength:
no dependence on the wavelength is retrieved in the range 0.55 µm≤ λ ≤ 1 µm. The explanation of
this discrepancy with the theoretical predictions will be fully explained in the following section, where
a comprehensive and correct theory of transverse Anderson localization of light in optical fibers is presented.
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3 THEORY OF TRANSVERSE ANDERSON LOCALIZATION OF LIGHT
3.1 Wave equation for electromagnetic waves in a disordered environment

As indicated in the introduction, almost the entire literature on Anderson localization (AL) of light
is based on the potential-type wave equation, i.e. a wave equation in which the spatially fluctuating
permittivity ε(r) appears as a coefficient of the double-time derivative of the wave function (electric field).
In a recent article [50] we have shown that this wave equation is in error and leads to a fictitious wavelength
dependence of the localization length in transverse localization, which is not observed in the experiments.
We now review the derivation of the traditional wave equation, show, which error was made and present
the derivation of the correct wave equation.

Maxwell’s equations in a medium with spatially varying permittivity ε(r) are

∇ ·B(r, t) = 0 ∇ ·D(r, t) = 0 D(r, t) = ε(r)E(r, t) (13a)

∇×B(r, t) =
1

c2
∂

∂t
D(r, t) ∇× E(r, t) = − ∂

∂t
B(r, t) (13b)

For deriving a wave equation for the electromagnetic fields one can either solve for the electrical field
E(r, t) or for the magnetic field B(r, t). The traditional procedure (potential-type approach, PT) was to
solve for E(r, t):

ε(r)

c20

∂2

∂t2
E(r, t) = −∇×∇× E(r, t)

= ∇2E−∇
(
∇ · E(r, t)

)
≈ ∇2E , (14)

where, in the last step∇ ·E = 0 was assumed. In the frequency regime we obtain the following stochastic
Helmholtz equation

− ω2 ε(r)

c20
E(r, ω) ≈ ∇2E , (15)

which, separating the fluctuations of the permittivity as ε(r) = 〈ε〉+ ∆ε(r), can be rewritten as
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ω2 〈ε〉
c20

E(r, ω) ≈
(
−∇2 + ω2−∆ε(r)

c20︸ ︷︷ ︸
V(ω)

)
E(r, ω) (16)

Replacing the electric field E(r, ω) by a scalar field φ and introducing k0 as k0 =
√
〈ε〉ω/c0 we recover

Eq. (5). As said in the introduction, this equation is mathematically equivalent to a stationary Schrödinger
equation for an electron in a frequency-dependent random potential V(ω). This equivalence made it possible
to transfer the complete electronic theory of AL [32, 53] to classical electromagnetic waves [54, 55, 56, 57].
We call this approach “potential-type” (PT).

We now want to check the validity of the approximation made in Eqs. (14) to (16) We have

0 = ∇ · D = ∇ ·
(
ε(r)E(r)

)
= ε(r)∇ · E(r) + E(r) · ∇ε(r) (17)

from which follows [58]

∇ · E = − 1

ε(r)
E · ∇ε(r) 6= 0 (18)

One can estimate the error made in (14) by inserting for E a wave with wavelength λ. If the scale, on
which the permittivity is varying, is large with respect to λ (eikonal limit), the term on the right-hand side
of (18) is negligible. However, if this condition is fulfilled, one deals with very weak disorder. In this case
one has in three dimension delocalization, and in two dimension a very large localization length, exceeding
macroscopic sample dimensions, which would make the observation of AL impossible. So, for stronger
disorder, where one might have a chance for observing AL, the scale of the permittivity fluctuations must
be of order λ. In this case the divergence of E is not negligible. This renders the approximation made in
the PT wave equation (14) invalid.

On the other hand, if we solve the Maxwell equations (13a) for B we obtain (using∇ ·B(r, t) = 0)

∂2

∂t2
B(r, t) = −∇× c20

ε(r)
∇×B(r, t) = ∇ · c

2
0

ε(r)
· ∇B(r, t) (19)

Eq. (19) leads to the following stochastic Helmholtz equation

− ω2B(r, ω) = ∇ ·M(r) · ∇B(r, ω) , (20)

where we have defined the spatially fluctuating dielectric modulus as M(r) = c20/ε(r).

Eq. (20) is mathematically equivalent to the Helmholtz equation for an elastic medium with zero bulk
modulus and a spatially fluctuating shear modulus M(r). This equation is exact and is called the modulus-
type (MT) approach1. A theory for a medium with finite (constant) bulk modulus K and a spatially
fluctuating shear modulus has been worked out [59, 60, 61] by some of the present authors and applied for
explaining the anomalous vibrational properties of glasses, in particular the enhancement of the vibrational
density of states with respect to the Debye law (“boson peak”). Our present theory of Anderson localization

1 Because of the relation (18) there is no analogous equation for E(r, ω). The corresponding equation, which involves the local gradients of M(r), is much
more complicated.
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of light relies on the analogy to this case. Essentially one needs only to take the K → 0 limit for this theory
and obtain a theory for light diffusion and localization in disordered optical systems.

In order to describe transverse Anderson localization we first map this problem to a two-dimensional
problem. We then use the paraxial approximation to map the z dependence of the wave profiles to the time
dependence in an effective Schrödinger equation. For estimating the diameter of the large-z profile, the
localization length ξ we apply the scaling theory of Anderson localization [62, 32], which is equivalent
to the renormalization-group approach to the generalized nonlinear sigma model [63, 64, 65]. For the
calculation of the z dependence of the localization length we then use the self-consistent localization theory
of Vollhardt and Wölfle [53, 66, 67, 57].
3.2 Description of optical fibers with transverse disorder

We now consider an optical fiber with transverse disorder, i.e. the permittivity exhibits spatial fluctuations
in x and y direction, but not in z direction. Without of loss of generality we may replace the vector B(r, ω)
by a scalar B(r, ω). In our treatment the vector character of the wave function only enters into the sum
over modes, where one has to insert a factor of two.

Because our system is translation invariant with respect to the z direction we may take a Fourier transform
with respect to z: B(ρ, kz, ω) =

∫
dzeikzzB(ρ, z, ω), where ρ = (x, y) is the position vector in the

transverse plane. We then obtain an effective two-dimensional Helmholtz equation(
[k2

0 − k2
z ]︸ ︷︷ ︸

E

+∇ρ ·
M(ρ)

〈M〉
· ∇ρ

)
B(ρ, kz,E) = 0 (21)

Here k0 = ω/
√
〈M〉 = 2π/λ is the wavenumber of the input laser beam, λ is its wavelength, and θ is the

angle between the direction of the incident beam direction and the optical axis (azimuthal angle), see Fig. 1.
E = k2

0 − k2
z = k2

⊥ = k2
0 sin2 θ is called the spectral parameter. It replaces the spectral parameter ω2 of a

true two-dimensional system.

For θ � 1 we can make the approximation E = (k0 + kz)(k0 − kz) ≈ −2k0(kz − k0) ≡ −2k0∆kz,
which is equivalent to the paraxial approximation [68], introduced in the introduction. The wavenumber
∆kz refers to the Fourier component of the envelope A(ρ, z) = B(ρ, z)e−ik0z, which describes the beats
of the wave function B(ρ, z) in z direction. In the paraxial limit A(ρ, z) obeys the paraxial equation(

i
∂

∂τ
+∇ · M(ρ)

〈M〉
· ∇
)
A(ρ, τ) = 0 , (22)

where the “time” τ = z/2k0 has the timension of a squared length. Eq. (22) is equivalent to the Schrödinger
equation of an electron in a medium with a randomly varying effective mass. It is related to a stochastic
tight-binding model with a spatially fluctuating hopping amplitude (“off-diagonal disorder”) [69].
3.3 Mean-field theory for wave propagation in a turbid medium
3.3.1 Average Green’s function and self-consistent Born approximation (SCBA)

We now assume that the fluctuations ∆(ρ) = −
[
M(ρ)− 〈M〉

]
/〈M〉 of the local moduli are Gaussian

distributed with probability density

P [∆(ρ)] ∝ exp

{
− 1

2γ

∫
dρ

Ac
∆(ρ)2

}
(23)
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with γ = Var[∆(ρ)], and Ac is an area proportional to the square of the correlation length `c of the
fluctuations.

The Green’s function corresponding to the stochastic wave equation (21) obeys

[
s−∇ρ ·

(
1−∆(ρ)

)
· ∇ρ

)
G(ρ,ρ′, s) = −δ(ρ− ρ′) , (24)

where s = E + iε is the complex spectral parameter.

Using field-theoretical techniques [64, 65, 70, 59] the configuration integral can be performed exactly,
leading to an interacting field theory, which can be transformed to an effective field theory for a variable
Q(r, s), which replaces the fluctuations ∆(ρ). A saddle-point approximation then leads to a mean-field
equation for the saddle-point variable Qsaddle(s) = Σ(s) (self energy), which is obtained by minimizing
the saddle-point action.

This equation is the self-consistent Born equation (SCBA), which may be obtained also from the lowest-
order perturbation theory [71] and then replacing the non-interacting Green’s function by the perturbed
one. The averaged Green’s function for the perturbed (disorder-affected) system is written in terms of a
complex self-energy function Σ(s) in the following way:

G(q, s) =

∫
d{ρ− ρ′}eiq[ρ−ρ′]〈G(ρ,ρ′, s)

〉
=

1

−s+ q2
[
1− Σ(s)

] =
1

1− Σ(s)

1

q2 − k2
Σ(s)

(25)

≈ 1

1− Σ′(0)

1

q2 − k2
Σ(s)

(26)

where we have introduced an E dependent complex wave number kΣ(s) = k′Σ(E) + ik′′Σ(E), which obeys

k2
Σ(s) =

s

1− Σ(s)
(27)

The SCBA self-consistent equation for Σ(s) is

Σ(s) = γ
∑
q

q2G(q, s) = γ
∑
q

q2

−s+ q2
(
1− Σ(s)

) =
γ

1− Σ(s)

(
1 + sG(s)

)
(28)

with the local Green’s function

G(s) =
∑
q

G(q, s) =
1

1− Σ′
2

q2
c

∫ qc

0
qdq︸ ︷︷ ︸∑

q

1

−kΣ(s)2 + q2
=

1

1− Σ′
1

q2
c

[
ln(q2

c − k2
Σ)− ln(−k2

Σ)

]
. (29)
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Here we introduced an upper cutoff qc ∝ `−1
c , which terminates the spatial spectrum of the modulus

fluctuations2. From the local Green’s function we obtain the spectral density as

ρ(E) = Im
{

1

π
G(s)

}
=

1

π

2

q2
c

∫ qc

0
dqqG′′(q,E) =

1

q2
c (1− Σ′)

θ(q2
c (1− Σ′)− E) (30)

For E� q2
c we have

Σ′(E) ≈ Σ′(0) =
γ

1− Σ′(0)
(31)

which can be solved to give

Σ(0) =
1

2

(
1−

√
1− 4γ

)
γ�1
≈ γ (32)

Making a variable change v = q2 and neglecting the imaginary part of k2
Σ in the denominator, we obtain

for the imaginary part of the self energy

Im
{

Σ(s)
[
1− Σ(s)

]}
= Σ′′(E)

[
1− 2Σ′(E)

]
= γIm

{
1

q2
c

∫
dv

v

−k′2Σ + v

}
= γ

π

q2
c
k′σ

2
(E) , (33)

from which follows
Σ′′(E) = γE

π

q2
c

1

1− 2Σ′(E)

1

1− Σ′(E)

γ�1
≈ γE

π

q2
c

(34)

We now want to relate Σ′′(E) to the mean-free path of the scattered waves. We may Fourier-transform the
Green’s function (24) into ρ space to obtain

G(ρ, s) = − 1

4(1− Σ′)
H

(1)
0

(
kΣ(s)ρ

) ρ�k−1
Σ−→ − 1

4(1− Σ′

√
2

πkΣ(s)ρ
eikΣ(s)ρ (35)

Here H(1)
0 (z) is the Hankel function of first kind [74]. For large ρ the intensity is then given by

∣∣G(ρ, s)
∣∣2 =

1

8πkΣ(s)ρ
e−ρ/`(E) (36)

with the mean-free path given by [? ]

1

`(E)
= 2k′′(E) = k′Σ(E)

Σ′′(E)

1− Σ′(E)
∝ E3/2 (37)

As stated above the spectral parameter E stands for the squared frequency ω2 in a true two-dimensional
classical-wave system. We therefore identify ` ∝ E−3/2 as the Rayleigh law for wave attenuation of the
quasi two-dimensional waves. As in all other classical-wave systems [70] the disorder scattering for small
frequencies vanishes due to the Rayleigh divergence. Therefore, as we shall see below, for E → 0 the
disorder becomes irrelevant, and in this limits there is no scattering (and hence no localization). But this
result is somewhat trivial, because a ray launched exactly parallel to the optical axis, and hence to the
direction of the the microfibers, does not experience the disorder.

2 We could have included correlations of the modulus fluctuations in our calculations [72, 73, 71]. Then the q integration in the resulting SCBA equation goes
over the Fourier transform of the correlation function K(q). The latter then terminates the fluctuation spectrum. So introducing the infrared cutoff qc includes
schematically this effect.
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3.3.2 Diffusion of the wave intensity
The multiple scattering of waves in a turbid medium can be well described in terms of a random walk

along the possible paths among the scattering centers [75]. The scattered intensity may be shown to obey a
diffusion equation. Our object of interest is therefore the intensity propagator

P (q, p,E) =
1

(2π)2

∫
d2k

〈
G(k+1

2q,s++1
2ω)G(k−1

2q,s−−
1
2ω)

〉
=

∫ ∞
−∞

dρ

∫ ∞
0

dτe−pτe−iρqP (ρ, τ,E) (38)

with p ≡ −iω+ε, ε→ +0. The second line defines P (q, p, E) as the spatial Fourier transform and Laplace
transform (with respect to τ ) of the intensity propagator P (ρ, τ,E) in the ρ = (x, y) plane. For deriving
the diffusion description it is assumed that after each scattering event the memory of the phase of the
wave function is lost. P (q, p,E) then obeys a diffusion equation with a E dependent modal “diffusivity”3

D(p,E): (
∂

∂τ
−∇2

ρD0(E)

)
P (ρ, τ,E) = δ(ρ)δ(τ) ⇔ P (q, p,E) =

1

p+ q2D0(E)
(39)

As a matter of fact, whithin the saddle-point approximation (SCBA) one is able to calculate the mean-field
diffusion coefficient D0(E), which corresponds to the diffusion approximation. This diffusivity is the
analogue to the electronic diffusivity D0 = σ0/ρF , where σ0 is the Drude conductivity and ρF the density
of states at the Fermi level. D0 is obtained by considering the Gaussian fluctuations of the field variable
Q(ρ, s) around Qsaddle(s) [64, 65, 70, 59? ] and is given by

D0(E) =
`(E)k′Σ(E)

q2
cρ(E)

(40)

This diffusivity may be related to a dimensionless modal conductivity g0 by the Einstein relation

g0 = q2
cρ(E)D0(E) = `(E)kΣ(E) =

D0

1− Σ′(0)
=

1− Σ′(E)

Σ′′(E)

γ�1
≈ q2

c

π

1

γE
(41)

We see that g0 and D0 in our model are equal to each other to within a factor of order unity. In two
dimension the conductivity is also equal to the conductance. This quantity is relevant to the scaling
approach of Anderson localization, which will be explained in the beginning of the next section. For E→ 0
the conductance g0 diverges due to the Rayleigh law [70].
3.4 Anderson localization
3.4.1 Wave interference and the scaling theory of Anderson localization

The diffusion approximation assumes that after each scattering event the phase memory is lost. However,
if one follows the scattering amplitudes with phases klij , (where lij is the distance between two adjacent
scattering centers,) in a frozen medium, the phase memory is in principle not lost. This has dramatic
consequences for recurrent partial paths, i.e. paths with closed loops: The phase of the recurrent path is
exactly equal to that going in the reverse direction (see Fig. 9). This leads to destructive interference and
therefore to a decrease of the diffusivity and, as we shall see, for d = 2 to a vanishing of the diffusivity.

3 It is important to note that the “diffusivity” D(p,E) is dimensionless, because the “frequency” p = −iω + ε has the dimension of an inverse squared length.
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1.

2.

Figure 9. Visualization of two interfering scattering parths, one going clockwise along the loop, the other
anticlockwise.
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Figure 10. Sketch of the scaling function as anticipated by Abrahams, Anderson, Licciardello and
Ramakrishnan [62].

For describing the interference mechanism Abrahams et al. [62] have proposed an ingenious scaling
scenario. They consider the dependence of a dimensionless conductance g on the sample size L in d
dimensions and make the Ansatz

g(L) ∝ Lβ ⇔ β =
d ln g

d lnL
(42)

For β > 0 g scales towards infinity with increasing L, for β < 0 g scales towards zero. In the metallic
regime (g →∞) the conductance should depend on the size L of a sample as g(L) ∝ σLd−2, where σ is
the conductivity, so that β(g →∞) = d− 2 (see Fig. 10). On the other hand, for localization (g → 0) one
expects g(L) ∝ e−L/ξ, where ξ is the localization length. This transforms to β(g → 0) ∝ ln g. Abrahams
et al. then assumed a smooth interpolation between the two limits to exist (see Fig. 10). By means of
perturbation theory they further estimated the correction due to the interference terms to be negative and
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Figure 11. Logarithm of the localization length ln ξ(E) ∝ g0(E) as a function of the spectral parameter
E = k2

0 sin(θ)2 Full line: MT calculation. Broken lines: PT calculation for several wavenumbers k0.

proportional to 1/g. Their final result for the scaling function is

β(g) =
∂ ln g

∂ lnL
= d− 2− c

g
(43)

where c is of the order of 1. In 3 dimension the scaling with increasing size L depends on the initial value
of the conductance, i.e. on the conductivity in diffusion approximation (Drude approximation for electrons).
However, as can be seen from Fig. 10 in 2 and 1 dimension g scales always towards 0, i.e. for L → ∞
there is always localization. The scaling function (43) is the same for the nonlinear sigma model for planar
ferromagnetism, as noticed by Wegner [63]. Later a field-theoretical mapping from a stochastic Helmholtz
equation to a generalized nonlinear sigma model was established and applied to the electronic Anderson
problem [64, 65] as well as the PT description of the classical-wave problem [70, 1] and the MT description
of acoustical [59] waves and light [50].

In two dimensions the scaling equation (43) is solved as

g(L) = −c lnL/L0 + g0 (44)
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The localization length is given by the value L takes for g1 ≈ 1. The reference conductance g0 is that in
the diffusion approximation given by Eq. (41). For the reference length we take L0 = 1

qc
e−1/c. Then we

obtain the well-known formula for two dimension [76]:

ξ(E) =
1

qc
eg0(E)/c (45)

In Fig. 12 we have plotted the localization length as a function of the spectral parameter using the
SCBA for calculating g0 [50]. We compare the result with the one obtained from the PT approach, in
which the disorder potential explicitly depends on the wavenumber k0 of the laser. We make the following
observations;

• In the MT approach the localization length diverges for E→ 0 (Rayleigh divergence). As mentioned
above, this must be so, because a ray launched exactly in the direction of the optical axis does not
explore the transverse disorder. On the other hand, this property is violated by the PT approach

• The MT theory gives a spectrum only for positive values of E. This is required for a spectrum of
bosonic excitations. This stability requirement is violated by the PT approach

We already showed at the end of Section 2 that from our measurement of the average localization length of
transverse-localized fibers we did not find any dependence on k0. So both from the theoretical as well as
the experimental standpoint the PT approach is invalid and should be abandoned.

3.4.2 Analytical description of the z dependence of the radius of the localized modes
The localization properties of the wave intensity can be efficiently be described by a frequency-dependent

diffusivity D(p,E). The generalized diffusion propagator then takes the form

P (q, p,E) =
1

p+ q2D(p,E)
(46)

An important quantity for describing the spread of the wave intensity in the (x, y) plane is the mean-square
displacement

R2(τ,E) =

∫
d2ρρ2P (ρ, τ,E) = −∇2

qP (q, τ,E)

∣∣∣∣
q=0

, (47)

√
R2(τ,Ei) is the radius of the mode Ei as a function of τ = z/2k0. For the Fourier transform we have

R2(p) = −∇2
qP (q,E, p)

∣∣∣∣
q=0

=
4

p2
D(p,E) (48)

In the case of delocalization limp→0D(p,E) takes a real value D(0,E). This implies that limτ→∞R
2(τ)

increases linearly with τ as R2(τ,E) ∝ D(0,E)τ . As we have stated above, this does not happen in
two dimensions. Instead limp→0D(p,E) = 0 and limτ→∞R

2(τ) = const. = 4ξ2(E), where ξ(E) is the
localization length. We may define a frequency-dependent squared localization length

ξ2(p,E) =
1

p
D(p,E) , (49)
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which obeys ξ2(p=0) = ξ2(E). Its Laplace backtransform therefore obeys ξ2(E) =
∫∞

0 ξ2(τ,E). For the
mean-square displacement we have

R2(p,E) = 4
1

p
ξ2(p,E) ⇔ R2(τ,E) = 4

∫ τ

0
dτ ′ξ2(τ ′,E) (50)

According to the localization theory of Vollhardt and Wölfle [53, 66, 67, 57] in d dimensions the resistance
increase due to the interference effect with respect to the diffusion-approximation resistance 1/D0(E) is
given by [53, 66, 67, 57]

1

D(p,E)
− 1

D0(E)
=

c′

D0(E)

∫ qc

0
qd−1dq

1

p+ q2D(p,E)
(51)

where c′ is, again, a constant of order unity4. The term on the right-hand side is just the contribution due to
the closed paths , which is proportional to limρ→0 P (ρ, E, p) [77].

In d = 2 Eq. (51) can be re-written as

1− D(p,E)

D0(E)
=

c′

D0(E)

∫ qc

0
qdq

1
p

D(p,E) + q2
=

c′

2D0(E)
ln

(
1 + q2

c
D(p,E)

p

)
(52)

For p → 0 this equation has only a solution if D(0,E) = 0, i.e. the system is localized. Replacing
limp→0 p/D(p,E) on the right-hand side of Eq. (52) by ξ2(E) and setting D(E, p=0) = 0 on the left-hand
side, we obtain

1 =
c′

2D0(E)
ln
(
1 + q2

c ξ
2
0(E)

)
(53)

from which follows

ξ2(E) =
1

q2
c

(
e

2
c′
D0(E) − 1

)
≈ e

2
c′
D0(E)

(54)

Taking into account D0 = g0[1 − Σ(0)]
(
Eq. (41)

)
, we recover the scaling result (45) if we take

c′ = c
(
1− Σ(0)

)
. It has been demonstrated in Ref. [67] that quite generally the scaling relation (43)

can be derived in d dimensions from the self-consistent theory.

In order to evaluate ξ2(p,E) and R2(p,E) at finite p we represent ξ(p,E) as

q2
c ξ

2(p,E) ≡ ξ̃(p,E) =
q2
cD0(E)

p+ ν(p,E)
≡ 1

p̃+ ν̃(p,E)
(55)

where we introduced the dimensionless quantities p̃ = p/q2
cD0(E) and ν̃(E) = ν(E)/q2

cD0(E). The
self-consistent equation (52) then takes the form

1− D(p,E)

D0(E)
=

ν̃(p,E)

p̃+ ν̃(p,E)
=

1

g̃0(E)
ln

(
1 +

1

p̃+ ν̃(p,E)

)
(56)

with g̃0(E) = 2D0(E)/c′.

4 In the original work of Vollhardt and Wölfle [53, 66, 67] the inverse mean free path `−1 has been taken as ultraviolet cutoff. Both, because in our case `(E)
depends strongly on the spectral parameter E and for consistency reasons we use the correlation cutoff qc as UV cutoff.
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Figure 12. Left panel: The function χ(p̃) evaluated by the self-consistent theory, Eq. (56) as a function of
real p̃ (blue continuous curves), compared with the approximation (58), in which ν(p) has been replaced
by ν(0,E) = 1/ξ̃2(E) (orange dashed curves). The values of g̃0 are (from bottom to top) 1, 2, . . . , 10.
Right panel: The corresponding functions R̃2(τ̃)

We further introduce a dimensionless mean-square displacement

R̃2(τ̃) =
1

4
q2
cR

2(τ) =

∫ τ̃

0
dτ̃ ′ξ̃(τ̃ ′) (57)

with τ̃ = τq2
cD0(E).

In the left-hand panel of Fig. 12 we show the function ξ̃(p̃), Eq. (55), evaluated from the self-consistent
equation (56), as a function of real p̃. We compare with an approximation introduced recently by the present
authors [78] in a description of transverse Anderson localization of light in the potential-type formalism

ξ̃(p̃) ≈ 1

p̃+ 1/ξ̃2(E)
⇔ R̃2(τ̃) = ξ̃2(E)

(
1− e−τ̃ /ξ̃

2(E)

)
(58)

with ξ̃(E) = eg̃0(E)− 1. We see that for small g̃0(E) this approximation works well. However for large g(E),
i.e. for small γ and/or E there is a region with a fractal frequency dependence ξ̃(p̃) ∝ p̃−0.9. Accordingly in
the corresponding τ̃ regime the squared mode radius R̃2(τ̃) (right-hand panel of Fig. 12) does not increase
linearly but sublinearly arrording to R̃2(τ̃) ∝ τ̃0.9. Obviously in the weakly localized regime, where the
localization length might exceed the sample dimensions, the mode still does not behave like a delocalized
mode, for which R2(τ) would increase linearly. Instead the weakly localized modes exhibit anomalous
diffusion with a fractal increase of the mean-square displacement.
3.5 Discussion

In this section we have presented a comprehensive theory of transverse Anderson localization of light.
We started to derive the appropriate stochastic Helmholtz equation for electromagnetic waves with spatially
fluctuating permittivity. We have shown, that the potential-type approach, which is analogous to the
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Schrödinger equation for an electron in a random potential with the potential depending on the spectral
parameter E, relies on an approximation, which is only applicable to very weak disorder, and, for transverse
disorder leads to a wavelength dependence of the localization length. Such a depencence is not observed.
In the newly introduced modulus-type approach, which is exact, such a dependence is not predicted, in
agreement to our experiments.

Whithin the modulus-type approach the localization length, i.e. the radius of the transmitted modes,
diverges as the spectral parameter (which is proportional to the square of the azimuthal angle between the
direction of the incident radiation and the optical angle) vanishes. This must be so, because a ray in the
direction of the optical axis does not experience transverse disorder. The potential-type approach, however,
implies a finite mean-free path at zero spectral parameter, and the predicted spectrum penetrates into the
negative range of E, rendering the predicted specrum unstable.

Using the self-consistent localization theory of Vollhardt and Wölfle we presented an analytic theory for
the development of the width of the mean radius of the localized modes as a function of z. We showed that
in the weakly localized regime (small disorder variance and/or small spectral parameter) the ray does not
spread diffusively but exhibits anomalous diffusion.

At the end of this section we would like to comment on the possibility of observing localization of light
in three-dimensional systems. As mentioned in the introduction, despite of intensive efforts, this has not
been observed until now. We emphasized that the modulus-type theory is analogous to sound waves in
solids with spatially fluctuating shear modulus. There it is known that localized states exist at the upper
band edge, which in solids is the Debye frequency. In turbid media the analogue of the upper band edge
is the inverse of the correlation length of the disorder fluctuations. So if it would be possible to prepare
materials with spatial fluctuations of the dielectric modulus, which have a correlation length of the order of
the light wavelength, we expect chances for observing 3-dimensional Anderson localization.
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4 NON-CLASSICAL ANDERSON LOCALIZATION OF LIGHT
According to the seminal studies by Anderson regarding single-particle evolution in lattices, the disorder
in the system leads to localization of the wave-function. As we have illustrated in the first sections,
such a phenomenon is well explained by quantum mechanics in the case of electrons and by classical
electrodynamics in the case of light in the classical limit, i.e. no quantum effects involved. In particular,
localization is the result of constructive and destructive interference among the multiple paths of the
particle. Being an explicit example of the wave-like behaviour of quantum particles, the observation of
AL in single-photon states does not display any substantial difference with respect to the experiments
carried out with classical light. However, single-photons are one of the most promising candidates for
quantum information processing in the context of computation, simulation, and cryptography [79]. In
this framework, AL has been extensively investigated in photonic quantum walks [80, 81, 82, 83]. The
latter are versatile platforms for several tasks [84, 85], including simulation of quantum transport effects
such as the AL. Furthermore, localized single-photons have been used as a resource to realize quantum
cryptography protocols [86, 87]. The investigation of AL at the single-particle level reveals distinctive
features when particle-particle interference is taken into accounts [88, 89]. This occurs when more than
one particle evolves in the disordered lattice. In this case, other quantum properties of the system, such as
particle indistinguishability and statistics, play a crucial role in the spatial distribution of the multi-photon
wave-function.

This section regarding quantum AL is organized as follows. First, we introduce the quantum walks model
and present single-photon experiments in the context of AL. We further provide practical applications
of localized single-photon states in quantum cryptography protocols. Second, we illustrate two-photon
quantum walks experiments and the effect of particle statistics in the localization.

4.1 Single-photon localization
4.1.1 Quantum walks

Quantum walks (QW) was first formulated as a generalization of classical random walks (RW) [90]. In
the discrete-time evolution, the walker is replaced by a quantum particle which lives in an Hilbert space of d
levels corresponding to the position in the lattice. In the RW the walkers goes forward or inward according
to the result of a coin toss. In the quantum case, the coin toss is a unitary operator that manipulates an
additional two-dimensional degree of freedom embedded in the walker. Then the state of a quantum walker
is described by the eigenstates of the position operator w = {|d〉} and by the coin basis c = {| ↑〉, | ↓〉}.
The evolution is regulated by two operators, the coin Ĉ that performs rotations in the coin subspace and
the shift Ŝ. The latter moves the position of the walkers conditionally to the coin state c according to the
following expression:

Ŝ =
∑
d

|d+ 1〉〈d| ⊗ | ↑〉〈↑ |+ |d− 1〉〈d| ⊗ | ↓〉〈↓ | (59)

The evolution operator in the discrete-time scenario is the combination of the coin and shift action, namely
Un = (Ŝ · (Ĉ ⊗ Îw))n, where n is the number of single time-step evolution and Îw is the identity operator
in the walker’s position space. It is possible to retrieve the evolution operator through the HamiltonianH of
the system describing a particle evolving in a lattice as U(t) = e−iHt. In this scenario it is straightforward
to translate the above description to the continuous-time case. The main feature of the QW with respect
to a RW with an unbiased coin is the distribution of the walker for t → ∞. Such distribution depends
by the initial state of the particle and the walker tends to spread towards the far ends of the lattice. This
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is in contrast to the typical diffusive behaviours of a RW. This discrepancy is due to the superposition
principle in quantum mechanics that gives rise to the interference effects typical of waves. The formulation
of QWs is very general and feasible for different applications and experimental implementations in the
quantum information and quantum computation fields [91, 92, 84]. In particular, the formulation of QWs
is very suitable for realization in photonic platforms [93]. In the various experiments of photonic QWs,
the dynamic of the walker has been encoded in the degree of freedoms of single photon states, such as
the polarization for the coin subspace and, for the walker’s position, the optical path in bulk [94, 95]
and integrated interferometer [96, 97, 98, 99, 100, 101], the time arrival to the detector [102], the modes
supported by a multi-mode fiber [103], the angular [104, 105, 106] and the transverse momentum [107].

The QWs evolution operator can be modified for different tasks. For examples, the QWs paradigm
has been exploited to observe topological-protected states [94, 108], to simulate system with non-trivial
topology [105, 107] and to engineer high-dimensional quantum states [106]. For what concerns AL in
discrete-time QWs, single-photon localization has been investigated by introducing site-dependent disorder
in the QW evolution. Such condition is achieved implementing site-dependent coin operators. One example
is the coin in the form

Ĉd =
1√
2

(
eiφ
↑
d 0

0 eiφ
↓
d

)
·
(

1 1
1 −1

)
, (60)

where random extracted phase-shifts φ↑(↓)d operates locally on the site d thus breaking the transnational
symmetry of the systems. In Ref. [80] the authors present a discrete-time QWs encoded in the time arrival
and polarization of single-photon states. The apparatus comprises two loops of different lengths. At each
step the photons generated by a single-photon source choose the shortest or the longest path according to
the polarization state that represents the coin space. The position of the particle is encrypted in time. The
coin operators in the expression (60) were manipulated to reproduce (1) the ballistic spread of the quantum
walker by fixing φ↑(↓)d = 0, (2) AL localization with random extracted phase-shift and (3) the diffusion
regime that resembles the behaviour of a classical random walker. This last condition is the result of a
dephasing between the two polarization in (60) larger than the coherence time of the single-photon packets,
that destroys the interference among the paths. This experiment was one of the first proof of AL at the
single-photon level. Another example in this direction is Ref. [81]. Here the discrete-time QW was realized
through a integrated optical circuit composed by a network of beam-splitter and phase-shifts [109, 110].
Single-photon localization was observed in the output modes of the optical circuit.

Further examples of single-photon localization regards continuous-time QWs. They are typically realized
exploiting continuous-coupling among wave-guide arranged in a lattice in photonic chips. In this scenario,
the time coordinate is replaced by the distance z covered during the propagation in the waveguides. The
single-photon wave-function is given by the equation [111]:

− i∂ψd
∂z

= cd,dψd + cd,d−1ψd−1 + cd+1,dψd+1, (61)

where ψd is the single-photon amplitude in the site d and the coefficients cij are the couplings among the
modes of the lattice. The length of the device and the couplings coefficients can be engineered to observe
AL, as shown in the single-photon experiments in Refs. [82, 83].

In all the mentioned quantum experiments it is worth noting that the localized single-photon distribution
has the same properties of the localized distribution of classical light described in section 2-3. The interest
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in quantum localization is not restricted only to the pure observation of localized state. In the following
section we illustrate an application of localized single-photon in quantum cryptography.
4.2 Quantum cryptography through localized single-photon states

Quantum computing could undermine the security of some of the current cryptographic protocol. An
example is given by the RSA protocol whose security is based on the hardness for a classical computer
to find prime-factors of large integer number, while a quantum computer solves the same problem
in polynomial time [112]. This motivates the need of a different approach to produce more secure
cryptographic procedure. Quantum cryptography is the field of quantum information that has the aim to
formulate secure protocol based on the rules of quantum mechanics. In the quantum protocol BB84, two
agents, Alice and Bob, exchange a stream of qubits, i.e. quantum states that lives in a two-dimensional
Hilbert space. Alice randomly chooses to prepare the state according to two possible basis {| ↑〉, | ↓〉} and
{|+〉, |−〉}, where |±〉 = 1√

2
(| ↑〉 ± | ↓〉). Bob receives the signal and decides randomly in which basis

measuring the qubits. He extracts a stream of bits corresponding to 0 when he measures ↑ (+) and to 1
when he measures ↓ (−). Then, Alice and Bob’s streams of bits could not correspond when Bob measures
in a basis different from the Alice’s choice. The two agents compare part of their bit strings and, according
to the resulting bits error rate, they can detect an eventual eavesdropper attack and extract a secure key
[113]. Variants of this protocols exploits entangled states or high-dimensional states instead of qubits. The
latter are a generalization of qubits and describe a particle living in a d-dimensional space. The so called
qudits provide advantages in the amount of the information storage in the state send to the receiver, and
security [114].

X

a): Bob reads in X

b): Bob reads in K

K

Alice encodes in X

Alice encodes in K
c): Bob reads in X

d): Bob reads in K

Las
er

Spatial Light 

Modulator
BS

t

t

K

t

X

t

or

or

or

Multimode Fiber

Multimode Fiber

K

t

X

t

D

D

D

D

Sent:

Sent:

Received:

L1 L2

L1 L2

L3

L3

A

B

Figure 13. Experimental apparatus for quantum cryptography using single-photon localized states. Alice
encodes her qudits by preparing single-photon states via a spatial light modulator. She chooses between
two basis, namely (K) the eigenstates of the multimode fiber that localize after the propagation, and (X) the
states that spread after the fiber. Bob measures in the K basis or in the X basis inserting one or two lens
before the detection stage. After the comparison between the basis choices by Alice and Bob, they can
extract a secure key.

Single-photon localized states are examples of qubits, where the d-levels correspond to the positions
assumed by the photons. In Ref. [86] the authors implement a BB84-inspired protocol using localized
states generated by disordered optical fiber. The experimental setup is similar to the one showed in Fig. 13.
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Alice modulates the single photons obtained by an attenuated laser with a spatial light modulator. In this
way she can choose to send states that localize after propagation in the fiber in either momentum or position
at the fiber’s output tip. Bob chooses the basis of the measurement by placing or removing a lens before
the single-photon detector. This implementation of the BB84 exploits the duality between the real space
and the Fourier space of the lens: a state localized in the first space is indeterminate in the other one and
vice-versa. The authors prove the feasibility of the protocol using localized single-photon wave-function
even in the experimental conditions. A recent work [87] exploits a similar setup for performing a slight
different cryptografic protocol. In this experiment the information about the basis chosen by Alice is not
shared publicly after the communication between the agents. Alice codifies her message and the basis in
two different photons that are send at different random time. At the end of the protocol Alice and Bob
compare the measurements about some random pair of photons and then, they are able to extract a secure
key. This protocol offers advantages in terms of sensitivity to noise and resilience to “photon number
splitting” eavesdropper attack.
4.3 Multi-photon localization

Single-photon localized states do not add any further insight into AL with respect to experiments based on
waves interference. Nevertheless, the proper description of quantum light is within the framework of second
quantization. This representation is necessary for describing many-particle evolution. The electromagnetic
field can be expressed by the boson annihilation â and creation operators â†, i.e. the operators that destroy
or create exactly one photon in a given mode [115]. Such description considers the particle statistics and,
consequently, explains the quantum interference effects due to particles’ indistinguishability. This change
of paradigm in the state’s description consists basically in expressing the same state in terms of occupation
numbers of the field modes. The systems is then individuated by the evolution operator acting to the
creation and annihilation operators. In the case of QWs, that, as we have seen in the previous section,
corresponds to a linear transformation among modes of a given degree of freedom, the single creation
operators representing one photon in the mode i will be

b̂†i =
∑
j

Uij â
†
j (62)

where Uij are the element of the QW evolution operator in the occupation number representation. One of
the most famous example of two-photon interference, the Hong-Ou Mandel (HOM) experiment [116] is
explained by the latter formulation. Here two indistinguishable photons entering in a beam-splitter from
different ports come out always together in the same output port. This phenomenon is a first example of the
role of particle indistinguishability in the evolution of multi-photon states.

Two-photon interference has been investigated in the regime of AL. The main result that emerges from
these studies is that the way in which the system approaches localization strongly depends on its initial
state. In Fig. 14 we report numerical simulations illustrating the two-photon state localization investigated
in the theoretical [88, 117, 89] and the experimental works [81, 82, 83] carried out in this topic. The first
row (Fig. 14 a-d) report the two-photon distribution G(x1, x2) defined as the probability to detect one
photon in the position x1 and the other in x2, averaged over different disorder configurations, i.e

G(x1, x2) = 〈〈|〈0|âx1 âx2 |ψ〉|2〉〉 = 〈〈|Ux1,0Ux2,1 + Ux2,0Ux1,1|2〉〉, (63)
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Figure 14. Two-photon quantum localization. a-d Correlations functions G(x1, x2) of two-photon wave
function in a one-dimensional Anderson lattice. The four scenarios report the distributions for different
input states in an intermediate time evolution, where the two photons have the same chance to be localized
or to spread balistically. a) photons are prepared in a separable state in which they occupy two adjacent
sites. b) Entangled state in the polarization degree of freedom (H: horizontal polarization, V : vertical
polarization) that is anti-symmetric under with respect to the exchange of the particles paths. Such state
mimics the fermions statistics. Indeed, according to the Pauli exclusion principle, the probability to detect
the two photons in the same site is zero. c-d) Entangled states in the occupation number of two sites. The
distribution changes depending by the sign in the superposition. e-f) The function g(∆) calculated in the
localization area, i.e x1, x2 ∈ [−4, 4] and x1 − x2 = ∆ for the four initial states.

where 〈〈·〉〉 is the average over the disorder, the bra 〈0|âx1 âx2 is the projection on the state with the
photons in the positions x1 and x2 respectively and the last terms expressing the probability through the
matrix U of eq. (62). The distributions reported in the figure illustrate the state of the system after an
intermediate time evolution. In such condition the single-photon wave-function still preserves the ballistic
spread typical in the QW, while it is starting to localize. In the second row (Fig. 14e-h) we show the
function g(∆) =

∑
x1−x2=∆G(x1, x2) in the region of localization. All the quantities are normalized

to the maximum and averaged among 1000 configurations of disorder. Figs. 14a-b and 14e-f compare
the two functions G and g for the evolution of the initial states â†0â

†
1|0〉 and 1√

2
(â†0,H â

†
1,V − â

†
1,H â

†
0,V )|0〉.

These states correspond to two photons created in the site 0 and 1 with different symmetries respect
to the exchanging operations between the two particles. The first one reproduces the evolution of two
non-interacting bosons. Here, we observe the typical tendency of bosons to assume the same states just
mentioned in the description of HOM experiment, i.e to find the two photons in the same position with
high probability. In contrast, the second state is anti-symmetric under exchanging of the two particles and
presents the opposite behaviour. The probability to find the photons in the same site is zero. These states
simulate de facto fermion statistics and the Pauli exclusion principle. To reproduce an anti-symmetric state it
is necessary to exploit an additional degree of freedom, in this case the polarization. The boson and fermion
statistics in AL has been observed experimentally for the first time in Ref. [81] by exploiting polarization
entangled states and an integrated photonic chip. Here a single-photon source based on parametric down
conversion from a nonlinear crystal generates a pair of entangled states in polarization such as the state
investigated in Fig. 14b and f. The state evolves in a discrete QW platform realized in an integrated device
that comprises a network of beam-splitter and phase-shifts (see section 4.1). The coin operators in the form
of eq. (60) are sampled properly to observe the AL. The second type of states investigated in literature are
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illustrated in Fig 14c-d and g-h. These states are entangled in the occupation number of the sites 0 and
1. The output distribution depends on the sign in the superpositions of the contributions â†20 and â†21 , that
create two photons in the respective modes. Such entangled states in the context of AL were investigated
for the first time in [82] and then in [83]. The pair of entangled photons are generated via parametric
down conversion. These photons are strongly correlated in the momentum space. Such correlations are
transferred among the position of the QW’s lattice by means of a lens system. In this way the photons are
coupled in the waveguides of the integrated device implementing the QWs. The two experiments with such
entangled states have been performed exploiting continuous-time QW by random couplings among the
waveguides arranged in a lattice (see section 4.1). In particular, in the most recent experiment (Ref. [83])
the authors report the results averaged over different configurations of random couplings thus representing
one of the most exhaustive experiment on two-photon AL localization.

4.4 Discussion
In this section we have illustrated the Anderson localization (AL) in the context of quantum light,

presenting the most relevant results for what concerns the experimental realizations and applications. We
have first formulated AL in the context quantum walks (QW). We have then described the use of localized
states in quantum cryptography. In the end we have illustrated the problem of localization in quantum
optics, by considering multi-photon states. Up-to-date the investigation of multi-photon AL localization
was confined to the two-photon case. The reasons are various. It is still debated in the literature whether the
results reported in the quantum experiments can be reproduced by classical light, i.e by wave interference.
For instance, in Ref. [117] it was shown that some features of the distribution reported in Fig.14 could be
observed with a laser propagating in a circuit engineered with a proper disorder. Other concerns regard
the intrinsic hardness to simulate the evolution of non-interacting bosons such as photons scattered by a
random networks [118]. This prevents finding an analytical solution for the systems with a large number of
photons. All these considerations explain why the present investigations about quantum AL were basically
carried out from a phenomenological perspective. This motivates further studies to provide a more rigorous
framework for quantum AL.
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