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We develop an analytical theory for describing the transverse localization properties of light beams
in optical fibers with lateral disorder. This theory, which starts from the widely used paraxial
approximation for the Helmholtz equation of the electric field, is a combination of an effective-
medium theory for transverse disorder with the self-consistent localization theory of Vollhardt and
Wölfle. We obtain explicit expressions for the dependence of the transverse localization length on the
direction along the fiber. These results are in agreement with simulational data published recently
by Karbasi et al. In particular we explain the focussing mechanism leading to the establishment of
narrow transparent channels along the sample.

PACS numbers: 65.60.+a

By exploiting the paraxial approximation it is possible
to treat electromagnetic classical waves in a quasi one-
dimensional environment by a Schrödinger-like equation
[1], in which the longitudinal coordinate plays the role of
a time coordinate. This makes it quite easy to simulate
and predict the behavior of light beams in laser cavities,
in optical fibers, or in many other technological relevant
systems with transverse confinement on a micron scale.

Presently the paraxial equation is exploited in a variety
of propagation invariant systems such as photonic crystal
fibers [2] or step index fibers [3], which are nowadays the
backbone of our communication network. Usually optical
fibers are homogeneous strands of a transparent material,
not only because unwanted scattering disturbs the opti-
cal transmission, but also because symmetric systems are
easier to understand and study. However, light guiding
may be achieved also for transversely inhomogeneous or
even disordered structures, exploiting, in fact, Anderson
localization.

In the last 50 years Anderson localization, i.e. the
disorder-induced arrest of wave diffusion [4] has grown
to be a fascinating field of the physics of electrons [5–9],
atomic matter waves [10, 11] and classical waves [12–20].
It was proposed by Abdullaev and Abdullaev [21] and
later, independently, by DeRaedt et al. [22] that in an
optical fiber, which is constructed in such a way that
the dielectric constant varies in the transverse direction,
but is invariant along the fiber axis, the electromagnetic
field should exhibit Anderson localization in the x, y di-
rection, but remain delocalized in the z direction. This
is of interest for applications, because by the localization
mechanism a light beam stays confined in the transverse
direction as in a waveguide. It was not until eight years
later that Schwartz et al. [23] found a realization in a
disordered optical lattice. In these experiments the dis-
order was rather weak, which led to localization radii of
a fraction of a millimeter. Later Karbasi et al. [24] de-
vised samples of different polymer constituents to achieve
localization lengths of the order of a visible light wave-
length. Karbasi et al. [25] showed that by means of such
fibers image transport for endoscopy is as good as in com-
mercially observable multicore fibers and that the quality
can be optimized by increasing the disorder contrast e.g.
by using tiny glass fibers with air in between.

While the impact of the disorder and the sample ge-
ometry on the localization length and the ray character-
istics in the transverse-localized samples was studied by
numerical simulation by DeRaedt et al. [22] and Karbasi

et al. [26], a detailed analytic theory is missing, although
an adequate analytical theory for quantum [9, 27–31] and
classical waves [9, 32] exists in principle and has been suc-
cessfully applied to localization dynamics in geometries
different to those relevant for transverse localization [33–
35]. Such a theory is of importance, because explicit for-
mulae for the impact of the external parameters onto the
formation of the localized channels are indispensable for
the design of a disorder-based optical waveguide. This
is relevant for the optimization of Anderson-localization
based image-transport devices, the study of the channel-
to-channel crosstalk and, more generally, for a deeper un-
derstanding of the transverse localization phenomenon.
In this letter, starting from the equation that has been

simulated in Refs. [22, 26] we formulate such an analytic
theory of transverse Anderson localization by combining
the effective-medium theory of waves in a random envi-
ronment [12, 13, 36–38] with the localization theory of
Vollhardt and Wölfle [27]. This will be achieved in three
steps: Firstly we derive a theory for the averaged single-
particle Green’s function of the stochastic paraxial wave
equation using the self-consistent Born approximation
(SCBA) [12, 13, 36–38] within a field-theoretical frame-
work. We then derive an expression for the unrenormal-
ized transverse diffusivity by going beyond the SCBA
saddle point. Finally we use the localization theory of
Vollhardt and Wölfle [27] for the two-particle Green’s
function with the unrenormalized diffusivity as input.
We consider a transparent material, which has a spa-

tially varying index of refraction n in the transverse di-
rection denoted by the vector ρ = (x, y). The compo-
nents of the electric field Eα(ρ, kz) =

∫
dzeikzzEα(ρ, z)

are assumed to obey the following stochastic Helmholtz
equation

(

E + k20∆(ρ) +∇2
ρ

)

Eα(ρ, kz) = 0 . (1)

with the spectral (mode) parameter E = k20 − k2z = k2⊥,
where k0 = ω〈n〉/c0 is the average wavenumber inside
the medium, 〈n〉 is the average index of refraction and
c0 is the light velocity in vacuum. ∆(ρ) = [n2(ρ) −
〈n〉2]/〈n〉2 is the relative variation of the permittivity.
kz = k0 cos(θ) is the z component of the wave vector
and θ is the initial azimuthal angle, in terms of which
we have E = k20 sin(θ)

2. For small θ (paraxial limit)
the sine can be replaced by its argument, and we have
E ≈ −2k0∆kz , where the wavenumber ∆kz = kz − k0
refers to the Fourier component of the envelope A(ρ, z) =



2

Eα(ρ, z)e
−ik0z. The function A(ρ, z) describes the beats

of Eα(ρ, z) in z direction. In the small θ limit it obeys
the paraxial (Schrödinger) equation

(

i
∂

∂τ
+ k20∆n(ρ) +∇2

ρ

)

A(ρ, z) = 0 , (2)

which has been used by DeRaedt et al. [22] and Karbasi
et al. [24, 26] in their simulation of transverse localiza-
tion. The quantity τ = z/2k0 (which has the dimension
of a squared length) plays the role of a “time”. Equa-
tion (2) describes the spread of the amplitude A(ρ, z) in
the presence of a random potential as the time τ goes
by, i.e. as a function of z. It is worth noting that this
equation is identical to the Schrödinger equation for a
two-dimensional electron system in a random potential
V (ρ), which can be written as

(

i
∂

∂τ
− k2F

1

EF
V (ρ) +∇2

ρ

)

ψ(ρ, t) = 0 . (3)

where τ = vF
2kF

t = ~

2m t has also the dimension of a
squared length. This equivalence has been noted in the
seminal paper by DeRaedt et al. [22].
In quenched-disordered systems the disorder leads to

a dependence of the quantities, which characterize the
waves on the mode parameter E [39]. The mode statistics
of these waves is described by the Bloch spectral density
function [40] of the system, which is equal to the imag-
inary part G′′(q, E) of the averaged one-particle Green’s
function, divided by π. In our case the relevant quan-
tity, which becomes E dependent, is the deviation of the
dielectric constant from its average value ∆(ρ). In an
effective-medium description like the coherent-potential
approximation (CPA) [7, 9, 39] this parameter is trans-
formed as ∆(ρ) → Σ(s), where Σ(s) is the so-called
self energy and s = E + iη ; η → +0 is the complex
modal parameter. In the low-disorder limit the CPA
reduces to the self-consistent Born approximation [39],
which can be derived independently within a nonlinear-
σ-model description[12, 13, 36]. This description allows
for going beyond the SCBA saddle point to calculate the
unrenormalized wave diffusivity (see below).
Within the SCBA [12, 13, 36–38] the averaged single-

particle Greens’s function is given by

G(q, s) ≡ 〈G(q, s)〉 =
1

−s− k20Σ(s) + q2
(4)

where q is the wavevector corresponding to the trans-
verse spatial direction. As indicated above, the complex
self-energy function Σ(s) = Σ′(E) + iΣ′′(E) encodes the
influence of the disorder. In real (transverse) space we
have

G(ρ, s) = − i
4H

(1)
0 (kΣ(s)ρ)

ρ→∞
−→ − i

4

√
2

πkΣ(s)ρe
ikΣ(s)ρ (5)

whereH
(1)
0 (x) is the Hankel function of first kind, and we

have introduced the renormalized (complex) transverse
wavenumber

kΣ(s) =
√

s+ k20Σ(s) = k′Σ(E) + ik′′Σ(E) (6)

Taking the modulus-square we extract the scattering
mean-free path as

1

ℓ0(E)
= 2k′′Σ(E) ≈

k20
k′Σ(E)

Σ′′(E) (7)

where the approximation holds for |Σ′′| ≪ |(E/k20)+Σ′|.
The two-dimensional version of the SCBA equation for
the self-energy has the form [12, 13, 36, 38]

Σ(s) =
k20
2
γ
4π

q2c

∫

|q|<qc

d2q

(2π)2
︸ ︷︷ ︸

∑

q

qc

G(q, s) ≡
k20
2
γG(s) , (8)

where γ = 〈∆(ρ)2〉 is the disorder parameter. The cutoff
parameter qc is proportional to the inverse of the disorder
correlation length (of the order of the diameter of the
grains with different refraction indices). We have chosen
the prefactor in such a way that

∑

q

qc = 1.

One can calculate from the SCBA an unrenormalized
diffusivity, which describes the initial diffusive motion
of the ray in the x−y direction before the localization
effects become dominant. This diffusivity is obtained by
the Gaussian fluctuations of the self-energy field beyond
the SCBA saddle point [12, 36, 41, 42]:

D0(E) = −ǫ
1

C(0, E)

∂2

∂qx
C(q, E)

∣
∣
∣
∣
q=0)

(9)

with

C(q, E) = ϕ(q, E) −
2

γ
(10)

and

ϕ(q, E) = k40
∑

k

qc
G(k+ 1

2q, s+)G(k−
1
2q, s−) (11)

where s± = E ± ǫ.
As shown in the supplemental material, using explicitly

the SCBA equation, the unrenormalized diffusivity can
be represented as

D0(E) =
πk2Σ

q2ck
2
0Σ

′′(E)G′′(E)
= k′Σ(E)ℓtr(E) (12)

where we have introduced a transport mean-free path as

1

ℓtr(E)
=

G
′′(E)q2c
π

1

ℓ0(E)
=

G
′′(E)q2c
π

k20
k′Σ(E)

Σ′′(E)

(13)
It should be remarked at this point that the ”diffusivity”
is dimensionless, because the “time” τ = z/2k0 has the
dimension of a squared length.
We now use the self-consistent localization theory [9,

27–29] for calculating the renormalized diffusivity, which
includes the localization effects.
We are interested in the averaged wave intensity, which

includes the interference effects. This means that we
cannot use the modulus-square of the averaged Green’s
function. Our object of interest is therefore the inten-
sity Green’s function g(r, r′, τ, τ ′) = 〈|G(r, r′, τ − τ ′)|2〉
In Fourier space one has to use convolutions of the two
Green’s functions, which is conveniently formulated in
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terms of difference and center-of-mass coordinates and
one obtains (with q and ω referring to the center-of-mass
coordinates and E to τ − τ ′):

g(q, ω) =
1

(2π)3

∫

dE

∫

d2k

〈

G(k+1
2
q,s++

1
2
ω)G(k−1

2
q,s−−

1
2
ω)

〉

=
1

2π

∫

dE g(E, q, ω) (14)

with s± = E ± iǫ. The modal intensity Green’s function
g(E, q, ω) obeys a diffusion equation with a frequency-
dependent modal “diffusivity” D(ω,E):

(

iω + q2D(ω,E)

)

g(E, q, ω) = 1 (15)

The Fourier transform of D(ω,E) is related to the mean-

square displacement of the intensity

D(τ, E) =
d2

dτ2
R2(τ, E) ⇔ R2(ω,E) =

D(ω,E)

(iω)2

(16)
In the renormalized localization theory of Vollhardt

and Wölfle [27] D(ω) obeys the self-consistent relation

D0(E)

D(ω,E)
= 1 +

2

π

∫ 1/ℓtr(E)

0

qdq
1

iω + q2D(ω,E)
, (17)

Eq. (17) can be put into the form

D(ω,E)

D0(E)
= 1−

2

π

1

D0(E)

∫ 1/ℓtr(E)

0

qdq
1

iω
D(ω,E) + q2

(18)

In two dimensions one has always localization, which
means that D(ω,E) = iωξ2(E), and the real part of
D(ω,E) vanishes for small ω.
Taking the real part of both sides of Eq. (18) leads to

an implicit equation for the localization length

1 =
2

π

1

D0(E)

∫ 1/ℓtr(E)

0

qdq
1

1
ξ2(E) + q2

, (19)

which can be solved as

ξ(E) = ℓtr(E)
[
eπD0(E) − 1

]1/2
(20a)

≈ ℓtr(E)e
π
2
D0(E)

= ℓtr(E)e
π
2
k′

Σ(E)ℓtr(E) (20b)

This formula (with the unrenormalized wavenumber kF )
is also obtained from the scaling theory of localization
[5, 6] and the so-called potential-well analogy [43–45],
which is a simplified version of the theory of Vollhardt
and Wölfle [27].
We are now interested in the complex diffusivity as a

function of frequency. Combining Eqs. (17) and (19) we
get

1

D(ω,E)
=

1

D0(E)
+

1

iωξ2(E)
(21)

Using Eq. (16) we obtain for the mean-square displace-
ment

R2(ω,E) = ξ2(E)

(
1

iω
−

1

iω + τ−1
ξ (E)

)

(22)
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FIG. 1: Root-mean-square distance R(z) =
√

R2(E, z) with
E = 4/w2

0 = 4/(3.3)2 = 0.36 as a function of the propagation
distance z = 2k0τ for λ = 2π/k0 = 633 nm (top) and 405
nm (bottom) with index contrast ∆ = δn/〈n〉 = 0.1/1.54=
0.065. The symbols are results of the simulation of Karbasi
et al. [26], the lines are the results of the present theory.
Inset: Same as the main part with different index contrasts,
namely ∆ = δn/〈n〉 = 0.1/1.54 = 0.065 (bottom) and
0.05/1.54 = 0.0325 (top) for λ = 633 nm.

with the “localizion time”

τξ(E) =
ξ2(E)

D0(E)
(23)

In the “time” domain we obtain

R2(τ, E) = ξ2(E)

(

1− e−τ/τξ(E)

)

(24)

For τ ≪ τξ(E) we have

R2(τ, E) = D0(E)τ (25)

but near τ ≈ τξ(E) the mean-square displacement levels
off and becomes equal to ξ2(E).
For the diffusion propagator we obtain in a similar way

g(E,q, τ) =
1

ξ2(E)

1
1

ξ2(E) + q2
+ e−τ/τξ(E)e−D0(E)q2τ

(26)
For large “times” the diffusive contribution dies out (see
also the discussion in the subsequent section) and we are
left with the first localized contribution. In x−y space
this describes the typical fall-off of the intensity from its
maximum at a particular site of a localized state, r0:

g(ρ−ρ0, τ = ∞) =
1

ξ2(E)

1

2π

∫ 1/ℓtr

0

qdq
1

1
ξ2(E) + q2

J0(q|ρ−ρ0|)

(27)
Taking Eq. (19) into account we get for the intensity at
the center point r0

g(0, τ = ∞) =
1

4

D0(E)

ξ2(E)
=

1

4τξ(E)

=
q2ck

2
0

4π
G
′′(E)Σ′′(E)e−πD0(E) (28)

In summary, by means of Eqs. (7), (8), (12), (20b), (23),
(24), (28) we are now able to calculate analytically the
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salient features of transverse localization in optical fibers
as a function of the sample parameters. The most impor-
tant quantity is the width of the beam R(z) as a function
of the propatation distance z = 2k0τ , which is deter-
mined by the unrenormalized diffusivity D0(E) and the
localization length ξ(E). The range of the possible val-
ues of the modal parameter E = k20θ

2 is determined by
the numerical aperture NA/〈n〉θmax = 2/k0w0, where
w0 is the width of the incipient Gaussian beam at the
aperture. In the simulations of Karbasi et al. [24, 26] an
initial beam with width parameter w0 = 3.3µ−1 has been
used. Therefore we took the value E = 4/w2

0 = 0.37µ−2

for our calculations.
In Fig. 1 we compare the results for the channel width

R(τ) =
√

R2(τ) of the simulations with the predictions
of our theory for red (λ = 0.633µ) and blue (λ = 0.405µ)
light. For the cutoff parameter we took qc = 6µ−1, which
corresponds to a correlation length of the order of 1 µ.
The index contrast in the main body of the figure is the
same as that in the simulation, namely δn = 0.1. In
the inset the results of the simulation and theory for the
index contrast δn = 0.05 are compared. We see that our
theory describes the data in a satisfactory manner.

In conclusion we have combined an effective-medium
theory for the mean-free path of light in a transversely
disordered medium with the localization theory of Voll-
hardt and Wölfle [27]. With the help of this theory we
have obtained analytical results for the channel width
as a function of the propagation distance and the cor-
responding beam intensity. The results for the channel
width agree well with those of the simulations based on
the same paraxial wave equation. We believe that this
analytical description will be very helpful for designing
appropriate image transport devices for endoscopy.

The results reported here provide a deeper understand-
ing of the transverse localization phenomena. We are now
able to deal with transverse disorder in all systems which
are well described in paraxial approximation, i.e. by a
2D plus time Schrödinger-like wave equation.

We think that the present analytic theory for trans-
verse localization is therefore a milestone for the growing
field of of disordered photonics, enabling the possibility
to design a novel generation of disorder-based waveguides
with potential applications in several fields ranging from
endoscopy to mid-range optical communication.
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[27] D. Vollhardt and P. Wölfle, Phys. Rev. Lett. 45, 842

(1980).
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