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Abstract. We consider a system of coupled harmonic oscillators on a cubic lattice. The
force constants are supposed to take two distinct values at random according to a bond
concentration x. The density of states (DOS) is evaluated both by numerical diagonalisation
and in coherent-potential approximation (CPA). There is excellent agreement between the
results of the two methods. Near the concentration, where the bonds with the larger force
constants percolate, the DOS differs appreciably from the crystalline one and is anomalously
enhanced at low frequencies as compared to Debye’s ω2 law (”boson peak”). These features
are shared with models with continuous distributions of force constants. The mean free path
near the strongest anomaly is comparable to the wavelength of the excitations. However, the
level distance statistics reveils that the corresponding states are delocalised.
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1 Introduction

The anomalous low-frequency vibrational properties of disordered solids are still poorly
understood, although they are subject to an enormous amount of theoretical and
experimental investigations on this subject [1]. A controversal point in the discussion in
this field is, whether the observed excess vibrational density of states (DOS) g(ω) (with
respect to Debye’s ω2 law, ”Boson peak”) is due to localised or extended vibrational
modes. This question is important, because it is related to the mechanism of thermal
transport in the ∼ 10 K temperature range [2]. Recently the present authors have
shown that a model of coupled harmonic oscillators placed on a simple cubic lattice
with spatially fluctuating force constants K produces a boson-peak like anomaly. As
distribution of force constants P (K) we took a Gaussian which was truncated on its
negative side to avoid instability. The model was solved for the DOS both by numerical
diagonalisation and using the single-bond coherent potential approximation (CPA).
The results of both methods are in good agreement with each other. In the CPA one
can extract a frequency-dependent sound velocity (acoustic index of refraction), which,
at low frequency can be used to calculate the mean free path and the wavelength of
acoustically propagating excitations. In the case of strong disorder our calculations
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Fig. 1 Reduced DOS g(ω)/ω2 vs. frequency for K2/K1 = 0.1 and concentrations
x = 0.1, 0.3, 0.5, 0.7, and 0.9 (from top to bottom). Frequencies are given in units of the
square root of the average force constant, which is normalised to unity. Symbols: diago-
nalisation results; thick lines: CPA; thin line: regular DOS for the K2 sublattice (x = 0.1);
dashes: regular DOS for the averaged force constants. (For clarity the curves for x ≤ 0.7
have been shifted upwards.)

revealed that the mean free path is of the order (and even smaller) than the wavelength
in the boson peak frequency range. According to the Ioffe-Regel criterion these modes
may localise. An investigation of the level distance statistics, however, showed that in
this regime the states are delocalised. This implies that the corresponding contributions
to the thermal transport are of diffusive nature. These findings agree with simulation
work on amorphous silicon [3] and a percolation model [4].

In order to find out how general these features are, i. e, whether they are typical
for disordered solids, it is important to investigate different kinds of models. In the
present contribution we consider a model with a binary distribution of force constants.
We shall demonstrate, that at the concentration at which the larger of the coupling
constants percolate the system is ”most disordered”, which means that the van-Hove
singularities are completely washed out and the boson peak is most pronounced. As
in the models with a continuous force constant distribution the states in the boson
peak frequency range are shown to be neither propagating nor localised.

2 Model and results

We consider a set of coupled (scalar) harmonic oscillators with nearest- neighbour force
constants K on a simple cubic lattice. K is a random number distributed according to
the density P (K) = xδ(K −K1) + (1− x)δ(K −K2). As in ref. [5] we compare a nu-
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Fig. 2 Reduced DOS g(ω)/ω2 vs. frequency for different ratios K2/K1 calculated in CPA

merical diagonalisation with CPA results. Except for the distribution all calculational
details are as in ref. [5]. We normalise the Ki such that < K >= xK1+(1−x)K2 = 1.
For the numerical work we consider only the case K2 � K1 and take the ratio as
K2/K1=0.1.

In fig.1 we have plotted the DOS, divided by the frequency squared, i. e. g(ω)/ω2

for five values of the concentration x. Clearly the diagonalisation results are in excellent
agreement with those of the CPA. By comparing the curves corresponding to the
different concentrations it is striking that for x = 0.3 the van-Hove singularities are
washed out completely and a pronounced low-frequency ”boson peak” appears, which,
to our opinion is a benchmark for strong disorder. It is interesting to note that for
x = 0.1 the DOS is not determined by the average of the force constants, which would
be the prediction of the ”virtual crystal approximation”, but is given by the ”host”
force constant K2 alone. The stiff force constants K2 act obviously only as inert
scattering centers.

In the following we are going to investigate the case x = 0.3 in more detail. In fig. 2
we have plotted g(ω)/ω2 as calculated in CPA for different values of the ratio K2/K1.
The change in the DOS from the regular to the strongly disordered case is most strik-
ing. In order to show that for K2/K1 = 0.1 and x = 0.3 the disorder is really strong we
have calculated in CPA the mean free path given in terms of the frequency dependent
complex sound velocity [5] v(ω) as `(ω) = |v(ω)|2/2ωIm{v(ω)} and compared it with
the sound wavelength λ(ω) = 2πRe{v(ω)}/ω (see fig. 3). Comparing fig. 1 with fig. 3
it becomes clear that the boson peak coincides with the frequency where ` becomes
comparable to λ. The Ioffe-Regel criterion now would suggest that the states beyond
the frequency, where ` becomes equal to λ are localised. We have investigated this
question by evaluating the level distance statistics. We deconvoluted the eigenvalues
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Fig. 3 Mean free path `(ω) and wavelength λ(ω) as defined in the text. Dashes: x =
0.9, 0.7, 0.5 (from top to bottom). Full lines: x = 0.3.

λi = ω2
i using the averaged integrated DOS as described in [5] in order to obtain the

normalised level distances s. The statistics of these distances was obtained by taking
11 samples of side length 14. The frequencies given in the legend of fig. 4 are the
mid-points of frequency intervals of width ∆ω = 0.5 in which the statistics has been
evaluated. It is clear from the figure that in the boson peak range ω ≤ 1.75 the GOE
statistics is obeyed, i. e. the states are delocalised. Only at higher frequencies in the
vicinity of the upper band edge the Poissonian statistics is approached, indicating the
presence of a mobility edge near ω = 4. This means that the boson peak in the binary
force constant model is not associated with localized states.

3 Discussion

It is now interesting to discuss previous theoretical approaches for explaining the boson
peak phenomenon in the light of the present findings and those of ref. [5]. The first
was the so-called phonon-fracton model [6, 7]. Alexander and Orbach [6] considered
a percolating system (in terms of our model K2/K1 = 0). They argued that for
x > xc , xc being the percolation threshold, there should be a crossover from sound
propagation (phonon regime) to localisation (fracton regime) at ωc = 2πv/ξ, where
ξ is the correlation length and v the sound velocity. For ω > ωc the system should
behave as for xc, where a scaling analysis shows that the DOS varies as g(ω) ∝ ωd̃−1

with d̃ ≈ 1.33 (spectral or fracton dimension). As the states on the fractal percolation
cluster are supposed to be localised it was conjectured that the boson peak in glasses
is an indication of delocalisation-localisation crossover as it was supposed to occur
in the percolation model. These ideas were qualified when extensive simulation work
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Fig. 4 Level distance statistics for x = 0.3 taken in frequency intervals of width ∆ω = 0.5
around the frequency values indicated. The boson peak is located at ω = 1.25, where the
statistics follows the GOE. The mobility edge is near ω = 3.75.

for the percolation model [7] showed no sign of a boson peak near ωc. Furthermore
a recent numerical investigation of the same model performed by Kantelhardt et al.
[4] reveiled that for x > xc an appreciable frequency range above ωc exists, in which
the states are still delocalised (”extended fractons”). Regarding the results of the
present model it is remarkable that the boson peak, which is absent for K2 = 0
appears for finite K2. Obviously it is essential for the appearance of the boson peak
that the ”almost localised” vibrations are coupled to each other. However it is still
reasonable to associate the boson peak with a crossover phenomenon, namely that
between propagation and diffusion. In the propagating regime the states are forced
to form a coherent wave due to the sum rule

∑
j Hij = 0 (see [5]),whereas in the

diffusive regime this restriction is lost due to the disorder, which in turn produces
the additional DOS. In the terminology of Allen and coworkers [3] one could call it a
”phonon-diffuson crossover”.

Another approach devised for the explanation of low-frequency vibrational anoma-
lies in disordered solids is the soft potential model [8]. In this model atomic config-
urations in an effective quartic potential are considered with statistically distributed
coefficients of the quadratic term, leading, at random, to very soft double and single-
well configurations. The coupling of the modes corresponding to these local potentials
to acoustic phonons are made responsible for the boson peak [9]. The model has the
attractive feature that it accounts both for the T−1 behaviour of the low-temperature
specific heat of most glasses and the boson peak. As emphasized in ref. [9] in the
soft-potential scheme the boson peak is a quasi-harmonic phenomenon, i. e. essential
for the boson peak is the softness of the renormalized potentials and not the anhar-
monicity. Within the present model and that considered in [5] the presence of very
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small (and even negative) force constants produce the boson peak. So this physical
picture agrees to that of the soft potential model. One could call the present approach
a ”harmonic soft potential model”. On the other hand it is difficult to fix the many
adjustable parameters appearing in the soft-potential model in terms of microscopic
physical quantities. The force-constants of the present model can in principle be re-
lated to interatomic forces. The force-constant distribution can then be related to
the interatomic pair distribution function g(r), as done in earlier effective-medium
calculations [10].

A third approach which gives an explanation of the boson peak phenomenon is the
mode-coupling theory of the liquid glass transition [11]. In this theory a transition
from an ergodic phase (liquid) to a nonergodic one (glass) is described as a function
of a control parameter. In the glass phase the density fluctuation spectrum reveals a
characteristic maximum [12, 13], which appears, if compared to experimental data, in
the boson peak range. As the physical mechanism of the liquid-glass transition is the
formation of a cage by the particle interaction, the predicted peak can be interpreted
as due to the vibrational modes of the particle motion inside the cages. The physical
picture that the boson beak arises from the frozen disorder is the same as in the present
approach, but it is difficult to make a more detailed comparison, because the present
treatment is based on vibrational displacements, whereas the mode-coupling theory
on density fluctuations.

W. S. is grateful for illuminating discussions with Prof. W. Götze, Dr. J. W. Kantelhardt
and Dr. L. Schweitzer.
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