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Thermal conductivity of glassy materials and the “boson peak”
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A theory for the anomalous vibrational and thermal properties of disordered solids based on the
model assumption of randomly fluctuating transverse elastic constants is presented. Mean-field
expressions for the vibrational density of states and the energy diffusivity are derived with field
theoretical techniques. As in previous approaches of this type the boson peak (enhancement of the
low-frequency density of states) is explained as a result of the frozen-in disorder and compares well
with the experimental findings. The plateau in the temperature variation of the thermal conductivity
and the behavior beyond the plateau is shown to arise from the enhanced scattering in the boson
peak regime and to be essentially a harmonic phenomenon.
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The temperature dependence of the thermal conduc-
tivity κ(T ) of disordered solids such as glasses or strongly
perturbed crystals is very different from that of the
corresponding crystalline materials [1–8]. The almost
quadratic variation of κ(T ) with temperature (as well
as the almost linear one of the specific heat) around and
below 1 K is usually explained in terms of inelastic scat-
tering from two-level defects [9]. The present work fo-
cuses on the behavior around ∼ 10 K (or ∼ 1/10 of the
Debye temperature θD). In this regime κ(T ) exhibits a
plateau, followed by an increase and a final saturation. In
the same temperature regime the “reduced specific heat”
C(T )/T 3 exhibits a peak that can be traced to a peak in
the “reduced density of states” (DOS) g(ω)/ω2 (“boson
peak”, BP).

The nature of the vibrational states near and above
the BP frequency has been the subject-matter of a very
intense and controversal debate among workers who per-
formed neutron-, X-ray, and other inelastic scattering
experiments [10–14], computer simulations [15–20], and
analytical theory [21–29]. Although there is not yet a
general consensus in the community most investigations
show that these states are of harmonic nature and are
strongly affected by the quenched disorder of the mate-
rial of interest. From most of the quoted literature it
emerges that the states near the BP and above are not

localized, i.e. collective sound-like excitations with lin-
ear dispersion. However, they are of diffusing, strong-

scattering character, which means that the width of the
Brillouin-like maximum is of the same order as its prin-
cipal frequency. These features, observed in experiments
and simulations have been accounted for by most of the
quoted mean-field approaches [23–29], in particular by
treatments based on the assumption of random force con-
stants [23, 25, 26, 28] or, as in our recent field-theoretical
work [27], on random elastic constants. This picture is
at variance with early models for κ(T ) near and beyond
the plateau [30–33], in which the pertinent vibrational
states were supposed to be localized. The increase of
κ(T ) above 10 K was attributed to an anharmonic mech-
anism. In particular it has been shown by simulations

of thermal transport in glassy Si and SiO2 [15, 19] that
κ(T ) in this regime can be explained in terms of harmonic
excitations.

The aim of the present contribution is twofold: Firstly,
as our previous work [23, 27] was based on models with-
out transverse excitations, which undoubtedly play a key
role in the glassy dynamics [5, 13], we want to generalize
our field-theoretical treatment to include these degrees of
freedom. In the present treatment we assume that they
exclusively are affected by the disorder. The general case
will be studied elsewhere.

The second aim is to formulate a theory for the energy
diffusivity in order to be able to describe the temperature
dependence of the thermal conductivity. This is, indeed,
possible within the field-theoretical formalism (nonlinear
sigma-model [34, 35]), which is the basis of the present
approach, by expanding the effective action to quadratic
order beyond the SCBA saddle point. If the resulting
expression is inserted into the quantum formula for κ(T )
(including a phenomenological inelastic scattering rate to
cut off the Rayleigh divergence), we find an explanation
of the plateau of κ(T ) as well as the increase beyond the

plateau in terms of the strong scattering by the disorder.
The structure in the temperature dependence of κ can
therefore be classified to be a harmonic phenomenon, as
anticipated by the quoted simulations.

Let us now consider an elastic medium with a mass
density m0 and elastic (Lamé) constants λ = m0λ̃0 and
µ = m0µ̃. The transverse elastic constant µ is assumed
to vary randomly in space (“transverse elastic disorder”),
i.e., µ̃ = µ̃(r) = µ̃0 + ∆µ̃(r). This leads to a spatial
variation of the local longitudinal and transverse sound
velocity according to cL(r)

2 = λ̃0+2µ̃(r); cT (r)
2 = µ̃(r).

µ̃0 is the mean value of µ̃, and the fluctuation ∆µ̃(r) is a
assumed to be a random variable with Gaussian statistics
of width γµ ∝ (∆µ̃)2 and zero-range spatial correlations.
γµ has the meaning of the degree of disorder (“disorder
parameter”). The frequency-dependent displacement
vector obeys an equation of motion A(zξ)u(zξ, r) = 0,
where the linear operator A is defined by
A(z)ij = −z2δij−λ̃0∇i∇j−∇jµ̃(r)∇i−

∑

ℓ ∇ℓµ̃(r)∇ℓ δij ,



2

where zξ = ω + ξη, with ξ = ±1 and η → 0.
The problem of calculating the density of states (DOS)

g(ω) and the energy diffusivity D(ω) from the con-
figurationally averaged Green’s functions 〈G(r, r′, zξ〉
= 〈< r|A(zξ)

−1|r′ >〉 and their products, resp. is anal-
ogous to the corresponding problem for electrons in a
random potential and can be treated by field-theoretical
methods (〈· · · 〉 denotes the configurational average). The
corresponding formalism has been developed in great de-
tail and leads to the nonlinear-sigma-model theory of
transport and localization of electrons [35] and classical
waves [34].
We perform now the standard steps [27, 34, 35] in or-

der to rederive this theory for transverse elastic disorder.
The first is to apply the replica trick [36, 37], which en-
ables one to perform the configurational average from the
outset. The resulting effective action contains an interac-
tion with coupling constant γµ, which is taken apart by
means of a Hubbard-Stratonovich transformation. This
introduces effective matrix fields Λξξ′αα′

iℓmj (r, ω) (where α

are replica labels), which replace the ∆µ(r) in the har-
monic part of the effective equation of motion. The cor-
responding operator A[Λ], which operates in the Hilbert
space made up by the fields uα(r, zξ), has matrix ele-
ments

A[Λ]ξξ
′αα′

ij = −z2δijδξξ′δαα′

−

(

(λ̃0 + µ̃0)∇i∇j + µ̃0

∑

ℓ

∇2
ℓδij

)

δξξ′δαα′

−
∑

ℓm

∇ℓ

(

Λξξ′αα′

iℓmj (r, ω) + Λξξ′αα′

iℓjm (r, ω)
)

∇m . (1)

As the effective action is now a quadratic form in the
uα(r, zξ) fields, the latter can be integrated out yielding
an effective action that only depends on the matrix fields:

Seff [Λ] ∝ −
1

2
Tr lnA[Λ]−

1

2γµ
TrΛ2 , (2)

where the trace runs over all continuous and discrete vari-
ables. The saddle-point equations, which are obtained
by making Seff stationary, can be solved with r inde-
pendent and replica and ξ diagonal matrix fields of the

form Λξξ′αα′

iℓmj (r, ω) = −Σ(zξ)δξξ′δαα′δijδℓm, where Σ(z) is
called self energy and obeys the following self-consistent
set of equations:

Σ(z) = γµ
∑

k<kD

[χL(k, z) + χT (k, z)] ; (3)

χL(k, z) = k2GL(k, z) = k2[−z2 + k2(c2L − 2Σ(z))]−1 ;

χT (k, z) = k2GT (k, z) = k2[−z2 + k2(c2T − Σ(z))]−1 .

The DOS is calculated from the Green’s functions GL

and GT as

g(ω) =
2ω

3π

∑

k<kD

Im{GL(k, z+) + 2GT (k, z+)} . (4)

Eqs. (3) are a generalization of the self-consistent Born
approximation (SCBA) obtained in the “longitudinal”
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FIG. 1: Lines: Reduced DOS as calculated in SCBA

for the disorder parameters (from bottom to top) γµ =

0.13, 0.14, 0.15, 0.16, 0.164, 0.1664. In all calculations we use units

in which cT =1, kD = 1, ΘD = 1 (transverse sound velocity, Debye

wave number, Debye temperature). The longitudinal sound veloc-

ity is set cL =
√
2cT . For this choice we have γc

µ = 1/6.

Symbols: measured reduced density of states g(ω)/ω2 for some

glasses. The frequency has been scaled with a characteristic fre-

quency, and the DOS has been multiplied with a scaling factor to

obtain a ”universal plot”. ⊲: simulated Lennard-Jones glass [39];

◦: metallic glass [40]; △: PMMA [41]; ⋄: OTP [42]; ▽: SiO2 [43].

version of the present theory [27], and we have c2L =

λ̃0 + 2µ̃0 and c2T = µ̃0. χL(k, z) and χT (k, z) are the
longitudinal and transverse dynamic susceptibility. It is
easily seen that Eqs. (3) describes longitudinal and trans-
verse sound-like excitations with dispersions ΩL(q)

2 =
[c2L −Re{2Σ(ω)}]q2, ΩT (q)

2 = [c2T −Re{Σ(ω)}]q2, and a
linewidth Γ(q) ∝ q2Im{Σ(ω)}/ω. This is in qualitative
agreement with the recent experimental and simulational
findings [10, 13]. However the present theory is only valid
in the low (ω, q) range, in which the detailed microscopic
structure of the material [24, 26, 28] is not important.
As in the models of Refs. [23, 25, 27] the system be-

comes unstable if γµ exceeds a critical value γc
µ. For

γµ < γc
µ the reduced DOS g(ω)/ω2 exhibits a BP that

is enhanced and shifted towards lower frequencies as
γµ → γc

µ (see Fig. 1). This critical value (γc
µ = 1/6

for c2L = 2c2T ) is much smaller than in the longitudi-
nal version of the theory [27] (γc = 1/2), which shows
that the transverse excitations are much more sensitive
to disorder than the longitudinal ones [38]. As noted
previously [23, 27] the BP marks the position where the
mean free path (see below) starts to become comparable
to the wavelength of the excitations, and where Ω(q) and
Γ(q) are of the same order of magnitude.
Why does the BP appear at such a low frequency, al-

though the elastic constants have a symmetric distribu-
tion around their mean? As noted already in the liter-
ature [16, 23, 25, 27] the disorder affects the vibrational
states in such a way that their eigenvalues become dis-
tributed like those of a random matrix [36]. The ran-
dom hybridization of the states leads to level repulsion
so that the states ”need more space” in the frequency
domain than they would without the disorder. So they
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FIG. 2: Insert: Frequency-dependent diffusivity according to the

kinetic formula D(ω) ∝ ℓ0(ω) ∝ 1/[ωΣ′′(ω)] (dashed lines) and

according to the present theory D(ω) ∝ ℓ0(ω)ω2/g(ω) (full lines)

for the disorder parameters (from right to left) γµ = 0.15, 0.164,

and 0.1664. Main body: Thermal conductivity κ(T ) as calculated

from Eqs. (3), (5), (8) and (9) using the same D(ω) as in the insert.

The bottom curves correspond to γµ = 0.1664. For the inelastic

scattering parameter we used Cin = 0.02 in our units. (Taking

smaller values of Cin results in a shift of the T 2 branch to lower

frequencies.)

are both shifted up and down as compared to a Debye
spectrum. This effect becomes stronger with increasing
γµ. The BP marks the low-frequency border of this effect
and appears as a shoulder in g(ω). Only in the g(ω)/ω2

representation it appears as a peak.
It has been noted recently [14] that in most of the

experimental DOS data g(ω)/ω2 exhibits an exponential
decrease over a large frequency range. As can be seen
from the semilogarithmic representation of Fig. 1 the
SCBA is compatible with these findings (see [27]).
Let us now study the impact of the boson peak on

the energy diffusivity D(ω) and the thermal conductivity
κ(T ). The latter can be calculated from the former via

κ(T ) ∝

∫

dωg(ω)D(ω)(ω/T )2
e
~ω/kBT

[exp{~ω/kBT } − 1]2
.

(5)
The energy diffusivity D(ω) can be treated as a clas-

sical quantity as long as we do not consider anharmonic
interactions. It can be calculated from the Kubo-type
formula

D(ω) ∝ lim
η→0

2η
∫
d3

rd3
r′〈(x−x′)2∆E(r,ω,η)∗∆E(r′,ω,η)〉

∫
d3

rd3
r′〈∆E(r,ω,η)∗∆E(r′,ω,η)〉

, (6)

where ∆E(r′, ω, η) ∝
∑

ij ǫij(r, z−)
∗ǫij(r, z+) is the fluc-

tuating part of the energy density with strain tensor
ǫij(r, z) =

1
2 [∇iuj(r, z) +∇jui(r, z)].

In order to be able to evaluate configurational aver-
ages of fourfold products of uj(r, zξ) appearing in Eq.
(6) we have to go beyond the saddle-point approxima-

tion. Defining the sums Λξξ′

αα′ ≡
∑

ij Λ
ξξ′αα′

ijij we put

Λξξ′

αα′(r, ω) = Λsp+∆Λξξ′

αα′(r, ω) and Seff = Ssp
eff+∆Seff .

κ(
)

T

θD/T

FIG. 3: Scaled thermal conductivity data of several glasses (from

top to bottom): PB, PMMA, PET, B2O3, PS, SiO2, as compiled by

Freeman and Anderson [6] together with the full-line calculations

of Fig. 2.

In terms of the spatial Fourier transforms

∆Λξξ′

αα′(q, ω) of ∆Λξξ′

αα′(r, ω) this yields a cor-
rection to the effective action of the form
∆Seff =

∑

αα′

∑

ξξ′
∑

q[∆Λξ′ξ
αα′(q)]∗Cξξ′(q, ω)∆Λξξ′

αα′(q)

with Cξξ′(q, ω) = ϕξξ′

L (q, ω) + 1
2ϕ

ξξ′

T (q, ω) −
1

2γµ
and

ϕξξ′

L,T (q, ω) =
∑

k χL,T (k + q

2 , zξ)χL,T (k − q

2 , zξ′), where

the functions χL,T (k, zξ) have to be evaluated in SCBA.
By inserting a suitable source field into the effective
action we can convince ourselves that C+−(q, ω) is
just the inverse of the Fourier transform of the energy
correlation function that appears in Eq. (6) so that we
have

D(ω) ∝ − lim
η→0

η
1

C+−(0, ω)
(
∂

∂qx
)2C+−(q, ω)|q=0 . (7)

Evaluating the numerator and denominator explicitly
by means of the SCBA expressions, Eqs. (3), of χL and
χT we find

D(ω) ∝ ℓ0(ω)ω
2/g(ω) ≡ D̃(ω) , (8)

where ℓ0(ω) ∝ [ωΣ′′(ω)]−1 is an effective scattering mean
free path and Σ′′(ω) ≡ Im{Σ(z+)}. Equation (8) is the
main result of the present paper. It states that the ex-
pression for D(ω) that corresponds to the SCBA is not
equivalent to the kinetic expression D(ω) ∝ ℓ0(ω) used
so far in the literature but contains an “inverse boson
peak factor” ω2/g(ω) which reduces the diffusivity in the
BP regime in a much stronger way than obtained from
the kinetic expression. This is demonstrated in the insert
of Fig. 2, where we have compared the frequency depen-
dence of the two formulae. Also the behavior above the
BP is quite different in our theory than as obtained from
the kinetic formula.
In order to calculate the thermal conductivity by sum-

ming over frequency with the proper quantum weight
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factor (Eq. (5)), we have to overcome a problem com-
mon to all harmonic theories of thermal conductivity,
namely the fact that for small frequencies D(ω) diverges
as D(ω) ∝ ω−4 (Rayleigh law). In reality this divergence
is cut off by inelastic scattering for which one usually
takes the scattering from two-level systems. As we do
not deal with anharmonic phenomena in the present pa-
per we use for simplicity

D̃eff (ω) = [D̃(ω)−1 + D̃in(ω)
−1]−1 (9)

with D̃in(ω)
−1 = Cinω, where Cin is a constant which

should not vary very much from material to material [7].
In Fig. 2 we compare the results for the thermal con-

ductivity using the kinetic formula and the new theory
(Eq. (8) ). It is clear that the latter describes the experi-
mentally observed structure much better than the kinetic
formula. In Fig. 3 we compare the theory with the exper-
imental results for several glasses as compiled by Freeman
and Anderson [6]. It should be mentioned that there is
no adjustment or rescaling of the T/θD axis. It is clearly
seen how the BP is related to the plateau: As the disor-
der increases the plateau is more pronounced and shifted

to lower temperatures. It is interesting to note that ob-
viously SiO2 is the material with the strongest disorder
and that the Freeman-Anderson scaling may serve as a
means to classify glassy materials with respect to their
degree of disorder.

In conclusion we have achieved to obtain a mean-field
description of the boson peak in terms of transverse elas-
tic degrees of freedom which are affected by the frozen-in
disorder. The high-temperature structure of the tem-
perature dependence of the thermal conductivity can be
explained by means of this theory as a result of the strong
elastic scattering in the frequency regime of the BP and
above.
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U. van Bürck, A. I. Chumakov, W. Keune, A. Meyer, W.
Petry, H. Sinn and W. Stuhrhahn. I am grateful for hos-
pitality at the University of Mainz. This work was sup-
ported by the US Department of Energy, Office of Basic
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