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Using the semiclassical approximation we calculate the quantum fluctuations of the two-dimen-
sional electronic scattering cross-section from three hard disks in a magnetic field. The three-disk
billiard is a schematic model for a three-lead mesoscopic (ballistic) junction. As the magnetic field
increases the classical trajectories in the three-disk billiard undergo a hyperbolic±non-hyperbolic
transition, i.e. a transition from a completely chaotic phase space to a phase space with stable
islands. We show that the traces of this transition can be seen in the quantum fluctuations of the
cross-section and should therefore influence the resistance fluctuations of ballistic junctions.

In the last few years a great deal of interest has been focussed on quantum manifesta-
tions of classically chaotic systems (ªquantum chaosº [1, 2]). Such systems include micro-
junctions and other mesoscopic cavities in which the corresponding phenomena can be
observed via ballistic transport coefficients. If the de-Broglie wavelength is considerably
smaller than the typical length scale of the confining potential, the semiclassical formal-
ism [1 to 3] is applicable. It has proved to be a powerful tool to understand, e.g., the
spectral correlations of systems the classical dynamics of which is non-integrable and
therefore exhibits chaotic behaviour. The quantum mechanical wave function can be
described completely by quantities derived from the underlying classical dynamics. In
particular the correlation functions of observables which exhibit quantum fluctuations
are related to the statistics of the classical trajectories [4] via a simple Fourier transform.
Important examples of such observables are scattering amplitudes and the corresponding
intensities, since these quantities are related to the microscopic (or mesoscopic) trans-
port coefficients by the Landauer-B�uttiker formalism [2, 3].

In the present contribution we investigate quantum scattering properties of the three-
disk billiard in an applied magnetic field. This system, which can be considered as the
inner part of a three-lead junction has been shown [5] to exhibit a hyperbolic±non-hy-
perbolic transition with increasing field. It has already been shown by the present
authors [6, 7] that traces of this transition can be seen in the fluctuations of the quan-
tum scattering amplitude. Here we demonstrate, how the appearance of stable (KAM)
trajectories influences the quantum fluctuations of the scattering cross-section. We argue
that the resistance fluctuations of a microscopic junction therefore should also strongly
be influenced by the change in the classical phase space.
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We start by specifying the 2D scattering geometry (see Fig. 1) The electrons (mass
me) entering the arrangement with a velocity v � �hk=me are reflected specularly by
three disks (radius rd) the centers of which form an equilateral triangle (side length
a). The applied magnetic field B is oriented rectangularly to the plane and acts only
inside the circle (radius rB) which touches the midpoints of the disks. This leads to
circular orbits with cyclotron radius R / 1=B inside the scattering region. The in-
coming electrons are characterized by the spatial coordinate b rectangular to the
current (impact parameter). The outgoing particles have a direction which differs
from the incident direction by the deflection angle q�b�. This function (deflection
function) completely specifies the classical scattering properties of the system. In
terms of this function the classical differential scattering cross-section is given by
�ds=dq�class �

P
j

cj�q� �
P
j

jd~q=dbjj~q�bj�� q. The summation goes over all trajectories Tj

which are scattered into direction q.

As stated above, the invariant set of this chaotic scattering setup exhibits a transition
from entirely chaotic (hyperbolic) behaviour to a situation where stable Kolmogorov-
Arnold-Moser trajectories (ªKAM-toriº) are present (non-hyperbolic). For a=rd � 2:5
this transition appears at R=rd � 0:6:

The striking difference in the statistics of the scattering trajectories in the two cases can
be best discussed with the help of the function N�n�. This function gives (for a given con-
tinuous range of impact parameters b) the number of trajectories which have not left the
scattering region after n reflections. In terms of the quantities cj�q� it is given by

N�n� � 1

2p

�2p

0

dq
P
nj �n

cj�q� ; �1�

where nj is the number of reflections of the trajectory Tj. This function has been calcu-
lated [6, 7] for R=rd � 1 (hyperbolic case) and for R=rd � 0:5 (non-hyperbolic case). In
the hyperbolic case this function decreases exponentially in the entire n range
�N�n� / exp fÿl1ng� with an escape rate l1 � 0:48. In the non-hyperbolic case N�n�
decays in a much more complicated way (see Fig. 2 of [6]). For values of n smaller than
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Fig. 1. Scattering geometry for the
open three-disk billiard. The classi-
cal action Sj is calculated between
the points A and B. The disks (ra-
dius rd) are arranged such that
their centers form an equilateral
triangle (side length a=rd � 2:5�.
The magnetic field B � �hk=qR
(where R is the cyclotron radius) is
assumed to be confined by a circle
with radius rB, which touches the
corners of the triangle



� 10 the decay is nearly as rapid as in the hyperbolic case. In the regime between
n � 10 and n � 300N�n� decays exponentially with a much slower rate l2 � 0:038: For
larger n a crossover to an algebraic asymptotic decay N�n� / nÿb with b � 1:37 is ob-
served. This interesting behaviour can be explained as follows [6, 7]: It is known [8] that
in systems with stable periodic orbits (KAM-tori) all other trajectories tend to follow
these orbits for a long time. This phenomenon is known as the ªstickinessº of the KAM-
tori. The algebraic decay can be attributed to the existence of a Cantor set of destroyed
KAM-tori (ªCantoriº) a the KAM surface [10, 11].

We turn now to the discussion of the quantum behaviour of the three-disk billiard.
The quantum scattering cross-section is expressed in terms of the scattering amplitude
f�q� by ds=dq � jf�q�j2. In the semiclassical approximation f�q� is given by [9]

f�q� �P
j

�cj�1=2 exp i
1

�h
Sj � p

2
mj

� �� �
: �2�

Here m is the Maslov index [9] which increases by 2 for each reflection and by 1 for each
caustics encountered by the trajectory. Sj is essentially the Hamiltonian action

Sj �
�
Tj

p dq � �hk ~Lj along the classical trajectory Tj which leads through the scattering

region (see [6] for details). Here we have introduced the effective length ~Lj of Tj (which
is equal to its actual length for R � 1�:

In order to discuss fluctuations we average ds=dq around k over a range h and sub-
tract the result away: �fds=dq� �k� � �ds=dq� �k� ÿ h�ds=dq� �k�ih. We then define the
correlation function as

Kq; R; k0
�k� �

fds

dq
�k�

fds

dq
�k� k�

* +
Dk

; �3�

where the average is performed over a range Dk.
If one inserts ds=dq � jf�q�j2 into the expression one obtains

Kq; R; k0
�k�

� P
u; v
u 6� v

cucv��x�h� ~Lu ÿ ~Lv���2 exp fik� ~Lu ÿ ~Lv�g
|����������������������������������������{z����������������������������������������}

�* P
u; v; w; z
u 6� v; w 6� z
u 6� z; w 6� v

� � �+
Dk

; �4�

Kd
q; R�k�

where �x�x� � 1ÿ sin�x�=x. In (4) we have divided the sum into a diagonal term Kd
q; R�k�

and a non-diagonal one. The latter averages to zero for a sufficiently large value of
Dk=k. Neglecting this term is called the diagonal approximation. If we now make the
following assumptions, namely that (i) the cu do not depend strongly on the angle q,
and that (ii) the effective lengths are proportional to the corresponding number of reflec-
tions (i.e. ~Lu � nud�, and (iii) �x�x� is replaced by 1; then it is clear from eq. (1) that the
correlation function Kd

q; R�k� can be expressed as

Kd
q; R�k� �

P1
n� 1

P �n� exp findkg
���� ����2 ; �5�

where P �n� � N�nÿ 1� ÿN�n� is the density which corresponds to the distribution N�n�,
i.e. the number of trajectories which have n reflections. For P �n� / exp fÿlng (hyper-
bolic case) one obtains [4] Kd

q; R�k� / �k2 � �l=d�2�ÿ1, i.e. a Lorentzian with a width l=d.
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In Fig. 2 we have plotted Kq; R�k� together with Kd
q; R�k� for the hyperbolic (left) and

the non-hyperbolic case (right). For very small k all functions coincide and have a Lo-
rentzian shape with widths l1=d and l2=d, respectively. This is the regime, where ap-
proximation (5) applies. This striking difference in the initial decay indicates that in the
non-hyperbolic case the fluctuations are much more correlated than in the hyperbolic
one. The second striking feature is the pronounced oscillations of the correlation func-
tion in the non-hyperbolic case. These oscillations are due to the fact that standing
waves are formed by the quantized long orbits. These give rise to resonances in the
cross-sections due to a Bohr-Sommerfeld-like quantization of the KAM-tori.

The wavenumber dependent fluctuations can be transformed in a straightforward man-
ner to fluctuations as a function of the Fermi level or a small-scale variation of the applied
field. Since the quantum traces of the transition from a chaotic to a mixed phase space
appear to be generic to microscopic junctions with rounded edges in an applied field, we are
convinced that these traces must be measurable by investigation of resistance fluctuations.
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Fig. 2. Correlation functions of scattering cross-sections. Left: hyperbolic case �R � 1�; right: non-
hyperbolic case �R � 0:5rd�. Thick lines: Full correlation function K�k�, thin lines: Diagonal corre-
lation function Kd�k�. Continuous lines: q � 3:4; broken lines: q � 5:4. The averaging intervals are
h � Dk � 30=rd around k � 1000=rd
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