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Abstract. – We investigate the semiclassical scattering amplitude for systems, where the
classical dynamics is non-hyperbolic, i.e. where islands of KAM trajectories exist in an otherwise
chaotic phase space. With the help of semiclassical calculations for the three-disk billiard in
an external magnetic field, in which a hyperbolic–non-hyperbolic transition is observed as a
function of the field strength, we show that the “stickiness” of the KAM tori leads to a much
slower decrease of the survival probability, as compared with the hyperbolic case. This is
reflected by a much narrower shape of the energy correlation function. However, we also find
that the algebraic asymptotic decay of the survival probability in the non-hyperbolic case is not
important for the quantum fluctuations.

What is the impact of classical chaos on the quantum fluctuations of electrical conductivity?
This is an intriguing question, which can be addressed in the framework of the semiclassical
description of chaotic scattering. Indeed, quantum fluctuations have recently been shown to
reflect some features characterizing classically chaotic dynamics. An example is the classical
probability PII′(E, t) of a transition from state I to state I ′ to occur during the time interval
[t, t + dt]. In a pioneering paper Blümel and Smilansky [1] related the energy-dependent
autocorrelation function of an S-matrix element, CII′(ε) to the temporal Fourier transform
of this probability. The escape of the particles from the scattering region is governed by the
phase space structure responsible for the chaotic behavior, namely, the invariant set in form
of a chaotic saddle. For hyperbolic systems PII′(E, t) decays exponentially, and therefore the
square of the absolute value of CII′(ε) exhibits a Lorentzian peak around ε = 0.

The probability PII′(E, t) is directly related to the survival probability NII′(E, t), which
is the fraction of trajectories I → I ′ still in the scattering region at time delay t. Actually
NII′(E, t) can be considered as a probability measure, and PII′(E, t) is the corresponding
density related to NII′(E, t) by PII′(E, t) = − d

dtNII′(E, t). There is strong evidence [2]-[6]
that in the presence of stable islands (KAM tori) in an otherwise chaotic phase space,NII′(E, t)
exhibits an algebraic asymptotic decay (1): NII′(E, t) ∝ t−β . Then, PII′(E, t) asymptotically

(1) Note that chaotic systems without KAM tori may also exhibit an algebraic asymptotic decay.
For example, in the classical s-wave helium model such an algebraic decay of N(t) is observed with
β = 0.82, see [7].

c© Les Editions de Physique



                   

484 EUROPHYSICS LETTERS

0 20 40 60 80 100 120 140
number of collisions  n

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

su
rv

iv
al

 p
ro

ba
bi

lit
y 

N
(n

)

100 1000
n

10
-7

10
-5

10
-3

N
(n

)

Fig. 1. Fig. 2.

Fig. 1. – Scattering geometry for the open three-disk billiard. The classical action (2) is calculated
between the points A and B. The disks (radius rd = 1) are arranged such that their centers form an
equilateral triangle (side length a = 2.5). The magnetic field B = ~k/qR (where R is the cyclotron
radius) is assumed to be confined by a circle with radius rB , which touches the corners of the triangle.

Fig. 2. – Survival probability N(n) vs. number of bounces n. Dashed line: R =∞ (hyperbolic case).
The slope corresponds to an escape rate λ = 0.48. Solid line: R = 0.5 (non-hyperbolic case). The
second slope corresponds to an escape rate λ = 0.038. Insert: survival probability for large n plotted
double-logarithmically. The asymptotic slope corresponds to an exponent β = 1.37. For comparison
the two functions Cn−1.37 (dotted) and C̃e−n0.038 (dot-dashed) are shown as well. The calculation
for R =∞ was done with initially 5 · 106 trajectories with impact parameters b distributed uniformly
in the interval [−0.75, 0.75]. The graph for R = 0.5 was combined by two calculations, the first with
the same initial conditions as for R =∞, the second with 3 · 106 trajectories with impact parameters
b distributed uniformly in the interval [−0.144,−0.14426].

decays as PII′(E, t) ∝ t−(β+1). Correspondingly, at small values of ε the energy correlation
function should have a contribution CII′(ε) ∝ εβ .

According to numerical studies the exponent β can assume values between 0.5 and 3 [8];
typical values in different models lie around 1.5 [2]-[6]. Note that for values of β larger than 1
there is no initial cusp in CII′(ε). This is in contrast to results reported by Lai et al. [9], who
concluded that also for 1 < β < 2 the algebraic decay of NII′(E, t) leads to a cusp in CII′(ε)
near ε = 0 (2).

In addition it is not even clear whether, for non-hyperbolic systems, observed correlation
functions CII′(ε) will really follow a power law in the ε→ 0 limit. Indeed, NII′(E, t) behaves
as a power law only after a crossover period. In the case of a scattering experiment where the
initial conditions are chosen outside the scattering region this crossover period is much longer
(cf. fig. 2) than in the case where the initial conditions are chosen inside the scattering region
as in ref. [8]. In any case the non-hyperbolicity leads to a much slower decrease of NII′(E, t)
and consequently to a shape of CII′(ε) with a strongly reduced width.

In the following, we shall explicitly show the influence of non-hyperbolicity and the occur-
rence of stable islands by means of the symmetrical three-disk billiard in a magnetic field.
This system, which can be considered as the inner part of a three-lead junction, has been
shown [10] to exhibit a hyperbolic–non-hyperbolic transition with increasing field. Here we will
concentrate on our main results concerning the survival probabilities and the resulting quantum
correlation functions, and we will briefly discuss implications on the universal conductivity
fluctuations. A detailed exposition of our calculations will be published in the future [11].

(2) The conclusion in ref. [9] might have been caused by erroneously identifying the survival
probability NII′(E, t) with PII′(E, t).
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Fig. 3. – a) Midpoint coordinates of the cyclotron arcs for two long trajectories with about 3000
bounces. The x and y coordinates of the midpoints of the cyclotron arcs are canonically conjugate to
each other, so that the graphs are phase space portraits. b), c), d) Blow-ups of the central part of
the phase space; b) and d) separately display the central parts of the two trajectories; c) shows the
invariant set in the same region. In the insert the region indicated by the square is magnified again
to show the self-similarity. Notice that the scattering trajectories shown in b) and d) closely follow
parts of the islands of the invariant set visible in c).

Let us consider electrons in two dimensions (with initial momentum p = ~kex) which are
scattered from three hard disks in the presence of an external magnetic field characterized by
the cyclotron radius R = ~k/eB (see fig. 1 for details).

First we study the classical scattering and focus our attention on the fraction N(n) of
trajectories which are reflected at least n times (survival probability). In fig. 2 we have plotted
this function for two qualitatively different cases: i) for R = ∞ for which the dynamics is
hyperbolic and ii) for R = 0.5rd, where KAM tori are present. In the hyperbolic regime
N(n) decreases exponentially with n, i.e. N(n) ∝ exp[−λn], where λ is the escape rate. In
the case where the stable trajectories are present, we encounter three regimes in N(n) with
qualitatively different behavior: First there is an initial rapid decay (0 . n . 10) with a slope
similar to that of the decay in the hyperbolic regime. In a second regime 10 . n . 300 we
find an exponential decay of N(n) with a much smaller decay rate than in the hyperbolic case.
It is noteworthy that already in this regime (i.e. for n & 25) the trajectories follow almost
exclusively one of the stable orbits. For values of n larger than 300 the decay of N(n) becomes
algebraic as can be seen from the insert of fig. 2. In this last regime, which we believe to be the
asymptotic one, we have N(n) ∝ n−β with β = 1.37. Since the time between two subsequent
collisions is almost constant, we have an asymptotic time decay law N(t) ∝ t−β similar to the
behavior reported in other systems with KAM islands.
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Fig. 4. – Square modulus of the scattering-amplitude autocorrelation function Cθ,R(κ) for different
cyclotron radii R. Circles: hyperbolic case, R = ∞. Triangles: non-hyperbolic case, R = 0.5. Both
calculations were done for θ = 3.4, k0 = 1000, and ∆k = 1 (k in units of 1/rd). fk,R(θ) was calculated
by means of eqs. (1) and (2) from initially 2 · 107 trajectories with impact parameters b distributed

uniformly in the interval [−0.54, 0.54]. We also show |
∑∞

n=n0
Pθ(n) exp[iκnδ̃]|2 (eq. (5)) for R = ∞

(full line) and R = 0.5 (dashed line) with n0 = 4 and δ̃ = 0.8, as well as |
∑∞

n=n0
P (n) exp[iκnδ̃]|2 for

R =∞ (dash-dotted line) and R = 0.5 (dotted line). All curves are normalized to 1 for κ = 0.

To understand why the algebraic decay sets in rather late we take a look at the Poincaré
sections of two typical long trajectories (fig. 3) along with the corresponding part of the
invariant set. Clearly the trajectories are located at the boundary of a stable island. The
invariant set at this boundary exhibits a typical KAM scenario with a self-similar ensemble
of stable islands outside the outermost KAM torus. The algebraic decay results from the fact
that the long orbits are trapped in the vicinity of this self-similar region which is controlled
by a cantor set of destroyed KAM tori (cantorus) [12]. Because of the rather open character
of the three-disk billiard (cf. fig. 1) the extent of this region is, however, rather small so that
only orbits with more than about 300 reflections experience the self-similarity of the stable
islands. Orbits with less reflections follow only the highest member (“state”, [12]) of the
fractal hierarchy. We conclude that the exponential decay of N(n) in the second time regime
is governed by the escape rate from the vicinity of this first state of the hierarchy.

We now turn to the discussion of the quantum scattering amplitude fk,R(θ). In the
semiclassical approximation [13]-[16] fk,R(θ) takes the familiar form (3)

fk,R(θ) =
∑
j

(cj(θ))1/2 exp
[
i
[1
~
Sj −

π

2
µj

]]
. (1)

Here θ is the deflection angle and cj(θ) =
∣∣∣ dθ̃
dbj

∣∣∣−1∣∣∣
θ̃(bj)=θ

is the weight of the trajectory j in

the classical differential cross-section dσ/dθ. Sj is the reduced Hamiltonian action along the

(3) In the presence of the field inside the scattering region the vector potential has to be defined
appropriately: Ar = 0 and Aθ = Φ/(2πr) for r ≥ rB and Aθ = Φr/(2πrb

2) for r < rb, where Φ = Bπr2b
is the magnetic flux. The asymptotic stationary-wave function takes the form Ψ(x, y) = Ψ(r, θ) =

e−iαθeikx +
fk,R(θ)√

r
eikr, cf. [17].
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classical trajectory j from point Aj to Bj (see. fig. 1) defined by

Sj =

Bj∫
Aj

pdq− ~α
[
(ϕAj − π)− (θ − ϕBj )

]
, (2)

where α = k/2Rr2B . ϕAj and ϕBj are the angular coordinates of the points Aj and Bj and µ
is the Maslov index.

In order to study the fluctuations of fk,R(θ), we define the correlation function

Cθ,R(κ) =
〈
f̃k,R(θ)∗f̃k+κR(θ)

〉
∆k

, (3)

where 〈. . .〉∆k denotes an average over a range ∆k of k values around a central wave number
k0 with a−1 ¿ ∆k ¿ k. The fluctuating part of the scattering amplitude f̃kR(θ) is obtained
from fkR(θ) by subtracting off the k average over the range ∆k. We now show that Cθ,R(κ)
is essentially the spatial Fourier transform of the probability density P (x) = − d

dxN(n = x/δ).
x is the length of a trajectory and δ is the average path length between two collisions.

Substituting eq. (1) in eq. (3), we get

Cθ,R(κ) ≈
∑
j

cj(θ) exp[iκLj ] , (4)

where we have defined effective orbit lengths Lj := Sj/~k. In deriving (4) we have neglected
the contribution from cross terms because these terms disappear by the average in (3) due
to the presence of phase factors with uniformly distributed phases [1]. The sum runs over all
trajectories scattered into the angle θ. To evaluate this expression we classify the trajectories
by their number n of bounces. This classification takes into account the hierarchical structure
of the chaotic invariant set.

The effective length L is approximately proportional to n: L(n) ≈ nδ̃ (4),

Cθ,R(κ) ≈
∑
n

Pθ(n) exp[iκnδ̃] , (5)

where Pθ(n) :=
∑
j cj(θ)

∣∣∣
n(j)=n

. The probability Pθ(n)∆θ is the sum of the lengths of the

b-intervals leading to trajectories which make n bounces and are scattered into the angle
interval [θ, θ + ∆θ].

Notice that the outgoing angles of those trajectories which undergo a large number of
reflections n are randomly distributed. The reason is the self-similarity of the chaotic invariant
set responsible for the chaotic scattering behavior. Thus, in the large-n limit, Pθ(n) does not
depend on θ and is proportional to the integrated probability P (n) = − d

dnN(n).
In fig. 4, |Cθ,R(κ)|2 calculated by means of (1) and (2) is displayed for the hyperbolic and

the non-hyperbolic case (5). In both cases the shape of the correlation function for small κ
shows up to be Lorentzian. However, in the non-hyperbolic case the width of this Lorentzian is
determined by the small decay rate (λ ' 0.038) of the slow exponential decay of N(n) observed
in the intermediate time regime. The results are compared with |CθR(κ)|2 obtained by means

(4) For R = ∞ we have δ̃ = δ. At finite R there is an extra correction due to the field. We found
numerically that for R = 0.5 this correction is rather small. In the Fourier transform (5) we took

δ̃ = 0.8 for both cases.
(5) The function Cθ,R(κ) in fig. 4 was calculated for increasing k0 and ∆k until the results did not

change any more.
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of eq. (5), i.e. the modulus squared of the Fourier transform of Pθ(n). For comparison, we
also show this quantity calculated from P (n) instead of Pθ(n).

The difference in the behavior of the quantum fluctuations of the scattering amplitudes
between the hyperbolic and the non-hyperbolic case is striking (fig. 4): In the hyperbolic case
the fluctuations have characteristic wavelengths which are of the same order as the size of the
scattering region. In the presence of KAM tori one observes long-wavelength fluctuations which
are caused by interference effects due to the trajectories which closely follow the stable orbits.
The difference in the fluctuation behavior is also seen very clearly in a direct comparison of
scattering amplitudes for the two cases [11].

In the framework of the diagonal approximation (4) the correlation function is given as the
Fourier transform of Pθ(n). Thus, the much slower decay of this quantity in the non-hyperbolic
case directly causes a much narrower peak of the correlation function. This gives rise to the
question up to which n = nmax the function Cθ,R(κ) can be determined by the diagonal
approximation. The limit nmax can be estimated from the condition that the phase factors in
the off-diagonal term should vary rapidly. Thus, for the k values involved in the average (3), one
should have k(Lj − L`) À 1. The smallest occurring length difference ∆L can be estimated
to be inversely proportional to the number Aθ(n) of possible trajectories with n bounces
leading into the direction θ: ∆L ≈ δ̃/Aθ(n). For R = ∞ we find that Aθ(n) is represented
extremely well by the function 3

42n owing to the Cantor set structure of the singularities of the
function θ(b) [18]. In the non-hyperbolic case Aθ(n) increases approximately linearly instead
of exponentially and can be approximated by A(n) ≈ −50 + 4.5n for 10 . n . 40. For a value
of k0 = 1000 we find that in the hyperbolic case nmax ≈ 10. In the non-hyperbolic case, from
extrapolating A(n) we obtain an estimate of nmax ≈ 200.

In view of these considerations one expects that the algebraic part of P (n) displayed for
n & 300 has hardly any effect on the correlation function. Indeed, on the basis of (5)
we only find a very tiny contribution of about 0.1%. Furthermore, the crossover from the
slow exponential decay to the asymptotic algebraic decay occurs at values of n for which the
diagonal approximation has already broken down. Therefore, in our case, the algebraic decay
is irrelevant for the quantum fluctuations. However, this could be different in systems where
the algebraic decay sets in earlier.

Finally we want to point out that the same type of analysis also applies for energy-dependent
and field-dependent fluctuations of the corresponding correlation functions. Indeed, it can be
easily verified that the correlation function Cθ,R(κ) is proportional to the energy correlation
function Cθ(ε) with a rescaled energy ε = 2Eκ/k. With this transformation one re-obtains the
time-energy Fourier transform of Blümel and Smilansky [1] instead of the space–wave-number
transform (5). On the other hand, fluctuations associated with variations of the magnetic field
are closely related to the fluctuations of Cθ,R(κ) because both k and R enter eq. (2) through
the multiplicative term α.

Of course our calculations correspond only to single-channel transmission coefficients, but
we believe that the effect will still be visible in the fluctuations of real resistances (6). From
the above discussion it is obvious that the dimensions of the junctions should not be too small
to ensure that the product k0rd is large enough.

We conclude by stating that the presence of KAM tori manifests itself in a striking en-

(6) We have also started to calculate correlation functions for angle-integrated scattering cross-
sections. However, the results differ appreciably from those obtained by applying (5) to the angle-
averaged quantities Pθ(n). The reason is that the latter procedure does not contain interference
effects in the correlation function stemming from contributions with different θ. These effects lead
to a pronounced peak structure for larger κ. The characteristic range of this structure, again, differs
appreciably in the hyperbolic and non-hyperbolic cases.
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hancement of the fine-scale quantum fluctuations of the scattering amplitude. This is the
consequence of the “stickiness” of the KAM tori. However, we find from our analysis that the
algebraic asymptotic decay of the survival fraction N(t) does not have a major influence on
these fluctuations. It is rather the very slow exponential decay of N(t) in the intermediate time
regime which transforms the structure in the long-wavelength part of the correlation function.

***

The authors are grateful to H. Friedrich and H. Thomas for illuminating discussions.
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