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We apply a recently developed theory of the nonphononic vibrational density of states (DOS) in glasses
to investigate the impact of local frozen-in stresses on the low-temperature specific heat. Using a
completely harmonic description we show that the hybridization of the local nonphononic vibrational
excitations with the waves leads to a low-frequency DOS, in excess to the Debye one, which varies linearly
with frequency up to a certain crossover frequency, and then becomes constant. The actual value of the
crossover depends of the ratio between the local stresses and the shear modulus. This excess DOS leads to a
low-temperature specific heat with an apparent temperature exponent, which is between one and two, as
observed experimentally. We discuss how these findings may be utilized for the characterization of glassy
materials. We further compare our findings, which only rely on harmonic interactions, with the predictions
of other theories, which invoke anharmonic interactions and tunneling for explaining the low-temperature
behavior of the specific heat.
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The low-frequency spectral properties of glasses and the
related low-temperature properties are very different from
those of their crystalline counterparts. [1–3]. For example,
the specific heat of glasses does not show the Debye
temperature (T) law CðTÞ ∼ T3, observed in crystals, but,
instead, varies approximately as CðTÞ ∼ Tα with an expo-
nent α between 1 and 2 [1–8].
A first interpretation of the very-low temperature thermal

anomalies of glasses was given by Anderson et al. and
Phillipps in 1972 [9,10]. It was conjectured that in a glass
bistable structural configurations would exist, characterized
by a double-well potential as a function of some configu-
rational coordinate. Further, tunneling between adjacent
potential wells was assumed to be possible, which estab-
lishes quantum-mechanical two-level systems (TLS). It was
then assumed that such TLS defect centers exist with a
certain concentration and with a broad (constant) distribu-
tion, PðΔEÞ, of energy splittings, ΔE. This TLS model
leads to a specific heat varying linearly with temper-
ature (α ¼ 1).
Although the tunneling model is nowadays widely

accepted as explanation of the low-temperature anomalies
[11], and is even called “standard tunneling model” [12],
severe criticism has been expressed [13]. Indeed, in the
temperature range of 1 K the thermal de-Broglie wave-
length of matter waves λ ¼ h½mkBT�−1=2 (where h and kB
are the Planck and Boltzmann constants, and m is the mass
of a molecular unit) is only a few percent of an angstrom for
atomic masses larger than 10, which makes the existence of

quantum tunneling in this temperature regime rather
improbable. It has, however, been pointed out that bistable
structural rearrangements might involve rather small single-
atom displacements, which would then allow for quantum
tunneling [14,15].
Alternative suggestions for explaining the low-temper-

ature thermal anomalies of glasses are based on interacting
defects [13], on elastic dipoles [16], or on the soft-potential
model, which relies on the assumption of anharmonic
defect states [17–19]. Most of the presently existing
specific heat data have been evaluated using the TLS
and soft-potential models [3,20].
As mentioned, the existing explanations of the anoma-

lous low-T behavior of the specific heat rely mainly on the
presence of anharmonic interactions, often in the form of
double-well shaped interatomic potentials. Here, we pro-
pose another possibility of explaining the low-temperature
anomalies of the specific heat, which does invokes neither
quantum mechanics, nor anharmonicity. We present argu-
ments that the spectral density of harmonic vibrations
(density of states, DOS) gðωÞ contains a low-frequency
contribution, in addition to the Debye gðωÞ ∼ ω2 law which
leads to a specific heat with a scaling exponent α which
turns from 1 to 2 on lowering the temperature. These
contributions arise from a vortex-shaped pattern of vibra-
tions around local frozen-in stresses.
The presence of frozen-in stresses in glasses is well known

to glass blowers and iswidely used for industrial applications,
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e.g. tailoring the surface properties of utility materials [21].
Evidence for the (unavoidable) existence of local, randomly
distributed stresses in glasses has been presented in the
literature from computer simulations [22–24] and from
considering the microscopic derivation of continuum elastic-
ity [25–28].Experimentally internal stressesmaybemeasured
by indentation [29] or by x-ray diffraction [30].
In a recent study, based on an entirely harmonic analysis,

the continuum limit of the Hessian (dynamical) matrix of a
glass was studied [28]. It was found, that the low-frequency
nonphononic (not wavelike) vibrational excitations of
small computer-simulated glasses are mainly governed
by the local stresses. The nonphononic character of the
excitations was guaranteed by considering small enough
systems, which do not allow for low-frequency waves. By
combining theory with molecular-dynamics simulations,
these excitations (called “type-II modes”) were identified as
nonirrotational, vortexlike states [28]. The spectrum of
these states was shown to be related to the distribution of
small stresses. Small stresses imply small forces, which
occur at molecular separations, where the interpaticle-
interaction potential has small values of its first derivative.
In numerical simulations this artificially makes the low-
frequency DOS very sensitive to the smoothed cutoff
(tapering). A tapering, which guarantees continuity of
the first two derivatives of the potential (m ¼ 2) was
shown to result in a DOS scaling as gðωÞ ∼ ω4, whereas
a tapering withm ¼ ∞ leads to gðωÞ ∼ ω3. In real systems,
for potentials with a minimum (like a Lennard-Jones
potential) a scaling according to gðωÞ ∼ ω5 emerges.
These results were obtained by considering the modifica-
tion of the frequency-dependent shear modulus by the
nonphononic excitations in the absence of waves in the
interesting small frequency region. [28].
In the following we turn our attention to real, macro-

scopic, glasses and consider the influence of such vortex-
like vibrational states on the DOS, coexisting with wavelike
excitations in the same frequency range. We shall show
that, in addition to the modification of the shear elasticity,
there exists also a direct contribution to the low-frequency
DOS, which just reflects the statistics of the local stresses.
As already mentioned, such small stresses arise from the
minimum of the intermolecular potentials, and exhibit a flat
distribution, resulting in a DOS, which depends only
weakly on frequency.
In Refs. [27,28,31] it was shown that the continuum limit

of the harmonic energy of a system, interacting via a pair
potential ϕðrijÞ, does not only involve the usual strain
degrees of freedom, as considered in elasticity theory [32]
and in heterogeneous-elasticity theory [33–35], but also
nonirrotational, vortexlike vibrational modes, which are
associated with local stresses and are coupled via these
stresses to the elastic degrees of freedom.
The vorticities are defined in terms of vortexlike vibra-

tional displacement fields ulðrÞ centered around a local
stress at rl as

ηl ¼ 1

2
∇ × ulðrÞ: ð1Þ

The vortexlike local displacements, therefore, may be
schematically expressed as

ulðrÞ ¼ −r̃l × ηlðr̃lÞ; ð2Þ

with r̃l ¼ r − rl. The vorticiy fields η are supposed to
vanish for large values of jr̃lj.
In a simplified description, that we are going to present

here, we treat the local stresses σl and the vorticities
ηlðr̃l; tÞ ¼ jηlðr̃l; tÞj as scalars. Further, we do not treat the
elastic constants μ and K (shear and bulk modulus) as
fluctuating quantities, as assumed in Refs. [33–35], because
the focus is here on the influence of the local stresses.
Consequently, in the present treatment, the longitudinal and
transverse sound velocities

v2L ¼ 1

ρm

�
K þ 4

3
μ

�
; v2T ¼ 1

ρm
μ ð3Þ

are also not considered to vary spatially. In (3) ρm is the
mass density. Including such spatially fluctuating elastic
constants makes it possible to include the description of
vibrational anomalies at higher frequencies (“boson peak”)
[28,33,34,36]. The coupled equations of motion for the
longitudinal (L) and transverse (T) elastic fields uL;Tðr; tÞ
and the vorticities ηlðr̃l; tÞ can be written as [28]

ρ m½üL;Tðr; tÞ − v2L;T∇2uL;Tðr; tÞ� ¼
X
l

γlL;Tσl∇ηlðr̃l; tÞ;

ζ η̈lðr̃l; tÞ þ σlηðr̃l; tÞ ¼
X
α¼L;T

γlασl∇ · uL;Tðr; tÞ: ð4Þ

Here γlL;T are coupling coefficients of the elastic strains
with the local defect-induced rotational vibrations and may
be considered to be a measure for the number of molecules
involved in the anomalous mode with label l.
ζ is an average local moment-of-inertia density

ζ ¼ 1

4
ρmhr2⊥i ð5Þ

where hr2⊥i is an average distance of the excitations from
the defect center.
We emphasize here, that in deriving these equations [28],

the only underlying assumptions are that the glass is
composed of pairwise potentials, that it is stable, and that
it is structurally disordered.
The mutual coupling between the waves and the vortices

causes a renormalization of the diagonal Green’s functions
of the vortices (label l) and the waves (label α ¼ L, T), see
Appendix A:
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GllðωÞ ¼
1

−ω2 þ 1
ζ σl þ ΔlðωÞ

; ð6Þ

Gααðk;ωÞ ¼
1

−ω2 þ k2v2α þ Δααðk;ωÞ
: ð7Þ

The frequency variable ω2 is understood to include an
infinitesimally small positive imaginary part. The self-
energies Δααðk;ωÞ and ΔlðωÞ describe the hybridization
of the waves and the local vibrational excitations:

ΔlðωÞ ¼
σ2l
ρmζ

X
α¼L;T

�
γlα
vα

�
2

; ð8Þ

Δααðk;ωÞ ¼
k2

ρmζ

X
l

γl2α σ2lG
ð0Þ
ll ðωÞ ¼

k2

ρm
ΔMαðωÞ: ð9Þ

As pointed out in [28], the wave renormalization gives rise
to a frequency dependence of effective elastic constants
defined by

MαðωÞ ¼ ρmv2α þ ΔMαðωÞ; ð10Þ

so that we have

Gααðk;ωÞ ¼
1

−ω2 þ 1
ρm
MαðωÞk2

: ð11Þ

The density of states is then given by

gðωÞ ¼ 2

πN
ω Im

��X
k

GLLðk;ωÞ

þ2GTTðk;ωÞ þ GllðωÞ
�

PðσÞ

	

¼ gDðωÞ þ ΔgindðωÞ þ ΔgdirðωÞ: ð12Þ

Here h…iPðσÞ indicates an average over the distribution
density PðσÞ of the stresses, gDðωÞ ∝ ω2 is the Debye
DOS, and ΔgindðωÞ and ΔgdirðωÞ are the indirect and direct
modifications of the DOS. The indirect contributions are
proportional to the imaginary parts of the frequency-
dependent moduli [28] according to

ΔgindðωÞ ∝ ω ImfΔMLðωÞ þ 2ΔMTðωÞg

∝ ω5PðσÞ





ω2¼σ=ζ

: ð13Þ

As ΔgindðωÞ has a frequency dependence with a rather high
power (even higher than that of the Rayleigh ω4 contri-
bution, expected from fluctuating elastic constants [34]), it
is not relevant for the low-temperature specific heat, and we
discard it from further discussion.

The direct stress-induced contribution to the density of
states is

ΔgdirðωÞ ¼ Nη

�
2ω

π
Im

�
GllðωÞ

	�
PðσÞ

: ð14Þ

Because the transverse sound velocity in glasses is usually
much smaller than the longitudinal one [37], the term α ¼
T in expression (8) for the self-energy ΔlðωÞ will be
dominant, so that we drop the longitudinal term. We further
assume a uniform, average transverse coupling γ ¼ γlT , so
that we have

ΔlðωÞ ¼
1

ζμ
ðγσlÞ2: ð15Þ

The direct contribution of the stress-induced terms then
becomes (Appendix B)

ΔgðωÞdir ¼
Nη

N
2ωPðσÞ






ω2¼fðσÞ

; ð16Þ

where Nη is the number of stress-related defect states, and

fðσÞ ¼ 1

ζ
σ½1þ γ2σ=μ�: ð17Þ

In order to be specific, we now assume that the glassy
material is composed of atoms or molecules, which interact
via a pair potential ϕðjri − rjjÞ ¼ ϕðrijÞ. The absolute
values of the fluctuating local stresses are given by [25,28]

σij ¼




 1Ω rijϕ0ðrijÞ





: ð18Þ

HereΩ is a microscopic volumewith the size of the order of
an interatomic spacing. Because the potential usually has a
minimum at a distance r0, the small values of the stresses
are due to distances rij near this value. In this vicinity we
can write

σijðrijÞ ¼ σ1½rij − r0�: ð19Þ

In the regime around the minimum, where the stresses are
very small, we can therefore estimate the distribution
density as

lim
σij→0

PðσijÞ ¼
1



 dσijdrij






4πρr2ijgðrijÞ ¼ const ≐ P1; ð20Þ

where ρ ¼ N=V is the density of molecules, N their
number, V the sample volume, and gðrÞ the radial pair
distribution function [38]. For such a constant distribution
density of small local stresses, the expression (14) leads to
(Appendix B)
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ΔgηðωÞ ¼ nη
ωffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
�

ω
ω0

�
2

s ð21Þ

with nη ¼ 2NηP1ζ=N and

ω2
0 ¼

1

4ζγ2
μ ¼ 1

hr2⊥iγ2
v2T; ð22Þ

where we inserted relation (5) for the inertia density. We
may introduce the Debye frequency ωD ¼ kDvD [39] with
the Debye velocity

v−3D ¼ 1

3
ðv−3L þ 2v−3T Þ ≈ 2

3
v−3T ð23Þ

and the Debye wave number kD ¼ ð1=aÞ
ffiffiffiffiffiffiffi
6π23

p
with the

typical distance between molecules a ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
m=ρm

3
p

, where m
is the mass of a molecule (see Ref. [37] for values of kD of a
large number of glasses). Then we can write for ω0

ω0 ¼
1ffiffiffiffiffiffiffi
9π23

p a

γ
ffiffiffiffiffiffiffiffiffi
hr2⊥i

p ωD ≈ 0.2
a

γ
ffiffiffiffiffiffiffiffiffi
hr2⊥i

p ωD: ð24Þ

The frequency regime we are interested in here is the range
ω ≈ 10−2ωD. So, if the ratio ω=ω0 be of the order of 1, the
quantity

ffiffiffiffiffiffiffiffiffi
hr2⊥i

p
γ=a becomes of the order of 500. This is a

reasonable number if we recall that this quantity, which
determines ω0, is the extent of the defects in units of the
intermolecular distance times the coupling γ.
Equation (21), together with the definitions in Eqs. (22)–

(24), represents the main result of the present Letter, as it
gives a quantitative expression for the excess of the DOS at
low frequency in glasses.
Before we discuss the implications of our findings for the

specific heat, we address the vibrational spectrum of
glasses, and in particular the question, why a low-frequency
DOS, which varies almost linearly with frequency, has
never been reported in the literature. As a matter of fact,
both, simulational and experimental determinations of the
low-frequency harmonic DOS encounter severe problems.
In molecular-dynamics simulations the low-frequency
eigenvalues are dominated by the presence of spurious
standing waves due to the application of periodic boundary
conditions. In order to detect “nonphononic” vibrational
excitations, extremely small samples have been investi-
gated, in which the standing waves are suppressed [40–42].
However, as mentioned earlier, it turned out [28] that the
low-frequency DOS of such small samples are—via the
local stresses—very sensitive to the smoothing (“tapering”)
of the potential near the imposed cutoff, leading (possibly)
to artifacts. In simulations with larger samples N ∼ 106 to
107 [43,44] a Debye ω2 spectrum below the boson peak is
observed. As we expect our predicted subquadratic DOS
contribution to be very small compared to the Debye law,
and the low-frequency data in these simulations exhibit
some scatter, we think they are not in conflict with
our model.

On the other hand, the experimental determination of the
low-frequency vibrational DOS of harmonic excitations
suffers from the presence of the anharmonic interactions,
which is known to dominate the low-frequency DOS as
exhibited by incoherent inelastic scattering data of glasses
[45,46]. Coherent inelastic neutron- x-ray, and Raman
scattering data do not directly monitor the DOS [47,48],
and the low-frequency part in the GHz regime is, again,
obscured by anharmonic excitations [49–51]. In order to
reveal the low-frequency linear behavior of the vibrational
DOS, one would have to do incoherent scattering experi-
ments at very low frequencies and very low temperatures,
in order to avoid the anharmonic contributions.
At frequencies near one-tenth of the Debye frequency,

the mean-free paths of the waves in glasses approach the
Ioffe-Regel limit, i.e. its value becomes comparable to their
wavelength. In this frequency regime, a peak in the DOS
divided by ω2 is observed, called the boson peak. This
anomaly, which shows up in the specific heat as a peak in
the quantity CðTÞ=T3, led to a huge number of exper-
imental and numerical investigations of the vibrational
spectrum of glasses [52]. In Refs. [33,36] spatially fluc-
tuating elastic moduli have been identified as the main
reason for the boson-peak anomaly. Other authors [17,18]
advocated defectlike states, due to soft anharmonic poten-
tials as reason for the anomalies. Such “quasilocalized”
excitations [53] are discussed frequently in the recent
literature on vibrations in glasses [54,55]. We believe that
the stress-related defects states, discussed in Ref. [28] and
in the present Letter, are also relevant in the boson-peak
spectral regime, in particular the indirect contribution of
Eq. (13). This should be the subject of further
investigations.
Now we focus on the specific heat that can be calculated

from the DOS as [39]

CVðTÞ ∼
Z

∞

0

dωgðωÞðβωÞ2 eβω

½eβω − 1�2 ð25Þ

with β ¼ ℏ=kBT.
In order to perform realistic calculations we restore the

Debye DOS

gDðωÞ ¼
3

ω3
D
ω2θðωD − ωÞ ð26Þ

where θðxÞ is the Heaviside step function. We then write the
relevant DOS as [56]

gðωÞ ¼ gDðωÞ þ ΔgηðωÞ

¼ 3

ω3
D
ω2θðωD − ωÞ þ nη

0
B@ ωffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
�

ω
ω0



2

r
1
CA: ð27Þ

The specific heat can be now calculated numerically by
Eq. (25), using (27). Because the DOS asymptotically
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becomes linear for ω → 0 we predict CðTÞ ∝ T2 for very
low temperatures. If T becomes comparable with T0 ¼
ℏω0=kB a smoothing toward a linear behavior is expected.
Finally, depending on nη, at higher temperature, Debye’s
T3 is approached [57].
In Fig. 1 we show the low-temperature specific heat of

borate and silica glass as measured some time ago by
Lasjaunias et al. [4,5]. All datasets do not show a linear but
a superlinear temperature dependence, which is obviously
well accounted for by our model. We indicated by a green
full line the linear law CðTÞ ∼ T corresponding to the
prediction of the TLS model in the figure.
The values of ω0 obtained in the fits for SiO2 correspond

to temperatures ℏω0=kB ≈ 40 mK. For B2O3 we get
ℏω0=kB ≈ 800 mK. Therefore, we expect that the CðTÞ
of SiO2 will bend down to show a T2 law in the T range
below 50 mK. CðTÞ for B2O3 extends already to ℏω0=kB
and will also slightly bend down toward CðTÞ ∼ T2.
Using Eq. (24), we may evaluate the parameter

ffiffiffiffiffiffiffiffiffi
hr2⊥i

p
γ,

the extent of the defects times the coupling for SiO2 and
B2O3 from the values of ω0 obtained by fitting the specific
heat. Using the values of the Debye temperature of these
materials [58] ΘD ¼ 342 K (SiO2), ΘD ¼ 153 K (B2O3),

we get, according to Eq. (24)
ffiffiffiffiffiffiffiffiffi
hr2⊥i

p
γ=a ∼ 2000 for

Suprasil,
ffiffiffiffiffiffiffiffiffi
hr2⊥i

p
γ=a ∼ 1440 for Suprasil W, andffiffiffiffiffiffiffiffiffi

hr2⊥i
p

γ=a ∼ 50 for B2O3. The much smaller value of this
parameter in B2O3 may be rationalized, taking into account
that in this material, as opposed to SiO2, there is a tendency
for the formation of layered structural motifs (boxol rings,
[59]), which might lead to defect states involving fewer
molecular units.
For the low-temperature specific heat we envisage the

following scenario: The boson-peak anomaly is in most
materials located at one-tenth of the Debye temperature
ΘD ¼ ℏωD=kB. Below the boson peak, the quantity
CðTÞ=T3 usually levels off and then begins to rise with
decreasing temperature, indicating the cross-over toward
the low-temperature regime we are talking about [3,20] The
specific heat in glasses is usually measured down to
≈10−2ΘD. According to our findings, the temperature
dependence in this regime is related to the amount and
spatial extension of frozen-in stresses in glasses.
It is important to underline that our model can be tested

against future experiments; indeed its prediction implies
that CðTÞ at lower temperatures (around 1 mk) should bend
down toward a T2 law.
It is also interesting to study the development of the low-

temperature specific heat as a function of thermal, chemi-
cal, or pressure treating. A corresponding change in the
prefactor and the crossover parameter ω0 will give infor-
mation on the salient features of the internal stresses. This
information on the internal stresses will add to the existing
disorder classification of glasses, provided by hetero-
geneous-elasticity theory [33–35,37]. In fact, in a recent
study of ultrastable glasses [60] it has been demonstrated
that the low-temperature non-Debye specific heat, which
was present in the conventional glasses and attributed to
tunneling systems, was absent in the ultrastable glasses.
Within our new interpretation this means that the frozen-in
stresses are strongly reduced in the ultrastable glasses.
Let us finally mention that, of course, the contribution of

fluctuating elastic constants, which give rise to Rayleigh
scattering and the boson peak [33–35], are not included in
the present Letter, which focuses on the frequency regime
much below the boson peak. A combined theory (gener-
alized heterogeneous-elasticity theory) for the DOS has
been formulated recently [28], and we shall apply it to the
specific heat (in comparison with experimental data) in a
forthcoming paper.

Data availability—The experimental data in Fig. 1 are
taken from Refs. [4,5]. The theory curves in Fig. 1 are
obtained analytically by means of Eqs. (25) and (27) using
the parameters specified in the text.
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End Matter

Appendix A: Calculation of the Green’s functions—
We start with the coupled equations (3) of the main text.
A Fourier transform with respect to space and time gives
(α ¼ L, T)

½−ω2þv2αk2�uαðk;ωÞ¼
1

ρm

X
l

γlασlikeikrlηlðk;ωÞ;
�
−ω2þ1

ζ
σl

�
eikrlηlðk;ωÞ¼

1

ζ

X
α¼L;T

γlασlik ·uαðk;ωÞ: ðA1Þ

We may eliminate the vortex fields from these coupled
equations, which gives the following effective equations for
the longitudinal and transverse fields:

½−ω2þ v2αk2�uαðk;ωÞ ¼−
X

α0¼L;T

Δαα0 ðk;ωÞuα0 ðk;ωÞ ðA2Þ

with

Δαα0 ðk;ωÞ ¼
k2

ρmζ

X
l

γlαγ
l
α0σ

2
lG

ð0Þ
ll ðωÞ: ðA3Þ

We see that the coupling between the elastic degrees of
freedom and the vortices induces an indirect coupling
between the longitudinal and the transverse waves.
Disregarding this coupling, we obtain for the diagonal
Green’s functions

Gααðk;ωÞ ¼
1

−ω2 þ v2αk2 þ Δααðk;ωÞ
: ðA4Þ

We may as well eliminate the wave fields to obtain

�
−ω2 þ 1

ζ
σl

�
ηlðk;ωÞ ¼ −e−ikrl

1

ρmζ
σl
X
α

γlα
k2

−ω2 þ k2v2α

×
X
l0

γl
0

α σleikrl0ηl0 ðk;ωÞ: ðA5Þ

If we average over the positions rl we get

σlσl0 he−ikrleikrl0 irl ¼ σ2lδll0 ðA6Þ

from which we obtain
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�
−ω2 þ 1

ζ
σl

�
ηlðk;ωÞ ¼ −

1

ρmζ

X
α

ðσlγlαÞ2
k2

−ω2 þ k2v2α

× ηlðk;ωÞ: ðA7Þ

In the low-frequency limit this becomes�
−ω2 þ 1

ζ
σl

�
ηlðk;ωÞ ¼ −ΔlðωÞηlðk;ωÞ ðA8Þ

with

ΔlðωÞ ¼
σ2l
ρmζ

X
α

�
γlα
vα

�
2

: ðA9Þ

The local Green’s function of the vortices is then obtained
as

GllðωÞ ¼
1

−ω2 þ 1
ζ σl þ ΔlðωÞ

: ðA10Þ

Appendix B: Detailed derivation of the density of
states—From Eq. (14) we have

ΔgηðωÞ ¼ NηP1

2ω

π

Z
σmax

0

ωδ½ω2 − fðσÞ�dσ; ðB1Þ

with the substitution λ ¼ ω2 we get the level density

ΔρηðλÞ ¼
1

2ω
g

�
ω ¼

ffiffiffi
λ

p �
¼ NηP1

1

π

Z
σmax

0

δ½λ − fðσÞ�dσ:

ðB2Þ

We have restricted the integration range in (B2) to
positive values of σ. Negative values would lead to
negative values of λ ¼ ω2, which is inhibited by the
stability requirement for the spectrum. We now further
substitute

fðσÞ ¼ 1

ζ

�
σ þ γ2

μ
σ2
�

ðB3Þ

from which follows

df ¼ dσ
1

ζ

�
1þ 2γ2

μ
σ

�
¼ dσ

1

ζ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

μ
γ2ζλ

s
; ðB4Þ

where the second equality follows from the solution of
the equation λ ¼ fðσÞ for σ. We obtain

ΔρηðλÞ ¼ NηP1

ζ

π

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

μ γ
2ζλ

q ðB5Þ

from which follows

ΔgηðωÞ ¼ NηP1

ζ

π

2ωffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

μ γ
2ζω2

q : ðB6Þ
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