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Abstract
A generalized eŒective-medium approximation (EMA) for hopping transport

in topologically disordered systems such as amorphous semiconductors or
impurity bands of crystalline semiconductors is derived. In contrast with
previous theories we are able to include the in¯uence of closed loops in the
path summation. These terms are responsible for the algebraic long-time tails
of the velocity autocorrelation function which also show up as non-analytic
terms in the low-frequency part of the ac conductivity. If the closed-loop
contributions are neglected, the two-site EMA of Gochanour et al. and
Movaghar et al. is re-obtained. We have tested the results of the present theory
against simulations for an r-hopping network.

} 1. Introduction
The eŒective-medium approximation (EMA) in the version suitable for structu-

rally disordered systems, namely EMA-I (Gochanour et al. 1979, Movaghar et al.
1980a,b, Movaghar and Schirmacher 1981, Summer®eld and Butcher 1982) has been
proven to describe successfully dc and ac hopping conductivity phenomena in amor-
phous semiconductors and impurity bands of crystalline semiconductors. It has,
however, been pointed out (Schirmacher and Wagener 1992) that the EMA-I version
does not describe the long-time behaviour of the velocity autocorrelation function
(VAF) correctly. Quite generally the VAF for single-particle motion in a disordered
frozen environment has been shown to vary as t

¡…d=2‡1†
for t ! 1 (van Beijeren

1982, Haus et al. 1983). This asymptotic behaviour manifests itself as a non-analytic
low-frequency behaviour of the Laplace transform D…!† of the VAF (generalized
diŒusivity) in the form D…!† ¡ D…0† / !

d=2 (van Beijeren 1982, Haus et al. 1983).
The existence of this non-analyticity is known to be a property of the exact dynamic
conductivity ¼…!† / D…!† and is a consequence of the particle conservation law.
Such a non-analyticity is not present in the dynamic conductivity as calculated in
EMA-I. This is so because, in the path summation carried out to derive the EMA-I
(Movaghar and Schirmacher 1981), paths with closed loops have been neglected.
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However, as pointed out by van Beijeren (1982), the long-time algebraic tails are just
produced by recurrent walks, that is `closed loops’. Schirmacher and Wagner (1992)
made an attempt to repair the de®ciency of the EMA-I, but this was done in a rather
ad hoc and unsatisfactory way.

In the EMA version that we are going to derive in the present paper (a pre-
liminary version of this paper (without derivation) was published previously (Ganter
and Schirmacher 2000)), we have combined the elimination of repeated indices
(renormalized perturbation expansion (Economou 1990)), applied to pairs of sites,
with the path summation technique of Wertheim (1973), Logan and Winn (1988) and
Winn and Logan (1989). With the help of the former the EMA is obtained as a
decoupling approximation (Maraghar and Schirmacher 1981), and the latter takes
care of closed paths in a systematic way.

} 2. Derivation
We start with the master equation for the propagator Gij…t† giving the odds for

the presence of the particle at site j at time t if it started initially at i:

d

dt
Gij…t† ˆ ¡

X

`

w`iGij…t† ¡
X

`

wi`G`j…t†: …1†

We treat here only the symmetric r-hopping case, that is wij ˆ wji ˆ w…rij†, where rij

is the distance between the sites i and j. The Laplace transform of Gij is the ij matrix
element of the resolvent G…z† ˆ …z1 ¡ H†¡1

, z ˆ i! ‡ 0. The `Hamiltonian’ H is
decomposed into sparse submatrices (`hopping matrices’) H ˆ

P
¹ H…¹† associated

with a single pair ¹ :ˆ …ij† of sites and the sum runs over all such pairs. The hopping
matrices are de®ned as follows:

Hkl…ij† :ˆ
¡w…rij†; kl ˆ ii or jj;

w…rij†; kl ˆ ij or ji;

0; else:

8
><

>:
…2†

We denote sites (bonds) in italic (Greek) letters.
We now proceed in two steps. First we derive a self-consistent set of equations

for the averaged resolvent for which an unrenormalized locator expansion is per-
formed. This yields a mean-®eld theory for the ac conductivity which does not take
into account the repeated forward and backward hopping but includes closed loops
in a systematic way. For a theory of hopping transport, however, it has been demon-
strated to be crucial (Movaghar and Schirmacher 1981) to include the revisiting of
the same site very carefully. This can be achieved by a renormalized locator expan-
sion in which the repeated indices are eliminated systematically (Movaghar and
Schirmacher 1981, Economou 1990). Therefore, in a second step we repeat the
construction of the self-consistent equations for the renormalized locator expansion.

We now perform a (unrenormalized) locator expansion of the resolvent in the
following way:

G…z† ˆ …z1 ¡ H†¡1

ˆ 1

z
1 ‡

X1

mˆ1

1

zm‡1

X

¹1;...;¹m

H…¹1† ¢ ¢ ¢ H…¹m†: …3†
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It is important to note that this is an expansion for the resolvent G…z† and not for
a matrix element of the resolvent. The `locators’ are just 1z

¡1
, where 1 is the unit

matrix. The con®gurationally averaged propagator, on the other hand, is de®ned in
terms of diagonal and oŒ-diagonal matrix elements of G…z†:

GG…k; z† :ˆ
1

N

X

i; j

exp …ik · rij†Gij…z†
* +

:̂ GG…z† ‡ » ·GGGG…k; z†

ˆ 1

z
‡ 1

N

X

i; j

X1

mˆ1

1

zm‡1

£
X

¹1 ;...;¹m

… YN

pˆ1

drppN…r1; . . . ; rN† exp …ik · rij†‰H…¹1† ¢ ¢ ¢ H…¹m†Šij : …4†

pN…r1; . . . ; rN† is the con®guration distribution function and N is the number of sites.
In order to evaluate the con®guration average let us ®rst consider complete

spatial disorder (relevant for impurity bands of crystalline semiconductors):

pN…r1; . . . ; rN† º V
¡N

; …5†

where V is the system’s volume. The terms on the right-hand side of equation (4) are
of the following structure:

V¡N

zm‡1

… YN

pˆ1

drp H…¹1† ¢ ¢ ¢ H…¹s¡1†jH…¹s† ¢ ¢ ¢ H…¹m†: …6†

Now let X (Y ) be the set of all points contained in ¹1; . . . ; ¹s¡1 (¹s; . . . ; ¹m). The right-
hand side of equation of (6) factorizes into two independent integrals if and only if X
and Y have only a single point in common:

X \ Y ˆ flg: …7†

Instead of equation (5) we now perform the generalized Kirkwood approximation in
terms of the radial pair distribution function g…r† ˆ 1 ‡ h…r†:

pN…r1; . . . ; rN† º V
¡N

Y

i<j

g…rij†

ˆ V
¡N

Y

i<j

‰1 ‡ h…rij†Š: …8†

After factorizing equation (8) and inserting it into equation (4) we have products
of the form

V
¡N

zm‡1

… YN

pˆ1

drp h…²1† ¢ ¢ ¢ h…²q†H…¹1† ¢ ¢ ¢ H…¹s¡1†jH…¹s† ¢ ¢ ¢ H…¹m†: …9†

Comparing this with equation (6) we conclude that j remains a factorization point if
and only if there is no bond ²i connecting a point from Xnflg with a point in Ynflg.

Products without factorization points play a special role, because all general
products may be composed by them in a unique manner.
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Summing over all diagonal and oŒ-diagonal products free of factorization points
(denoted by `no fp’) leads us to the de®nition of the irreducible self-energies S…z†,
given by

S…z† :ˆ »
X1

mˆ1

Xno fp

²1 ;...;²q

¹1;...; ¹m

V¡…N¡1†

zm¡1

… YN

pˆ1

drp h…²1† ¢ ¢ ¢ h…²q†‰ H…¹1† ¢ ¢ ¢ H…¹m†Š11; …10†

and S…k; z†, given by

S…k; z† :ˆ »
X1

mˆ1

Xno fp

²1 ;...;²q

¹1;...;¹m

V¡…N¡1†

zm¡1

… YN

pˆ1

drp h…²1† ¢ ¢ ¢ h…²q† exp …i†k · r12 ‰H…¹1† ¢ ¢ ¢ H…¹m†Š12:

…11†

We may use them to renormalize equation (4) exactly:

GG…z† ˆ ‰z ¡ S…z†Š¡1
; …12†

» ·GGGG…k; z† ˆ GG…z†S…k; z†‰GG¡1…z† ¡ S…k; z†Š¡1
: …13†

Logan and Winn (1988) and Winn and Logan (1989) emphasized that the repre-
sentation of GG…k; z† in terms of S…k; z† is analogous to the representation of the static
structure factor S…k† in terms of the Ornstein±Zernike correlation function c…k† in
the theory of liquids.

To obtain a self-consistent theory for the liquid structure, one needs a `closure
relation’ that connects c…k† to the liquid potential and S…k†. The existing theories for
an approximate evaluation of the locator expansions can be classi®ed according to
their `closure relation’ in terms of H…¹† and the other quantities. The most sophis-
ticated closure relation giving reliable results for the averaged band structure of
topologically disordered systems has been formulated by Roth (1975). A somewhat
simpler scheme is due to Ishida and Yonezawa (1973), which we are going to exploit:

S…k; z† ˆ »w…k† ‡ »
2

…
dk 0

…2p†3

£ ‰ w
2…k ¡ k 0† ¡ 2 w…k ¡ k 0† w…k 0†Š ·GGGG…k 0

; z†: …14†

Here S…z† ˆ S…k ˆ 0; z†, and we have for the propagator

GG…k; z† ˆ 1

z ‡ D…k; z† k2 ; …15†

with

D…k; z†k2 ˆ S…0; z† ¡ S…k; z†: …16†

This constitutes a self-consistent theory for D…!† for the r-hopping problem, but one
can show that in the low-density limit the results become very poor, because multiple
hops between a small group of sites and also percolative properties are not taken
care of in this approximation.

We are now going to reformulate the locator expansion and the subsequent
averaging procedure by successively eliminating repeated (pair) indices. We de®ne
G

‰¹1 ;...;¹`Š to be the resolvent of the Hamiltonian in which the bonds ¹1; . . . ; ¹` are
missing. We further de®ne renormalized hopping matrices by

918 C. Ganter and W. Schirmacher



S…¹; z† :ˆ H…¹†‰1 ¡ G
‰¹Š…z†H…¹†Š¡1 …17†

and similar matrices, where the bonds ¹1; . . . ; ¹` are missing by

S
‰¹1;...;¹`Š…¹; z† :ˆ H…¹†‰1 ¡ G

‰¹1;...;¹` ;¹Š…z† H…¹†Š¡1
: …18†

We now decouple in equations (17) and (18) all lower cross-correlations and
write

hS…¹1; z† ¢ ¢ ¢ S
‰¹1;...;¹m¡1 Š…¹m; z†i

º
… Yq

iˆ1

drji pq…rj1 ; . . . ; rjq †hS…¹1; z†i‰ j1;...; jqŠ ¢ ¢ ¢ hS‰¹1;...;¹m¡1 Š…¹m; z†i‰ j1 ;...; jq Š: …20†

In the same way we set (Movaghar and Schirmacher 1981)

hS…¹; z†i‰ j1;...; jqŠ º H…¹†‰1 ¡ hG‰¹Š…z†i‰ j1;...; jqŠ H…¹†Š¡1
; …21†

hG‰¹Š…z†i‰ j1;...; jqŠ º hG‰¹Š…z†i‰¹Š; …22†

hS‰...Š…¹; z†i‰ j1 ;...; jq Š º H…¹†‰1 ¡ hG‰...;¹Š…z†i‰¹Š H…¹†Š¡1
: …23†

This can obviously be put into the form

hS‰...Š…¹; z†i‰¹Š ˆ f1 ‡ hS…¹; z†i‰¹Š‰hG
‰¹Š…z†i‰¹Š ¡ hG‰...;¹Š…z†i‰¹ŠŠg

¡1hS…¹; z†i‰¹Š: …24†

It now can be shown (see appendix A) that in the thermodynamic limit the diŒerence

hG‰¹Š…z†i‰¹Š ¡ hG‰...;¹Š…z†i‰¹Š …25†

vanishes.
We therefore have

hS‰¢¢¢Š…¹; z†i‰¹Š ˆ hS…¹; z†i‰¹Š ˆ : ½…¹; z†: …26†

Finally we obtain the following expression for GG…k; z†:

GG…k; z† ˆ 1

z
‡ 1

N

X

i; j

X1

mˆ1

1

zm‡1

X

¹1;...;¹m

¹k 6ˆ¹l

… YN

pˆ1

drp pN…r1; . . . ; rN†

£ exp …ik · rij† ‰½…¹1† ¢ ¢ ¢ ½…¹m†Šij ; …27†

½…ij; z† :ˆ H…ij†‰11 ¡ hG‰ijŠ…z†i‰ijŠH…ij†Š¡1
: …28†

Equation (27) has the same form as equation (4) for the averaged unrenormalized
propagator. Application of the path summation technique with subsequent Ishida±
Yonezawa closure yields our generalized EMA equations which combine the merits
of the path summation technique with those of the renormalized locator expansion:

GG…k; z† ˆ 1

z ‡ D…k; z† k2 ; …29†

D…k; z† k
2 ˆ S…0; z† ¡ S…k; z†; …30†
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S…k; z† ˆ »½…k; z† ‡ »
2

…
dk 0

…2p†3 ‰½ 2…k ¡ k 0
; z† ¡ 2 ½…k ¡ k 0

; z†½…k 0
; z†Š ·GGGG…k 0

; z†; …31†

½…k; z† ˆ
…

dr exp …ik · r† g…r† w…r†
1 ‡ 2 w…r†‰GG…z† ¡ ~GGGG…r; z†Š

: …32†

» ˆ N=V is the number density of sites, and ·GGGG…k; z† and ~GGGG…k; z† are de®ned by

·GGGG…k; z† ˆ »
¡1 GG…z† S…k; z†GG…k; z† …33†

~GGGG…k; z† ˆ »
¡1 GG2…z† S2…k; z† GG…k; z†: …34†

GG…z† ˆ hGiii is the diagonal propagator and is given by

GG…z† ˆ 1

z ‡ S…0; z† : …35†

It has been shown by Ganter (1996) that this set of equations can be viewed as the
`amorphous’ analogue of the two-site lattice coherent-potential approximation
(Odagaki and Lax 1981, Summer®eld 1981, Webman 1981).

} 3. Results
As seen from equation (29), the k-dependent averaged propagator has a diŒusion

pole with diŒusivity D…z† ˆ D…k ˆ 0; z† given by

D…z† ˆ ¡ »

2

@
2

@k2 ½…k; z†

­­­­­
kˆ0

¡ »

3
GG…z†

…
dk

…2p†3

‰…@=@k† ½…k; z†Š2S…k; z†
z ‡ D…k; z† k2 : …36†

If all contributions from closed loops are dropped, the self-consistent set of
equations simpli®es considerably. Closed-loop contributions are the integral in equa-
tion (31) and the oŒ-diagonal contribution ~GGGG…r; z† in equation (32). We obtain

S…k; z† ˆ » ½…k; z†

ˆ »

…
dr exp …ik · r† g…r†

w…r†
1 ‡ 2w…r† GG…z† : …37†

This is the version of EMA-I given by Gochanour et al. (1979).
The non-analytic behaviour of D…!†, which is present owing to the inclusion of

the closed-loop terms is most clearly displayed in the low-frequency asymptotics of
the so-called loss function Re ‰D…!† ¡ D…0†Š=!. This contribution can be estimated
as (Ganter 1996)

V…!† º 1

21=2 £ 3p»

!
1=2

‰D…0†Š3=2 : …38†

The structure of the integrals in the closed-loop terms shows that, in dimensions
diŒerent from three, the non-analyticity takes the form V…!† / !

d=2¡1
.

To make sure that the incorporation of the closed-loop terms does not aŒect the
good agreement of the EMA with the exact solution of the master equation we tested
the results of the present theory against a simulation of an r-hopping system with
hopping rates w…r† ˆ …¬r†3=2

exp …¡2¬r†. The results for the normalized conductivity

¼…!† ˆ …»=¬†D…!† are displayed in ®gures 1±3 (for diŒerent densities). We show also
the loss function, in which the low-frequency non-analytic behaviour is displayed. In
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(b)

Figure 1. (a) Real part (*) and imaginary part (*) of the normalized conductivity ¼…!† of
an r-hopping network with hopping rates w…r† ˆ …¬r†3=2

exp …¡2¬r† simulated by
McInnes et al. (1980), compared with the result of the full EMA (equations (29)±
(36)) (ÐÐ) and that of the EMA-I (equation (37)) (¢ ¢ ¢ ¢ ¢ ¢). (b) Loss function
V…!† ˆ Re ‰¼…!† ¡ ¼…0†Š=! for both theories (same symbols as in (a)) with density
» ˆ …¬=5†3

.

(a)
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(a)

(b)

Figure 2. Same as in ®gure 1 with density » ˆ …¬=9†3
.
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(a)

(b)

Figure 3. Same as in ®gure 1 with density » ˆ …¬=16†3
.



fact, the V…!† / !
1=2

frequency dependence has been observed experimentally (Long
1981) for amorphous silicon.

In conclusion we have obtained now an EMA for structurally disordered systems
which compares well with computer simulations and has the correct non-analytic
low-frequency asymptotics.
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A P P E N D I X A
VANISHING OF hG‰¹Š…z†i‰¹Š ¡ hG‰...;¹Š…z†i‰¹Š

Let us consider the expression

hG‰¹Š…z†i‰¹Š ¡ hG‰...;¹Š…z†i‰¹Š; …A 1†

with . . . as usual specifying a given set of removed bonds.
The crucial expression is the following:

hG‰¹Š…z†i‰¹Š ¡ hG‰...;¹Š…z†i‰¹Š ˆ
X

±2f¢¢¢g
hG‰...;¹Š…z† H…±† G

‰¹Š…z†i‰¹Š …A 2†

ˆ
X

±2f¢¢¢g

… YN

pˆ3

drp p…r1; . . . ; rN†G‰...;¹Š…z† H…±†G‰¹Š…z†: …A 3†

Since at least one site in the bond ± must be diŒerent from the sites which make
up the bond ¹ the integral over r3 is eŒectively con®ned to a volume v / r3

eff , limited
by the ®nite range of H…¹†.

Therefore the integral must vanish as V¡1 in the thermodynamic limit.
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