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A saddle-point treatment of interacting phonons in a disordered environment is developed. In contrast to
crystalline solids, anharmonic attenuation of density fluctuations becomes important in the hydrodynamic
regime, due to a broken momentum conservation. The variance of the shear modulus Δ2 turns out to be the
strength of the disorder enhanced phonon–phonon interaction. In the low-frequency regime (below the
boson peak frequency) we obtain an Akhiezer-like sound attenuation law Γ ∝ Τω2. Together with the usual
Rayleigh scattering mechanism this yields a crossover of the Brillouin linewidth from a ω2 to a ω4 regime.
The crossover frequency ωc is fully determined by the boson peak frequency and the temperature. For
network glasses like SiO2 at room temperature this crossover is predicted to be situated one order of
magnitude below the boson peak frequency.
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1. Introduction

Theories for sound-wave propagation in inhomogeneous media
(e.g. a spatially fluctuating sound velocity) have served as a common
tool for explaining the anomalous vibrational properties of disordered
solids for at least two decades [1–12]. However, less is known about
the role of the anharmonic interaction in such models. In a previous
phenomenological approach, involving only the longitudinal modes, a
Mode-Grüneisen like 3 phonon interaction has already been incorpo-
rated [13]. During the recent years, the detailed vector theory [5],
based on Lame's elasticity theory with spatially fluctuating elastic
moduli, has gained importance, because it establishes the connection
with Raman scattering data [8]. From first principles of elasticity
theory, this vectormodel allows for the inclusion of a phonon–phonon
interaction, which depends only on the constants that characterize the
harmonic medium, and requires no additional parameters. In the
present paper we present the derivation of the generalized anharmo-
nic saddle-point equations within the replica formalism [14–16]. We
evaluate the anharmonic corrections on the Brillouin linewidthwithin
a perturbative regime. At room temperature the theory predicts
anharmonic sound attenuation at the THz scale. This is in agreement
with previous simulations [17,18], which report on strong effective
Grüneisen parameters, compared with their rather weak crystalline
counterparts; in the present treatment the relevant expansion
parameter of the anharmonic vertex is just the fluctuation of the
shear modulus Δ2 which typically is of the order ≈0.1ρ2υT4, whereas
the Grüneisen parameters of crystalline solids are much smaller and
lead to anharmonic sound attenuation at and below several GHz [19]
(υL / T is the longitudinal/transverse sound velocity). Recent experi-
ments [20,21] showed already the existence of anharmonic sound
attenuation at the THz scale in SiO2, e.g. the Brillouin linewidth
exhibits an additionalω2 regime below the disorder-induced Rayleigh
ω4 law, but disagree about the precise value of the crossover frequency
separating both regimes. In addition it was widely believed that these
anharmonic effects coincided with those of the corresponding
crystalline phase, and several authors consulted an old kinetic
description of anharmonic solids [22]. However, this kinetic theory
only applies to transverse phonons, due to energy and momentum
conservation, as we explain in the second section. In contrast, the
anharmonic sound attenuation emerging from the present calculation
relies crucially on the presence of disorder. The Brillouin linewidth
satisfies an Akhiezer-like law, with a prefactor related to the disorder-
dressed spectral function. This is more reasonable, because the
vibrational degrees of freedom of a glass are assumed to be at thermal
equilibrium throughout the whole literature, whereas the kinetic
description only applies to non-equilibrium phonon distributions.

2. Theory of anharmonic sound attenuation in glasses

2.1. Anharmonic elasticity

The usual textbook derivation [23,24] of elasticity theory starts
with the non-linearized strain tensor,

uij x; tð Þ = 1
2

∂iuj x; tð Þ + ∂jui x; tð Þ + 1
2
∑
k
∂iuk x; tð Þ∂juk x; tð Þ

� �
ð1Þ
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Fig. 1. 3-phonon vertex, the Fourier modes ui(k,ωn) are defined through Eq. (21).
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which measures the deformation of a differential volume element.
The elastic free energy functional F el to quadratic order

F el = ∑ λ
2
u2
ii + μ xð Þuijuij

� �
ð2Þ

is built up from the translation and rotational invariant contractions of
the strain tensor. If the displacement of the individual atoms from
their equilibrium position is small e.g. ∇·u≪1, the non-linear part of
Eq. (1) can be neglected. Even then, the residual third order
contributions of Eq. (2) and possible third order contractions with
independent elastic moduli (Grüneisen-like parameters) have to be
taken into account, for explaining other physical properties of solids,
likewise a finite thermal conductivity or thermal expansion [25]. As
we explain in the next paragraph, the anharmonicities included in
Eq. (2) cannot lead to thermalization of the density modes in the
crystalline phase.

2.2. Absence of sound attenuation in the hydrodynamic regime

In case of a spatially independent shear modulus μ xð Þ = μ0 the
wave number k is a good quantum number. According to the
continuity equation, longitudinal phonons are density fluctuations
ρ x; tð Þ = ρ0∇·u x; tð Þ. The absorption of a density wave through an
energy and momentum conserving three phonon collision obeys the
conservation laws

ωL + ω 1ð Þ
i = ω 2ð Þ

i ð3Þ

kL + k 1ð Þ
i = k 2ð Þ

i : ð4Þ

Applying the triangular inequality to Eq. (4) and inserting Eq. (3)
leads to Eq. (6)

kLj j≥ k 2ð Þ
i

��� ���− k 1ð Þ
i

��� ��� ð5Þ

1
υL

≥ 1
υi
; ð6Þ

which states that density fluctuations can only be absorbed by
longitudinal phonons. (In a solid υL≥υT!) In that case Eq. (3) equals

kLj j + k 1ð Þ
L

��� ��� = k 2ð Þ
L

��� ���; ð7Þ

only collisions with parallel aligned momenta occur. To calculate an
extensive decay probability via Fermi's golden rule, the number of
possible final states has to be of the order of total degrees of freedom
(the number of degrees of freedom is bounded through the Debye

cutoff kD =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6π2N = V3

q
). Anharmonic attenuation of density fluctua-

tions would therefore not be observable in the thermodynamic limit
(V→∞with finite density), in a translationally invariant system. This
series of arguments has been already used by Landau and Rumer in
1936 [26]. In their theory transverse phonons acquire a lifetime due to
collisions with thermalized phonons. In 1939 Akhiezer developed the
corresponding kinetic theory [22], which takes into account scattering
at phonons in a non-equilibrium state. In crystalline solids the
Akhiezer regime is reported at frequencies below 1 GHz [19]. Both
theories only apply to transverse phonons, and cannot account for
high-frequency deviations observed in Brillouin light scattering
experiments, which are probing the longitudinal modes.

2.3. Replica field theory

The imaginary time quantum dynamics [27] of the present model
emerge from the Euclidean action Eq. (8), in which uij =

1
2

∂iuj xð Þ +�
Please cite this article as: C. Tomaras, et al., Replica field theory for an
doi:10.1016/j.jnoncrysol.2010.05.084
∂jui xð ÞÞ is the linearized strain and υij =
1
2

∂iuj xð Þ−∂jui xð Þ� �
the

linearized rotation tensor.

S uij x; τð Þ
h i

= ∫β

0
d4x

ρ
2
uii∂

2
τuii +

λ
2
u2
ii + μ xð Þuijuij + λuiiυijυij + μ xð Þuijυilυlj

� �
;

ð8Þ

Eq. (8) contains an interaction between longitudinal and trans-
verse phonons, for which the perturbation theory can be developed
from the elementary vertex shown in Fig. 1.

The probability to absorb or emit a longitudinal phonon vanishes in
a translationally invariantmodel, as the creation of a virtual transverse
phonon pair satisfies Eq. (4). However this is not true for a spatially
dependent shear modulus, averaging the inverse lifetime Γ μ xð Þ½ � over
a certain distribution of μ xð Þ yields a finite Brillouin linewidth Γ, as we
are averaging strictly positive numbers. Therefore Γ should in general
depend only on the local fluctuations 〈δμ xð Þδμ xð Þ〉, rather than the
average 〈μ xð Þ〉 = μ0, as Γ [μ0]=0. We assume a Gaussian distribution
of the shear modulus 〈δμ xð Þδμ x′

� �
〉 = Kμ x−x′

� �
, and carry out the

disorder average applying the replica trick [7,8]. The spatial fluctua-
tions of λ are neglected. This yields the euclidean action in replica
space:

S ua
ij x; τð Þ

h i
= ∫β

0
d4x∑

a

ρ
2
ua
ii∂

2
τu

a
ii +

λ
2

ua
ii

� �2 + λua
iiυ

a
ijυ

a
ij + μ0u

a
ijυ

a
ilυ

a
lj

� �

+ ∑
ab

∫β

0

d4xd4x′
2ℏ ðua

iju
a
ij x; τð ÞKμ x−x′ð Þub

lmu
b
lm x; τ′ð Þ

+ ua
ij x; τð Þυa

ilυ
a
ljKμ x−x′ð Þub

hkυ
b
hmυ

b
mk x′; τ′ð ÞÞ

+ ∑
ab

∫β

0
d4x∫β

0

d4x′
ℏ

ua
ij x; τð Þua

ijKμ x−x′ð Þub
hkυ

b
hmυ

b
mk x′; τ′ð Þ

� 	

ð9Þ

We now derive an effective action with the help of the pair modes

ua
ij xð Þub

hk x′ð Þ = ℏQab
ijhk x; x′ð Þ ð10Þ

υa
ij xð Þυb

hk x′ð Þ = ℏ Q̃ab
ijhk x; x′ð Þ ð11Þ

and their conjugate Lagrange multipliers Λ via the Fadeev–Popov
transformation [28]:

S ua
ij x; τð Þ;Q ; Q̃

h i
= ∫β

0
d4x

ρ
2
ua
ii∂

2
τu

a
ii +

λ
2

ua
ii

� �2 + λua
ii Q̃

aa
ijij x; xð Þ + μ0u

a
ij Q̃

aa
illj x; xð Þ

� �

+
ℏ2

2
∫β

0
d4x′d4xðKμ x−x′ð Þ

ℏ
Qab

ijlm x; x′ð Þ2

+ Qab
ijhk x; x′ð Þ Q̃ ab

ilmk x; x′ð ÞKμ x−x′ð Þ Q̃ab
ljhm x; x′ð ÞÞ

+ ℏ2∫β

0
d4x′d4xQaa

ijkh x; xð ÞKμ x−x′ð Þ Q̃bb
hmmk x′; x′ð Þub

hk x′; τ′ð Þ + SF1 + SF2

ð12Þ
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SF1 = ∑
ijhkab

i∫d4x d
4x′
ℏ

Λab
ijhk x; x′ð Þ ℏQab

ijhk−ua
ij xð Þub

hk x′ð Þ
� 	

ð13Þ
Fig. 2. Diagrammatic representation of the anharmonic mean field equations: blue = L,
red = T; full lines are susceptibilities, dashed lines represent the correlation function;
winding lines are the full self energies. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
SF2 = ∑
ijhkab

i∫d4x d
4x′
ℏ

Λ̃ab
ijhk x; x′ð Þ ℏ Q̃ab

ijhk−υa
ij xð Þυb

hk x′ð Þ
� 	

ð14Þ

As the disorder average restores translational and rotational
invariance, the mean field approximation has to reflect these symme-
tries. In addition we assume replica diagonal pair modes:

Q̃ab
ijlm x; x′ð Þ = δab δilδjm + δimδjl

� 	
χ2 x−x′ð Þ ð15Þ

Λ̃ab
ijlm x; x′ð Þ = iδab δilδjm + δimδjl

� 	
∑2 x−x′ð Þ ð16Þ

Qab
ijlm x; x′ð Þ = δab δilδjm + δimδjl

� 	
χ1 x−x′ð Þ ð17Þ

Λab
ijlm x; x′ð Þ = iδab δilδjm + δimδjl

� 	
∑1 x−x′ð Þ ð18Þ

This ansatz removes the bare anharmonic interaction terms with
μ0 and Λ from the effective action in agreement with the previous
scalar approach [13], and in addition the last term of Eq. (12).

We kept ℏ explicitly for identifying the quantum contributions:
the phonon dynamics are governed by the effective Lagrange density

Leff = u 1ð Þ
ij xð ÞG−1

0ijlm x−x′ð Þu 1ð Þ
lm x′ð Þ

−u 1ð Þ
ij xð ÞiΛ 1ð Þ

ijlm x−x′ð Þu 1ð Þ
lm x′ð Þ

−υ 1ð Þ
ij xð ÞiΛ̃ ijlm x−x′ð Þυ 1ð Þ

lm x′ð Þ

ð19Þ

in which the Lagrange multipliers Λ ; Λ̃ enter as external fields. As far
as their dynamics are independent of ℏ, we are just left with a classical
continuum field theory, subjected to canonical statistics. This happens
in the case of zero anharmonicity, in which the problem is reduced to
the determination of the classical spectral function [5,8].

Proceeding with the mean field approach, a Matsubara decomposi-
tion of the euclidean action (12) is donewith the following conventions:

ui x;τð Þ = 1ffiffiffiffiffiffiffi
βV

p ∑
n;k

ui ωn;kð Þeiωnτ−ik·x ð20Þ

Q x� x′ð Þ = 1
βV

∑
k
Q kð Þei k;x−x′ð Þ ð21Þ

Here we introduced the four-vector notation k=(k,ωn), (k,x)=
iωnτ− ik·x. The imaginary time displacement field is integrated out
leaving the effective action in terms of the composite fields.

Minimizing this effective action yields the saddle-point equations
satisfied by the composite fields (22–25). Linearizing these equations
leaves just the classical harmonic theory [5,7,8], in which the self
energy satisfies the self consistent Born approximation. Therefore
they establish a reasonable generalization of the harmonic theory.

∑1 q;ωnð Þ = 1
V
∑
k

Kμ k−qð Þ χL k;ωnð Þ + χT k;ωnð Þð Þ + ∑L
an q;ωnð Þ
2

ð22Þ
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∑2 q;ωnð Þ = − ℏ
6βV2 ∑

k;p;ωm

ðχ�T p + q;ωn−ωmð Þ

+ χ�L p + q;ωn−ωmð ÞÞKμ p−kð ÞχT k;ωmð Þ

=
1
2
∑L

an q;ωnð Þ + ∑T
an q;ωnð Þ

= − ℏ
6βV

∑
k ð∑1 k + q;ωn�mð Þ−∑L

an k + q;ωn�mð Þ
2 ÞχT k;ωmð Þ

ð23Þ

χL q;ωmð Þ = q2

ρω2
n + q2 λ + 2μ0−2∑1 q;ωnð Þð Þ = q2GL q;ωmð Þ ð24Þ

χT q;ωmð Þ = q2

ρω2
n + q2 μ0−∑1 q;ωnð Þ−∑2 q;ωnð Þð Þ = q2GT q;ωmð Þ

ð25Þ

The quadratic (in χ) terms emerge from the disorder enhanced
anharmonic interaction, all anharmonic terms vanish in the case of
zero disorder Kμ→0.

These saddle-point equations can be represented diagrammati-
cally (Fig. 2). Indeed, they resemble the structure of a calculation of
the self energy to first order in the anharmonic and disorder-induced
interaction. In the following we exploit this analogy for justifying
the most obvious approximation to Eqs. (22–25), the mode-decay
approximation.

2.4. Mode-decay approximation

We choose an exponential correlation function Kμ x−x′
� �� �

=

Δ2 exp − x−x′ð Þj j
ξ

� 	
, withΔ2 the variance of the shear modulus and ξ the

correlation length. The small anharmonic corrections to the lon-
gitudinal phonon propagator are estimated by expanding Eqs.(22–25)
around the solution of the linearized saddle-point equations:

χi = χi + δχi ð26Þ

∑i = ∑i + δ∑i ð27Þ

The lowest order anharmonic correction to the longitudinal
phonon self energy is represented through the last diagram of Fig. 2,
but with the full susceptibilities replaced by the disorder-dressed ones
χi:

δ∑L q→0;ωnð Þ = − ℏ
6βV2 ∑

k;p;ωm

χT p;ωn �ωmð ÞKμ p−kð ÞχT k;ωmð Þ

ð28Þ
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Fig. 4. Full Brillouin linewidth due to disorder and anharmonicity for (υL /υT)2=2.52,
Δ2=0.99,Δc

2=0.401ρ2υT4,ξ=2/kD and T=300K inset: the anharmonic self energy
integral (35) divided by the anharmonicity parameter g=Δ2kBT / (3π4ξ3ρ3υT4).
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Eq. (28) is recasted by the Matsubara technique [29]:

δ∑L q→0;ωnð Þ = − ℏ
12V2π

∑
k;p

∫∞
−∞dω coth

βω
2

� �

× χT p;ωn−iωþ
� �

Kμ p−kð Þχ
T
″ k; iωþ
� �

ð29Þ

= − ℏ
6V2π

∑
k;p

∫∞
0
dω coth

βω
2

� �
χT″ k; iωþ

� �

× Kμ p−kð Þ χT p;ωn−iωð Þ−χT p;ωn + iωð Þð Þ

ð30Þ

≈−ℏΔ2ξ3

6π4 ∫∞
0
dω∫kD

0
dkk2∫kD

0
dpp2 coth

βω
2

� �

× χT p;ωn−iωð Þ−χT p;ωn + iωð Þð ÞχT″ k; iωþ
� �

ð31Þ

The Fourier transformed density-correlation function is linked to
the dynamical longitudinal susceptibility, via the fluctuation–dissipa-
tion theorem:

〈ρ� k;ωð Þρ k;ωð Þ〉 = 1
π
coth

βω
2

� �
χL″ k;ωn = iωþ

� �

=
1
π
coth

βω
2

� �
χL″ k;ωþ

� �
ð32Þ

The Brillouin linewidth is then just the width of the longitudinal
susceptibility at resonance

Γ kð Þ = k∑L
″ ωkð Þ = υL ωk = υLk: ð33Þ

At room temperature, the anharmonic contribution to the
imaginary part of the self energy reads

δ∑L
″ ωn = iΩþ
� �

=
Δ2kBTξ

3

3π4 ∫
k;p;ωð Þ

k2p2

ω
χT″ k;ωþ

� �

× χT″ p;ωþ + Ω
� �

− χT″ p;ωþ−Ω
� �� �

:

ð34Þ

The transverse susceptibility

χT″ k;ωþ
� �

=
1

ρυ2
T

k2∑″ ωþ
� �

−ω2
þ + υ2

Tk
2� �2 + k4 ∑″ ωþ

� �� 	2 ð35Þ

consists not only of a Brillouin-peak, but resembles the shape of the
self energy in self consistent Born approximation (Fig. 3).
Fig. 3. The spectral density function χT
″(k,ω+) for various wave numbers.
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For numerical evaluation we introduce dimensionless quantities,
ω̃ = ωξ

υT
; k̃ = kξ; χ̃″ = χ″ρυ2

T .

δ∑L
″ Ω̃þ
� 	

=
Δ2kBT

3π4ξ3ρ3υ4
T

∫kDξ

0
dk̃k̃

2∫kDξ

0
dp̃p̃2∫∞

0

×
dω̃
ω̃ ðχ̃T

″ðp̃;ω̃þ + Ω̃Þ−χ̃T
″ðp̃; ω̃þ− Ω̃ÞÞχ̃T

″ k̃; ω̃þ
� 	

ð36Þ

The sound-attenuation function exhibits a linear behavior at
frequencies below the boson peak and drops off above (see the inset
of Fig. 4). This happens because the main contribution to the integral
(36), for frequencies below the boson peak, comes from the band of
irregular delocalized high-frequency modes; these states contribute a
wide χ″

T
∝ω regime, situated above the boson peak, to the disordered

spectral density (see Fig. 3), for which the kernel χ̃T
″ p̃; ω̃þ + Ω̃Þ−
�

χ̃T
″ p̃; ω̃þ−Ω̃Þ
�

can be replaced with Ω̃∂ω̃χ̃T
″ p̃; ω̃þÞ
�

.

2.5. Estimation of the crossover frequency in SiO2

We estimate the amount of the attenuation induced by anharmo-
nicity as compared with the disorder-induced one. The ratio
R Ωð Þ = Γan Ωð Þ= Γdis Ωð Þ∝δ∑L Ω̃

� 	
= Ω̃, which becomes frequency-

independent beyond the boson peak, determines the crossover
frequency. This ratio is fixed by the parameters Δ2 and ξ, which set
up the boson peak position, and the temperature. For example SiO2

requires Δ2=0.99Δc
2=0.401ρ2υT4 and ξ=2/kD. The ratio of the

squared sound velocities is (υL /υT)2=2.52 and the Debye cutoff
1.6×1010/m [6]. At room temperature kBTkD

3 /ρυT2=0.6 we obtain
δ∑̃L

″ Ω̃
� 	

≈ 0:0045 Ω̃, i.e. T0=7.3⋅105K. Fig. 4 shows the full Brillouin
linewidth due to disorder and anharmonicity. The anharmonic
corrections already lead to deviations from the disordered contribu-
tion slightly below the shoulder of the boson peak, the highest
frequency, where the Akhiezer-like behavior is present in SiO2 is
therefore predicted to be one order of magnitude below the boson
peak, i.e. in the 100 GHz regime. In general, for observing the
Rayleigh-law one needs to go to low enough temperature, which
shifts the crossover towards lower frequencies.

Let us now discuss the possible role of potential-induced
anharmonicity. There is no problem to introduce interactions
involving longitudinal and transverse Mode-Grüneisen parameters
gL, T into the theory. In the longitudinal case one just has to replace Δ2

by (1+gL
2)Δ2 in the saddle-point Eqs. (22–25). This will shift the

crossover from Akhiezer-like to Rayleigh scattering upwards and
harmonic sound attenuation in glasses, J. Non-Cryst. Solids (2010),
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reduce the “Rayleigh window” between the Akhiezer–Rayleigh
crossover and the boson peak. Within our continuum description, it
is not possible to judge the importance of the Mode-Grüneisen
parameters gL, T, because they are effective constants which have to be
calculated from a certain lattice theory, taking into account the
microscopic details of the interaction. It has been pointed out by
Fabian et al. [17], that the Grüneisen parameters which they have
extracted from their simulations are unusually strong, with respect to
the bare crystalline couplings. However, a suitable choice of the
parameters for the Stillinger–Weber potential [30] used in their
simulations [18] should account for the non-linear part of the strain
tensor as well. Hence their strong Grüneisen parameters γi, should not
be confused with our non-linear couplings gL, T, which may as a first
guess be identified with their rather weak crystalline counterparts
[25], as long as one deals with weak disorder. However it cannot
be excluded, that strong disorder or impurities drive these constants
to a strong coupling regime, in a renormalization group approach.
Therefore, it has to be determined by experiment, whether our
“minimal” description is sufficient, or one has to deal with Grüneisen
parameters.

The SiO2 measurement, performed by Masciovecchio et al. [20],
exhibits the Akhiezer–Rayleigh crossover around 100 GHz, which fits
our estimates quite well. In contradiction Devos et al. [21] claim the
crossover to take place at 400 GHz, however they performed their
measurements on vitreous SiO2, which shelters several defects. It is at
the heart of impurity physics, that defects give rise to additional
interactions, e.g. anharmonicities. This can lead to enhanced Mode-
Grüneisen parameters gL, T, which then have to be taken into account.
In several experiments dealing with vibrational spectra near and
below the glass transition [31,32] one observes an increase of the DOS
in the boson peak regime. Within the mode-decay approximation one
can account for the trends but not numerically reproduce such
spectra. We believe that one has to solve the full mode-coupling Eqs.
(22–25) in order to be able to do so.
3. Conclusion

In conclusion we developed a consistent perturbative treatment of
the anharmonic contribution to the Brillouin linewidth in disordered
solids. Our treatment solely in terms of elasticity parameters, which
enter into the mean values and correlation functions suggests a
correlation between the boson peak position and the Akhiezer–
Rayleigh crossover at temperatures scaled with the Debye tempera-
ture. Further developments in experimental techniques are required
Please cite this article as: C. Tomaras, et al., Replica field theory for an
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to explore this extremely interesting frequency window in the upper
GHz regime.
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