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An overview is given on the present status of the theoretical description of vibrational spectra of glasses, as
seen by inelastic neutron, X-ray and light (Raman) scattering. Using the language of Green's/response
functions the merits and shortcomings of a local oscillator and a generalized elasticity-theory point of view
are discussed. It is pointed out that in both cases the interaction of phonons with disorder-induced
irregularities leads to Rayleigh scattering (mean free path ℓ ∝ ω−4) at low enough frequencies and
temperatures. In disordered solids at ambient temperature the Rayleigh scattering is usually masqued by
Akhiezer-like anharmonic scattering ℓ ∝ ω−2, but it can be made visible by lowering the temperature. Using
a combination of fluctuating-elasticity theory with an incoherent spectrum of local oscillators a fair
description of the vibrational spectrum of glassy SiO2 can be achieved.
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1. Introduction

Since the appearance of the seminal paper of Uli Buchenau et al. [1]
on neutron scattering from glassy SiO2 a wealth of publications on the
rather anomalous vibrational properties of glasses has been published
[2–9]. But, in fact, this discussion started already some 50 years ago
[10] with the observation of a low-frequency Raman band that is not
present in crystalline Raman spectra and which has been called
“boson peak” [11,12]. According to a suggestion of Shuker and
Gammon [13] these spectra were assumed to be proportional to the
vibrational density of states (DOS), so the excess over the Debye DOS,
observed in SiO2 [1] and many other glasses [4–8] inherited also the
name “boson peak” [14]. Among the vibrational anomalies observed
in disordered solids as compared to crystals this feature is the most
striking one. It also shows up as a characteristic peak in the
temperature-dependent specific heat, plotted as C(T)/T3. Near this
peak the thermal conductivity κ(t) shows a characteristic shoulder or
“dip”, which can be shown [15] to be intimately related to the boson
peak. Below the “boson peak temperature” (mostly ~10 K) C(T) varies
almost linearly with T and κ(T) almost quadratically, which can be
explained by the two-level model [2].

The boson peak shows up in a frequency range where the
broadening of the acoustic excitations becomes of the same order of
magnitude of the Brillouin resonance frequency (“Ioffe-regel limit”
[16,17]). This observation led different authors to hypothesize a
relationship between the appearance of the boson peak and the
existence of localized vibrations [18,19]. Acoustic waves that become
Anderson-localized, it was argued, could produce the plateau in the
thermal conductivity. Following this idea, investigations of (Ander-
son) localization properties of waves in disordered systems based on
simulations [20], model calculations [21,22] and field-theoretical
techniques [23] have shown that Anderson-localized states in
disordered media do actually occur, but in a much higher frequency
range (near the upper band edge) than the boson peak frequency.

So the question is: what is the very nature of the states near and
above the boson peak frequency? As these states are neither really
propagating nor localized, Fabian et al. [24] suggested to call them
“diffusons”: They behave like diffusing light in milky glass. In this
regime, however, the Brillouin resonance frequency Ωk as measured
by inelastic X-ray scattering still exhibits a linear dispersion Ωk=vLk
with the wave number k. In this frequency range the width Γk of the
excitations appears to acquire a k2 dependence [25]. As in this regime
the “would-be” mean-free path ℓ=2vL /Γk is of the same order of
magnitude as the wavelength of the sound-like vibrational excitations
the wave vector loses its property of labeling the vibrational mode. In
quantum theory (we are discussing classical vibrational excitations)
one would say, k is no more a good quantum number. Also
perturbation theory with respect to (kℓ)−1 breaks down, and one
has to find a non-perturbative description of the observed spectra.
Such a description – in terms of elasticity theory with fluctuating
elastic constants – is nowadays available [12,15,22,26–29] (fluctuat-
ing-elasticity concept, FE), and we shall give an overview in the next
sections and compare it with the soft-potential/local oscillator (LO)
model.
local oscillator models for anomalous vibrational
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Beforehand we briefly summarize the previous efforts to under-
stand or explain the boson-peak anomaly. In fact, an enormous
number of possible explanations have been published in the literature
[4], which can roughly be grouped into three classes: i) Models with
spatially fluctuating elastic constants. ii) Models associated with the
glass transition and iii) defect models.

i) In models with quenched disorder of elastic constants
[15,22,26–34] the boson peak marks the lower frequency
bound of a band of irregular delocalized states with random
mutual hybridization. These states are neither propagating nor
localized [22]. The models have been solved with the help of
numerical simulations as well as effective-medium theories.

ii) In theories of the glass transition [35–39] the boson peak arises
as a benchmark of the frozen glassy state.

iii) Defects with a heavy mass can produce resonant quasi-local
resonant states within the DOS [40–42] and be thus the reason
for the boson peak and the reduction of the thermal
conductivity. Similarly defects with very small elastic con-
stants, near which anharmonic interactions are important (soft
potentials), can produce quasi-local states, which, if hybridized
with acoustic excitations may produce a boson peak [8,43] and
a plateau in the thermal conductivity [44,45]. Inhomongene-
ities may also be the source of local vibrational excitations that
contribute to the excess DOS [46]. Specifically in network
glasses bond-angle distortions can also contribute to the
boson-peak anomaly [1,7]. All these models essentially assume
that the boson peak arises from the coupling of sound waves to
local oscillators. In a recent study [26] the predictions of a LO
model has been compared with those of a FE model [15,26–29].
This will also be done in the present contribution.

2. Rayleigh scattering, fluctuating elastic constants and
local oscillators

Before we go into the details of the FE and LO theory we introduce
some general concepts, which are helpful for discussing the matter.

We start with a simple wave model, in which waves are described
by a scalar amplitude u(r, t), which is supposed to obey a wave
equation:

∂2

∂t2
u r; tð Þ = K0∇

2u r; tð Þ ð1Þ

Here K0=v0
2 is an elastic constant, divided by the mass density and

v0 is the sound velocity. In frequency space we have:

−ω2u r;ωð Þ = K0∇
2u r;ωð Þ ð2Þ

The Green's function obeys:

−ω2G0 r; r′;ω
� �

−K0∇
2G0 r; r′;ω

� �
= δ r−r′

� � ð3Þ

Here ω must contain an infinitesimal imaginary part for mathe-
matical reasons [40]. As is well known the Green's function is very
helpful for describing the presence of inhomogeneities (in the
physical and mathematical sense).

The first inhomogeneity one can study is a spatial variation of the
elastic constant:

K rð Þ = K0 + ΔK rð Þ; ð4Þ

which leads to an equation of motion:

−ω2G r; r′;ω
� �

−∇ K0 + ΔK rð Þð Þ∇G r; r′;ω
� �

= δ r−r′
� � ð5Þ
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or in k space [47]:

−ω2 + K0k
2

� �
|{z}

G−1
0 k;ωð Þ

G k;k′;ω
� �

δk;k′ = δk;k′−∑
q

k⋅qΔK k−qð ÞG q;k′ω
� � ð6Þ

As the macroscopic (averaged) Green's function depends only on
the difference of r and r′ we perform the Fourier transform [47] with
respect to this difference and write:

G k;ωð Þ = 〈G k;k′;ω
� �

〉δk;k′ =
1

−ω2 + K0k
2−Σ k;ωð Þ ð7Þ

Here Σ(k,ω) is an unknown function, which describes in an
average way the influence of the disorder.One can define a complex,
frequency-dependent sound velocity, in analogy to optics:

v2 ωð Þ = v20− lim
k→0

Σ k;ωð Þ= k2≡v20−Σ ωð Þ ð8Þ

where we have defined a q independent low-wave vector self energy
Σ(ω). The real part of the complex sound velocity is the “real”
(disorder-modified) sound velocity, the imaginary part gives rise to a
finite mean-free path ℓ(ω):

v″ ωð Þ = 1
2ω

jv ωð Þ j2
ℓ ωð Þ ð9Þ

from which follows:

1
ℓ ωð Þ =

ω
v3

Σ″ ωð Þ ð10Þ

We now solve Eq. (7) for Σ(k,ω) and expand the resulting
expression to second order in ΔK to obtain:

Σ k;ωð Þ = ∑
q

k·qð Þ2C k−qð ÞG0 k;qð Þ ð11Þ

Where:

C qð Þ = 1
V
d3reiqr〈ΔK r + r0ð ÞΔK r0ð Þ〉 ð12Þ

is the Fourier transform of the spatial correlation function of the
fluctuating elastic constant. In deriving Eq. (11) we have used the fact
that the average of ΔK is zero.

In the low-wave number limit we have for the correlation
function:

C q→0ð Þ = 〈ΔK2
〉
ξ3

V
ð13Þ

and we obtain:

∑ k;wð Þ = k2
ξ3

3
〈ΔK2

〉
1

2πð Þ3 ∫d
3q

q2

−w2 + v20q
2 ð14Þ

we now use the identity:

Im
1

q2−ω2 = v20

( )
= πδ q2−ω2

= v20
� �

= v0
π
2ω

δ q−ω= v0ð Þ ð15Þ

to obtain:

1
ℓ ωð Þ =

ω
v3

Σ″ ωð Þ = ξ3

3π
bΔK2

N

v80
ω4 ð16Þ
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which is the famous Rayleigh law, which gives rise to the blue color of
the sky. In light scattering off the inhomogeneities of the admosphere
ΔK represents the fluctuations of the dielectric constant and/or the
density of air.

We now turn to the alternative model, namely to the possibility
of coupling the waves with local oscillators, described by a
configuration coordinate xi, which could be, for example the
libration angle of SiO2 tetrahedra [1]. We assume that they couple
to the strain in the immediate vicinity, so that they obey an equation
of motion [26]:

::
xi tð Þ = −w2

0xi tð Þ− 1
M

∫d3rV r−rið Þ∇u r; tð Þ ð17Þ

Here M is the effective mass, e.g. the moment of inertia of the
Buchenau-tetrahedra. V(r) is the coupling potential. (We still treat the
phonon amplitudes as scalar entities). For the phonons, we have [26]:

::
u r; tð Þ−v20∇

2u r; tð Þ = 1
ρm

∑
i
∇V r−rið Þxi ð18Þ

where ρm is the mass density. The inhomogeneous Eq. (17) can be
solved with the Green's function of the homogeneous local oscillator
equation:

G 0ð Þ
i ωð Þ = 1

−ω2 + ωi
ð19Þ

Assuming a very short-ranged potential in comparison with the
length scale of the phonon wave lengths:

V r−rið Þ = V0δ r−rið Þ ð20Þ

we obtain an effective equation for the phonons:

::
u r; tð Þ−v20∇

2u r; tð Þ−∇Keff r;ωð Þ∇u r; tð Þ ð21Þ

with an “effective fluctuating elastic constant”:

Keff r;ωð Þ = λ∑
i
G 0ð Þ
i ωð Þδ r−rið Þ ð22Þ

with the coupling constant λ = V2
0

Mρm
. We now can perform the same

steps, which led to the Rayleigh law (16), but we have to be careful,
because the quantities ΔK(r) the variance of which appears in its
prefactor have (by definition) zero average. In the present case the
average of Keff(r,ω) is non-zero, and we obtain for the local oscillator-
induced self energy of the phonons to second order in the small
parameter V0

2:

Σ k;ωð Þ = k2〈Keff ωð Þ〉 + 〈ΔKeff ωð Þ2〉∫ d3q
2πð Þ3 k·qð Þ2S k−qð Þ 1

−ω2 + v20q
2

ð23Þ

where S kð Þ = 1
N
∑ije

ik ri−rjð Þ is the “structure factor” of the local

oscillators. The first term is identical to that obtained in Ref. [26], the
second one was missing in this treatment, because only the lowest-
order term was discussed. In the regime ω≪ωi (for all i), i.e. below
the resonances, the second-order term obviously gives rise to a
Rayleigh law like the non-frequency-dependent fluctuating elastic
constants. I believe this result is quite important as it shows that the
Rayleigh law is a very general one and applies also to the LO model.
Important for the derivation is, however, that the underlying
Lagrangian [26] is invariant under translative coordinate transforma-
tions (global translation invariance), whichwas achieved by assuming
that the local oscillators couple not to the phonon displacements, but
to the strain.
Please cite this article as: W. Schirmacher, Some comments on fluctuat
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2.1. A comment on the local oscillator DOS

There is an extended literature on soft potentials and the
corresponding local oscillators [8,43,48] in which the relaxational
reconstruction of an initially arbitrary (and therefore assumedly
smooth) LO DOS in the presence of interactions is discussed. These
interactions are the anharmonic interaction and the indirect interac-
tion via static elasticity. Whereas the latter is shown to shift the local
squared frequencies ω0

2 downwards, thus inducing an instability, the
former stabilize the frequencies. The result is a uniform distribution of
the renormalized ω2, resulting in a linear g(ω)=2ωg(ω2). However,
at very small frequencies, these authors argue, local forces fi become
distinct, which balance the anharmonic oscillator forces:

fi = Mω2
i x0 + Ax30 ð24Þ

where A is the strength of the anharmonicity and x0 is the new
equilibrium position of the local configuration coordinate. The local
forces shift the original (already elasticity-renormalized) frequencies
ωi:

ωnew = 1
M

dfi
dx0

= ω2
i + 3A

M
x20 ð25Þ

which results in a renormalized low-frequency local DOS g:

gnew ωð Þ∝∫dω2
i g ω2

i

� �
|{z}

const:

∫dfi g f 2i
� �
|{z}
const:

δ ω−ωnewð Þ

= 2M∫dωiωi∫dx0 ω2
i + 3

A
M

x20

� �
|{z}

1
M
∂fi =∂x0

× δ ω−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2

i + 3A
M
x20

q� �

ð26Þ

This contribution is proportional to ω4.
The authors claim that the cross-over between the ω4 behavior

and the linear ω behavior of the local DOS produces the boson peak.
We now want to make clear that there is also another reason for a

low-frequency contribution∝ω4. The local oscillators not only couple
statically to the strains but also dynamically by the interaction (2)
[26,44]. This introduces the local strain susceptibility as a self energy
into the local DOS:

G ωð Þ = 1

G 0ð Þ
i ωð Þ

h i−1−λχi ωð Þ
ð27Þ

Where

xi wð Þ∝∫d3k
k2

−w2 + v20k
2 ð28Þ

Taking the imaginary part and using (15) we have:

gloc wð Þ = 2wIm G wð Þf g∝Im xi wð Þ	 

∝∫d3kk2δ w−vkð Þ∝w4 ð29Þ

This relation holds for frequencies below the minimal resonance
frequency. On the other hand, using cylinder coordinates kρ =

�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x + k2y

q
; kzÞ:

χi ωð Þ″∝d3kk2δ ω−vkð Þ
= ∫dkxkρ∫dkρ k2ρ + k2z

� �
δ ω−v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2ρ + k2z

q� � ð30Þ

we see that this contribution has the same mathematical structure as
that of the local forces (26). However, the physical meaning of Eqs.
ing-elasticity and local oscillator models for anomalous vibrational
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Fig. 1. Reduced DOS g(ω) /gD(ω) against scaled frequency ωξ /vT, 0 for ξ=1/kD (full
lines) ξ=5/kD (dashed lines), ξ=10/kD (dotted lines), ξ=15/kD (dash–dotted lines),
for three disorder parameters (from left to right) γ−γc=0.0001 (black), 0.001 (blue)
and 0.01 (red). Inset: Scaled Brillouin line width Γξ /v0 against scaled wave number qξ
for the same parameters and with the same line and color codes (figure taken from Ref.
[29]). (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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(26,30) is very different. The latter is an entirely harmonic contribution
and generalizes to ωd+1 in d dimensions. The former is of anharmonic
origin and is not d dependent.

The situation within the LO picture is now the following: Below a
characteristic frequency ωc the linear g(ωi

2) (corresponding to a
constant g(ω2) of LO's) is – according to LO theory – reconstructed by
local relaxation towards an ω4 law. So this mechanism creates a “soft
gap” within an initially structureless level spectrum. ωc is interpreted
as boson-peak frequency. On top of that, we argue, is another ω4

contribution from the dynamic oscillator-phonon coupling, whichwill
modify any estimates of the prefactors of the ω4 and ω1 contributions
to the local DOS. Furthermore, themeasured DOS will not only include
the Debye DOS and the LO DOS, but also the contribution from
fluctuating elasticityΔK, be it static or from randomly distributed LO's.

3. Model with fluctuating shear modulus

We now work in terms of elasticity theory with the standard
Lagrangian:

L =
1
2
ρm u̇ r; tð Þ
h i2

+
1
2
λ ∑

3

i=1
uii

 !2

+ μ ∑
3

i;j=1
u2
ij; ð31Þ

where u(r, t) is the displacement vector, uij =
1
2
∂iuj + ∂jui
� �

is the
strain tensor and λ and μ are Lamé's elastic constants. μ≡G is the shear
modulus and λ is related to the bulk modulus K by K = λ + 2

3
μ . We

now assume that the shear modulus μ fluctuates in space around its
mean value μ0 (the non-shear part of the bulk modulus λ≡λo is
supposed to be constant): μ(r)=μ0+Δμ(r). This leads to the following
equation of motion for the components of the displacement vector:

::
ui r; tð Þ = ∑

j
λ0∂i∂j + ∂jμ rð Þ∂i + δij ∑

l
∂lμ rð Þ∂l

� �
uj r; tð Þ ð32Þ

We assume that the correlation function of Δμ(r), C rð Þ =
〈Δμ r + r0ð ÞΔμ r0ð Þ〉 and its Fourier transform are of the forms:

C rð Þ = 〈Δμ2〉e−r =ξ

C kð Þ = 〈Δμ2〉 8π= ξð Þ k2 + ξ−2
h i−2 ð33Þ

The corresponding mean-field equation for the low-wave number
self energy Σ(ω)=Σ(q=0,ω) (self-consistent Born approximation,
SCBA) takes the form [12,23,27,50]:

Σ ωð Þ = γ
2φ3〈Δμ

2〉
∫

jkjbkD

dk
2π

� �3
C kð Þ χL k;ωð Þ + χT k;ωð Þ½ �

χL k;ωð Þ = k2 −ω2 + k2 v2L;0−2Σ ωð Þ
� �h i−1

χT k;ωð Þ = k2 −ω2 + k2 v2T;0−Σ ωð Þ
� �h i−1

ð34Þ

Here γ = 〈Δμ2〉φ3 = v40. is the “disorder parameter”, vL, 0, vT, 0, are
the (unrenormalized) sound velocities, and φ3 = ∫

jkjbkD
dk=2πð Þ3C kð Þ is a

normalization constant.
The DOS is given by:

g ωð Þ = 2ω
3π

∫
jkjbkD

dk
2π

� �3 1
k2
Im χL k;ωð Þ + 2χT k;ωð Þf g; ð35Þ

In Fig. 1 we have plotted the “reduced DOS” g(ω)/gD(ω) (where gD is
Debye'sDOS) for threevaluesofγ and four valuesof ξ. Firstwenotice that,
similarly to the uncorrelated case (ξ→0) [15,26,27] there exists a critical
amount of disorder γc, beyond which the system becomes unstable. This
instability is due to a situation in which non-negligible configurations
withnegative shearmoduli exist. This situation is comparablewith that of
Please cite this article as: W. Schirmacher, Some comments on fluctuat
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the LO model with interaction-induced instabilities. However, the
philosophy behind the present model is that the input distribution of
elastic constants is supposed to be the relaxed one, which should not
include unstable configurations. It is, however, instructive to explore the
origin of this instability, as it is related to that of the boson peak.

The quenched disorder induces an effective interaction between the
vibrational modes, which leads to level repulsion between the
eigenvalues. This occurs, where k is no more a “good quantum
number”. In the regime, where the modes are to good approximation
planewaves, i.e. in the long-wavelength regime k→0, there is no level
repulsion, and one obtains the Debye spectrum.

Level repulsion is a characteristic feature of random matrices. If we
would discretize the equation of motion (32) the fluctuating part of the
resulting dynamical matrix would be a random matrix, albeit a rather
sparse one, compared with those dealt with in random matrix theory
[49]. The characteristic level-distance statistics (GOE statistics) has
been verified in amodel with fluctuating force constants of a dynamical
matrix [22]. The boson peak now turns out to be the lower edge of the
“randommatrix states”, which are subject to level repulsion and which
have roughly a semi-circular density of levels g(ω2). The instability
occurs, once this lower boundary becomes smaller than zero.
Approaching the instability the boson peak can be interpreted as the
“precursor” of the instability or the “memory of the instability” which
might have occurred during the quenching process, followed by
relaxation processes towards stable configurations. Operationally this
random-matrix regime is described within the present model-
description by the frequency-dependent self energy Σ(ω).

Returning to the discussion of Fig. 1 we notice that the boson peak
frequency scales with the inverse correlation length, as we have
plotted against ωξ /vT, 0. In contrast to the uncorrelated case
C rð Þ∝δ rð Þð Þ the height of the boson peak is not bounded.

The inelastic coherent neutron and X-ray spectrum is given by the
1-phonon dynamical structure factor:

S k;ωð Þ = 1
π

n ωð Þ + 1ð ÞIm χL k;ωð Þf g =
1
π

n ωð Þ + 1ð Þ

× 2k4Σ″ ωð Þ k2cL ωð Þ2−ω2
h i2

+ 4k4Σ″ ωð Þ2
 �−1

≈ 1
π

n ωð Þ + 1½ � k
2

2ω
k2Σ″ ωð Þ=ω

cL ωð Þk−ω½ �2 + k2Σ″ ωð Þ=ω� �2
ð36Þ
ing-elasticity and local oscillator models for anomalous vibrational
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From this equation we can read off the width of the Brillouin line
(full width at half maximum):

Γ ωð Þ≈2k2Σ″ ωð Þ =ω≈ 2
cL ωð Þ2 ωΣ″ ωð Þ ð37Þ

In the insert of Fig. 1 we have plotted Γ(ω) against ωξ. We observe
a remarkable scaling property: for ξ≫1/kD the quantity ξΓ is a
universal function of ωξ if the disorder parameter γ is fixed. This
property can be verified by rescaling the self-consistency Eq. (34)
[28]. Another interesting feature of Γ(ω) is its sudden increase just
below the boson peak in the case where the disorder parameter γ is
only slightly smaller than its critical value. For smaller γ this “step”
becomes smeared out and eventually indistinguishable from the
Rayleigh ω4 behavior.

In the literature the possible presence or absence of Rayleigh
scattering has been strongly debated [4]. From the experimental
evidence it is clear that in the GHz regime and below the sound
attenuation is proportional to ω2. This behavior has been called
“Akhiezer law” according to an old calculation of transverse sound
damping in crystals [52], but has been shown by numerical
simulations [53] and by a quantum-field-theoretical evaluation [54]
to arise from anharmonic interactions. From the analytical theory [54]
it emerges that the anharmonic sound attenuation is proportional to
the temperature, so that by reducing the temperature one has the
chance to observe Rayleigh scattering in disordered solids. This is a
challenge for future experimental work. Whether there are traces of
the Rayleigh scattering below the boson peak in SiO2 is currently
controversely discussed [55,56].

4. Comparison and tentative combination of the FE and LO models
for glassy SiO2

We turn now to a critical assessment of the fluctuating-elasticity
(FE) and local oscillator (LO) approach towards the boson-peak
anomaly. From the physics it must be clear that in an amorphous solid
both, spatially fluctuating elasticity and local oscillatory motions are
present. So attempts to find out “which model is better” [57] are
doomed to failure. The renormalized resonance frequencies in the
relaxed state will have a lower bound ωc according to the soft-
potential theory [8,43,48]. We convinced ourselves in Section 2 that
below resonance the local oscillators can be subsumed into the
fluctuating-elasticity framework. To say it clearly: The frozen-disorder
Please cite this article as: W. Schirmacher, Some comments on fluctuat
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aspect of the local motion is already contained in the fluctuating-
elasticity picture. Only the resonant frequencies appear as an additional
feature in the spectrum. This also answers the long-debated question:
“Are there optical modes in an amorphous solid?” From a solid-state-
textbook standpoint the answer is, of course, “No”, because there is
neither long-range topological nor long-range chemical order present
in an amorphous material. What is present, is an interaction-
renormalized spectrum of local oscillatory motions like the famous
librations of tetrahedra [1].

That this is so can be clearly seen from the DOS of glassy SiO2,
depicted in Fig. 2. We show there the neutron data [1] together with a
molecular-dynamics simulation [6] using the BKS pair potential and a
more recent ab-initio calculation [51]. In fact the higher frequency
part resembles very much that of crystalline cristobalite [58] with its
characteristic “floppy” librational, bond-bending and stretching
modes. All these modes can be viewed to form in the amorphous
states local oscillators, which are coupled to the low-frequency
acoustic excitations.

Now we have argued that the disorder aspect of this coupling is
already contained in the fluctuating-elasticity approach. The resonant
aspect then can just be added to the spectrum. The simplest formula
for a broad, inhomogeneous and bounded spectrum of levels ω2 is a
half-ellipse, normalized to one, which for gi(ω) takes the form:

gi ωð Þ = 2ωgi ω2
� �

= 2ω 2
πB2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2−ω4

p
ð38Þ

B is the half width, i.e. one of the half axes of the ellipse (for the other
one we have A=2/πB).

In Fig. 3 we have added to the experimental and simulated DOS two
calculatedmodel functions. Thefirstmodel function is theDOS resulting
from the FE model, which is, by construction, limited to the Debye
frequency ωD=2πνD. ωD has been calculated from the measured
longitudinal and transverse soundvelocities and the averageddensity of
atoms [27]. Clearly this does not contain the would-be optical
oscillations and librations. As the total DOS is normalized to unity the
FE DOS is much higher than the simulated and measured one. In the
secondmodel calculationwe just superimposedequally theFEDOSwith
a “local oscillator DOS” of the form (3) with 2B=54 THz, roughly the
width of the total spectrum. In view of the differences of the simulated
spectra this superposition does not do a bad job.

We now turn to the reduced DOS g(ν)/ν2, featuring the boson
peak. This representation of the data is presented in Fig. 3. We see that
the boson peaks of the experiment and the two simulations are quite
different. From this one concludes that the boson peak is more
sensitive to disordered-sample details than the overall DOS. If the
ing-elasticity and local oscillator models for anomalous vibrational
sol.2010.07.052
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boson peak would result from a resonant spectrum this could not be
understood. On the other hand, if it stems from the mean-square
fluctuations of the quenched disorder it is easily understood, because
both in real materials as well as in simulations the statistics of the
quenched disorder is strongly dependent on the preparation and
annealing history. We did not attempt to obtain a “best fit” to any of
the data, but emphasize that the present approach allows for a
qualitative understanding of the underlying physics.

In passing we also mention that the neutron scattering DOS is
obtained from averaging over a high-wave number part of S(q,ω),
measured with coherently scattering nuclei. While it is widely
believed that this procedure (incoherent approximation [59]) gives
a good account of the DOS, it still might over-estimate the boson peak.

5. Conclusions

We have tried to obtain a unified view of possible spectral
mechanisms which may be responsible for forming the boson-peak
anomaly in the THz regime of amorphous materials. The fluctuating-
elasticity model has been compared with the local oscillator model
developed in the framework of soft-potential theory. The fluctuating-
elasticity model enables to classify the disorder-induced vibrational
modes as “random-matrix”modes. These modes have the property of
spectral level repulsion, which becomes distinct at the Ioffe–Regel
point, where the wave vector ceases to be a good “quantum number”
for labeling the modes. We have found that local oscillators, if treated
on the same footing as fluctuating elasticity, can contribute to this
fluctuating elasticity away from (i.e. below) the oscillator resonances.
This opens the possibility to subsume the disorder-related aspects of
the local excitations in the fluctuating-elasticity formalism and treat
the resonant spectrum separately. This procedure gives a qualitative
understanding of the vibrational spectrum of a network glass like
SiO2.
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