
Physica B 263—264 (1999) 160—162

Model calculations for vibrational properties of disordered
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Abstract

It is demonstrated that a disordered system of coupled classical harmonic oscillators with a continuous distribution of
coupling parameters exhibits generally a low-frequency enhancement (“boson peak”) of the density of states, as compared
with the Debye law. This phenomenon is most pronounced if the system is close to an instability. This is shown by means
of a scalar model on a simple cubic lattice. The force constants are assumed to fluctuate from bond to bond according to
a Gaussian distribution which is truncated at its lower end. The model is solved for the density of states and the one-
phonon dynamic structure factor S(q,u) by applying the two-site coherent potential approximation (CPA). The results
for the density of states are in very good agreement with a numerical evaluation of the same model. ( 1999 Elsevier
Science B.V. All rights reserved.
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The origin of the anomalous low-energy vibra-
tion spectrum of disordered solids is a puzzle with
which scientists are concerned already for a long
time [1]. In particular, it was found that the vibra-
tional density of states (DOS) g(u) exhibits an ex-
cess low-frequency contribution as compared to
the Debye u2 law, which, when plotted as g(u)/u2,
appears as a maximum, the so-called boson peak.
A corresponding low-temperature peak is observed
in the temperature dependence of the specific heat if
plotted as C(¹)/¹3 [2].1 Very recently, the present
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1See Ref. [3] for an extended list of recent experimental and
theoretical references.

authors have shown [3] that a strongly disordered
three-dimensional model of coupled harmonic
oscillators with a continuous force constant distribu-
tion exhibits such an excess low-frequency DOS
(boson peak) as a generic feature. This was achieved
by comparing the results of a numerical diagonaliz-
ation with those obtained by the single-bond coher-
ent-potential approximation (CPA). In the present
contribution we review the main results of this
work. Furthermore, we show, how to obtain a CPA
expression for the coherent one-phonon dynamic
structure factor S(q,u), and discuss the general
trends of the experimentally observed boson peak
phenomena. Our model consists of a set of coupled
scalar harmonic oscillators placed on a simple
cubic lattice with lattice constant a"1. The oscil-
lators are coupled by nearest-neighbour force
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constants K
ij
, which are treated as independent

(quenched) random variables, distributed ac-
cording to a density P(K
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). The corresponding

Hamiltonian has off-diagonal elements H
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and eigen-
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i
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i
, where u

i
are the vibrational

eigenfrequencies. For P(K) we have chosen a trun-
cated Gaussian P(K)"P

0
expM!(K!K

0
)2/

2p2Nh(K!K
.*/

). Here h(x) denotes the step func-
tion, P

0
is a normalization constant, K

0
and p de-

note the maximum value and the width,

respectively. JK
0

serves as frequency scale (i.e.
K

0
"1 in our units). The lower cut-off K

.*/
is

introduced to allow for the study of strongly dis-
ordered systems with a reduced amount of negative
force constants [4].2

In Fig. 1 we present the results of a calculation
[3] of g(u)/u2 obtained in CPA (lines) and by
numerical diagonalization (symbols) for various
values of K

.*/
with p"1.0. For comparison the

spectrum of the ordered lattice (p"0) is also
shown. The excellent agreement of the CPA calcu-
lations with the numerical analysis (except for the
immediate vicinity of the instability) indicates both
the reliability of the CPA and the correctness of the
procedure utilized for the elimination of finite-size
effects in the numerical work [3]. It is seen that the
position and strength of the boson peak is deter-
mined by the amount of negative force constants,
which is controlled by the parameter K

.*/
. We

found out that the system becomes unstable if
K

.*/
exceeds a critical value (!0.85 in CPA, !0.6

in the numerical analysis). Obviously, the boson
peak plays the role of a precursor phenomenon of
the instability.

As demonstrated in Ref. [3], as well as in earlier
model calculations [2,4,5,10], the boson peak is asso-
ciated with a strongly reduced mean free path,
which is of the order of the wavelength. As shown in
Ref. [3] by means of a statistical analysis of the

2 It should be realized that the Hamiltonian H can be stable
(i.e. have no positive eigenvalues j

i
) for a restricted amount of

negative off-diagonal elements K
ij
. Physically this corresponds

to a situation, where atoms are occasionally connected by nega-
tive force constants, but are still sitting at the bottom of a poten-
tial energy well.

Fig. 1. Reduced DOS g(u)/u2 versus frequency for force con-
stant distributions with p"1 for several values of K

.*/
, cal-

culated in CPA (lines) and by direct numerical diagonalization
(symbols). The corresponding curve for the ordered lattice
(p"0.0) is also given.

spectral fluctuations, the states in the boson peak
region are neither propagating nor localized, indic-
ating a diffusive type of transport of vibrational
energy. Such a diffusive motion of vibrational exci-
tations has already been shown [6,7,11—13] to be
typical for glasses and to be responsible for the
temperature dependence of the thermal conductiv-
ity above the plateau region.

Experimentally the boson peak does not only
show up in the vibrational DOS, which is propor-
tional to the incoherent dynamical structure factor
S
*/#

(q,u), but also in its coherent version S
#0)

(q, u).
The one-phonon contribution to the latter quantity
can be calculated in CPA. The central quantity in
this theory is the self energy C(u)"(v(u)/a)2. v(u)
is the frequency dependent complex sound velocity.
The coherent one-phonon dynamic structure factor
is given by [8]

S
#0)

(q,u)"(n(u)#1)
u
p

]
2f (q)ImMC(u)N

[u2!f (q)ReMC(u)N]2#[ f (q)ImMC(u)N]2
, (1)

where n(u) is the Bose distribution and f (q) is the
structure function. On a simple cubic lattice it is
given by f

4#
(q)"2+

i/x,y,z
(1!cos(aq

i
)). To obtain

a model expression that may be used for struc-
turally disordered solids, we performed angular
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Fig. 2. Coherent dynamic one-phonon structure factor
S
#0)

(q,u) (p"1,K
.*/

"!0.6) for wavenumbers ranging be-
tween 0.1 and 2.0 (a"1.0).

averages of Eq. (1) with f (q)"f
4#
(q). We found out

that the results cannot be distinguished from those
obtained by using the angular averaged quantity
f
!7

(q)"6(1!sin(qa)/qa) in (1). The results for
p"1.0 and K

.*/
"!0.6 are presented in Fig. 2. It

is seen that the boson peak (as calculated in CPA) is
a wavenumber independent phenomenon. The Bril-
louin peak is broadened considerably with increas-
ing wavenumber.

At the end we would like to comment on a trend
in the experimentally observed low-frequency
vibrational spectra which was realized recently
by Sokolov et al. [9]: They observe that the bo-
son beak ist much more pronounced in “strong”
glasses, i.e. network-type materials, whereas it is
hardly visible in “weak” glasses, i.e. in materials,

which are interacting via hard-core interactions.
We find from our CPA investigations that the
strength of the peak strongly depends on the
atomic coordination number. If the atomic coord-
ination is low, a single negative force constant ren-
ders the atomic arrangement much closer to an
unstable situation than in the highly coordinated
case. We therefore believe that the strong appear-
ance of the boson peak in the network materials
means that they are much nearer to an instability,
i.e. much more frustrated than the weak materials.
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