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Contrary to the prediction of one-parameter scaling theory, that all waves in two-dimensional disordered ma-

terials are localized, Anderson localization is observed only for sufficiently high frequencies in an isotropically

jammed two-dimensional disordered granular packing of photoelastic disks. More specifically, we have per-

formed an experiment in analyzing the level statistics of normal-mode vibrations. We find that the level-distance

distribution obeys Gaussian-Orthogonal-Ensemble (GOE) statistics of the Wigner-Dyson classification, in the

low-frequency (boson-peak) and intermediate frequency regime, whereas in the high-frequency regime Poisson

statistics is observed. This means that at the low and intermediate frequencies we have delocalized modes,

and only at the very high frequencies localized modes exist. Evaluating the system-size dependence of the

delocalization-localization crossover frequency we obtain evidence for a true transition with a mobility edge at

80 % of the Debye frequency and a value of the critical correlation-length exponent ν ∼ 1.66 being similar to that

of the three-dimensional electronic Anderson model. We argue that for force-constant disorder one-parameter

scaling might not be applicable.
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Wave localization in amorphous materials has become one

of the most spectacular phenomena in the field of condensed-

matter physics since it was proposed by Anderson to de-

scribe the localization of electron waves1,2. With the con-

tinuous experimental advancement, Anderson localization has

been found ubiquitously, such as the localization of ultra-cold

atoms3–6 and light and sound7–10. One commonly accepted

view is that Anderson localization depends on dimension:

waves are in general localized in one and two dimensions2,11,12,

including acoustic waves13–15. A mobility edge separating lo-

calized from extended waves is expected only in three dimen-

sions. It has, however, been pointed out13,15,16 that for weak

disorder the localization length may become macroscopically

large.

A number of studies17–19 tried to relate Anderson localiza-

tion to anomalous vibrational properties of phonons in glasses,

in particular the so-called boson peak, which is an enhance-

ment of the vibrational density of states, compared with De-

bye’s ω2 law20–39. Skepticism about this interpretation has

been raised in later theoretical and numerical studies in three-

dimensional systems22,40,41, which point out that the boson

peak and Anderson localization are two separate identities,

obeying different statistics. Moreover, the boson peak is a uni-

versal characteristic of amorphous materials, independent of

the actual dimensionality as observed in numerical27,28,31,42–45

and experimental37,38,46 studies of two-dimensional systems.

Therefore, the situation is not clear. One essential scientific

question is whether the vibrational properties of phonons in

disordered systems are truly localized in two dimensions as

commonly believed13,14. This is the main focus of the present

work.

To address the above important question, we analyze the

level statistics, which is extremely powerful in distinguish-

ing the regime of Anderson localization from the delocalized

one47. Schirmacher et al22 found in a model calculation of a

cubic lattice with disordered nearest-leighbor force constants

that the level distances obey Gaussian-Orthogonal-Ensemble

(GOE) statistics in the boson-peak regime and Poisson statis-

tics only near the upper band edge, well above the boson-peak

regime. They concluded, in accord with earlier work48, that

the modes around the boson peak are delocalized and localized

states exist only at high frequencies. Recently it was discov-

ered that a lattice of coupled masses and springs with random

values49,50 and truncated Lennard-Jones fluid51 exhibit Ander-

son universality of disordered phonons, which means that the

localization transition is in the same universality class as the

electronic Anderson model. In both investigations the local-

ization frequency is located near the upper band edge.

In recent years, Zhang et al37 and Wang et al38 have suc-

cessfully used isotropically jammed disordered macroscopic

packings of photoelastic disks to perform experimental stud-

ies of vibrations in disordered systems and in particular the

nature of the boson peak. In these studies37,38, the dynami-

cal matrix, and hence the harmonic vibrational spectrum, can

be directly constructed from the experimental measurements

of the particle positions and the contact forces between the

particles.

In this paper, we analyze the level-distance statistics of

the vibrational normal modes of a two-dimensional isotrop-

ically jammed disk packing. We identify a localization-

delocalization crossover slightly below the Debye frequency

ωD
52. By performing a system-size analysis of the crossover
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frequency and comparing the results corresponding to the pre-

diction of the conventional theory for two-dimensional acous-

tic waves, based on the one-parameter scaling concept13,15,

we obtain unphysical results. However, the data can be well

explained by a true delocaization-localization transition at 80

% of the Debye frequency with a correlation-length exponent

∼ 1.66, which is similar to that of the three-dimensional elec-

tronic Anderson transition. These findings are paralleled with

the case of electrons in the presence of disorder in the hop-

ping integral (off-diagonal disorder)53–55, where also a true

transition is found in two dimension.

We prepared disordered isotropically jammed granular pack-

ings using a biaxial apparatus, which consists of a square

frame of four mobile walls mounted on a powder-lubricated

glass plate. Right under the plate, there is a circular polarizer

sheet, below which a uniform LED light source is mounted.

A high-resolution camera is placed two meters above the cen-

ter of the biaxial apparatus, and a mobile circular polarizer

sheet is placed right below the camera which records images

of particle configurations and stresses. In order to maximize

the degree of disorder we filled the square frame randomly

with a 50%-50% bi-disperse mixture of N = 2500 photoelastic

disks of sizes of D = 1.4 cm and D = 1.0 cm. First, we pre-

pared a random packing slightly below the jamming point37,38.

Next, we applied an isotropic compression to the random initial

packing until its packing fraction reached the jamming point

∼ 84%. At this point, we applied a homogeneous tapping to

create an isotropic and stress-free packing56. Then, we contin-

ued to compress the system quasi-statically and isotropically

to prepare jammed packings at different pressure.

We emphasize that our jammed system consists of rather hard

discs in comparison with the harmonic and Hertzian model

systems studied numerically in the jamming literature42,57, and

that we are not near the isostatic (marginally stable) limit, but,

instead, in the strongly jammed regime58.

In order to establish the Hessian matrix Hi j we performed an

accurate measurement of disk positions and interaction forces

between disks, we then applied the pre-calibrated curves of

contact forces (i.e., the normal and tangential components) ver-

sus deformation and determined the spring constants at each

contact point. Finally, we mapped the isotropically jammed

disk packing to a disordered network of coupled masses and

springs, which is similar to the coupled harmonic oscillators

of random spring constants except for the disordered network

structure22,49. It is important to note that we are not prob-

ing our system dynamically59. We only use it to extract the

forces between the disks, in order to obtain the Hessian ma-

trix. Therefore, as our system is completely at rest, in our

investigation any possible friction forces do not play a role.

The Hessian matrix Hi j is constructed following a standard

procedure37,38,60–62, whose eigenvalues are λ =ω2, with ω be-

ing the angular frequencies. Using the eigenvalue spectrum

we are able to decide, whether or not the eigenstates of a

certain spectral region are localized or not, i.e., whether the

modal wave functions are confined to a certain spatial region

of size ξ, where ξ is the localization length. In a quenched-
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FIG. 1: Statistical distributions P(s) of the normalized level dis-

tances s for 10 equal-frequency intevals around midpoints ω0 of

width ∆ω/ωD = 0.12, where ωD is the Debye frequency52, together

with the GOE and Poissonian laws.

disordered material the eigenvalues corresponding to delocal-

ized vibrational states cannot exhibit degeneracies (coinciding

eigenvalues) due to the absence of spatial symmetries. This

means that small distances between eigenvalues are strongly

suppressed (“level repulsion”). On the other hand, if the states

are localized, the wavefunction of different states mostly do not

overlap, so they “do not know of each other”, and accidental

degeneracies may occur.

The presence or absence of level repulsion can be

quantified using the universal statistics of random-matrix

ensembles47,63,64. In order to compare with such universal

spectra, the actual spectrum, corresponding to a certain level

density g(λ) must be unfolded to correspond to a constant

level density g(ǫ) = const .22,41,51,51,65–70. Here the eigenval-

ues (“levels”) are the square of the eigenfrequencies λi = ω
2
i
,

and we have g(ω) = 2ωg(λ).
This unfolding procedure proceeds as follows: From

the cumulative distribution function F(λ) =
∫ λ

0
dλ̃g(λ̃) =

∫ √
λ

0
dωg(ω) a smoothed function F̃(λ) is calculated. We

found that for all our data the function F̃(λ) = 1−exp{−Aλ2 −
Bλ} (with A= 0.02ω−4

D
and B=ω−2

D
,ωD = Debye frequency52)

gives a good fit to the smoothed cumulative distribution func-

tion. The unfolded levels are then obtained as ǫi = F̃(λi). In

order to obtain the universal distance fluctuations, normalized

level distances are defined as si = |ǫi − ǫi−1 |/〈∆ǫ〉, where the

mean level distance 〈∆ǫ〉 equals the inverse of the number Nλ

of levels.

Now, for delocalized states (level repulsion) one expects a

universal level-distance distribution according to the Gaussian-

orthogonal ensemble (GOE) of the Wigner-Dyson classifica-

tion scheme63,64

P(s) = π

2
s e−

π

2
s2
. (1)
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FIG. 2: (a) Main panel: The boson-peak position ωb/ωD (purple

circles) and the ωc/ωD (blue squares) versus pressure p, in which

the results have been ensemble averaged over 10 realizations, and

the error bars are within symbol sizes. Inset: Chi-squared χ2 of the

level-distance statistics fitted by two distributions of (1) GOE (aster-

isks) and (2) Poisson (crosses) versus the ω/ωD . The two lines are

smoothed curves to locate the critical point ωc/ωD as their crossing

point, which shows ω/ωD ≈ 0.88 at pressure p = 26.5 N/m.

(b) Reduced density of states gω(ω)/ω, re-scaled by the Debye fre-

quency ωD at a typical value of pressure p = 26.5 N/m. Here the

lavender area denotes the boson-peak region, and the light blue de-

notes the Anderson-localization regime. The horizontal dashed line

denotes Debye*s density of states gD(ω)/ω = 2/ω2
D

, the vertical

dashed line) the crossover frequency ωc/ωD .

On the other hand, for localized states (no level repulsion) one

exprects a completely random , i.e. a Poissonian distribution

P(s) = e−s . (2)

In Fig. 1 we present the results of the level distance statistics

of 9 independent realizations of disk arrangements at pressure

p = 26.5 N/m. The results of other pressures are similar, and

the error bars are within the symbol sizes. We have taken the

statistics for intervals ∆ω = 0.12ωD (where ωD is the Debye

frequency52) around midpoints covering the frequency range

of the spectrum. We observe GOE statistics in the entire

frequency range below a crossover frequency ωc , which is

slightly below the Debye frequency. Above ωc we observe

Poisson statistics, indicating localized states.

To identify the crossover frequency ωc , we quantitatively

characterize deviations between data points and fitting curves

using GOE and Poisson statistics by calculating the χ2 as a

function of ω, as shown in the inset of Fig. 2(a). Here, the

χ2
=

∑(ỹi − yi)2, in which ỹi are the fitting values, and yi are

the original data points. From the inset of Fig. 2(a), we see that

when ω0/ωD < ωc/ωD , the distributions are better described

by GOE statistics, while in the regime of ω0/ωD ≥ ωc/ωD ,

distributions are better described by Poisson statistics. The

crossover point occurs around ωc/ωD = 0.88±0.03, which is

nearly independent of pressure, as shown in the main panel

(square symbols) of Fig. 2(a).

We have done a systematic analysis of the finite-size effect on

the boson peak and the crossover frequency ωc by changing

the square of the system size N (we measure lengths from

now on in units of the average particle diameter 〈D〉) from

N = 10 up to N = 2504. The boson-peak position ωb/ωD

FIG. 3: (a) Reduced density of states gω(ω)/ω against ω/ωD of

different system sizes at a typical value of pressure p= 26.5 N/m. The

horizontal dashed line represents the Debye model. Inset: Amplified

boson-peak regime of the two largest sizes. (b) Chi-squares χ2 vs the

ω/ωD for different system sizes at a typical value of pressure p= 26.5

N/m. Here, solid lines represent the χ2 of GOE, while dashed lines

are the χ2 of poisson distributions. Different colors indicate different

sizes as defined in (a). Inset: Amplified χ2 curves of the two largest

sizes. Note that results of a given size N are ensemble averaged over

∼ 2500
N ×9 realizations.

decreases when N increases from N = 10 up to N = 78 and it

quickly stabilizes toωb/ωD ≈ 0.13 when N ≥ 156, as shown in

Fig. 3(a). In addition, the upper limit of the boson-peak regime

(i.e., the maximum frequency in the lavender color area of the

boson peak regime) is a constant, nearly independent of N ,

as shown in Fig. 3(a). Moreover, shapes of the boson peak

cease changing when N ≥ 1247 so that the lower limit of the

boson-peak regime and the boson-peak height stabilize, as

shown in Fig. 3(a). The stabilization of the boson-peak shape

profile can be better viewed in the inset of Fig. 3(a), where the

profiles of N = 1247 and N = 2504 collapse on top of each

other. When the boson peak evolves with N , the Anderson-

localization regime in the density of states also evolves, but its

profile shape shows very little change as N increases, as shown

in Fig. 3(a).

We turn now to the evaluation of the crossover frequency ωc
with respect to the system size N1/2. According to the scaling

theory of wave localization2,11 (as well as the self-consistent di-

agrammatic theory12,71–73 and the generalized nonlinear sigma

model10,13,74–76) in two dimensions the localization length in

terms of the mean-free path ℓ(ω) is given by

ξ(ω) = ℓ(ω)eC k(ω)ℓ(ω) , (3)

where k = vω and v is the wave velocity and C a constant of

order unity. On the other hand, the mean-free path for scatter-

ing of longitudinal (L) and transverse (T) waves is related to

the corresponding sound velocities vL,T and sound attenuation

coefficient ΓL,T by

ℓL,T (ω) =
2vL,T

ΓL,T (ω)
=

2ω

kL,T (ω)ΓL,T (ω)
, (4)

If we follow the conventional argumentation of the scal-

ing theory, the states are effectively extended, if the lo-

calization length becomes larger than the system size
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FIG. 4: System size N1/2 against the crossover frequency ωc ,

divided by the Debye frequencyωD , (blue symbols), together with the

fitting curve (5) and the quantities ξL(ω) and ξT (ω) as determined77

from our sound attenuation data in Ref.38

N1/2. If this scenario would hold, N1/2 should be re-

lated to ωc by an appropriate combination of the quanti-

ties ξL,T (ωc) ≡ ℓL,T (ωc)exp{2ωc/ΓL,T (ωc)}. In our previous

study of the vibrational properties of our model glass38 we

have determined precisely the sound velocities and attenua-

tion coeffients of the longitudinal and transverse vibrational

excitations. In Fig. 4 we have plotted the quantities ξL,T (ωc)
together with the function N1/2(ωc), determined by our study

of the size dependence77. It is clearly seen that the scaling sce-

nario predicts the crossover in a much lower frequency regime

than observed by us. As alternative we have now fitted the

crossover frequency with the ansatz

ωc/ωD = aN−b
+ c, (5)

from which we obtained a good fitting result with a = 0.6±
0.07, b = 0.3 ± 0.1 and c = 0.8 ± 0.05, given by the curve

through the data in Fig. 4. Equation (5) can be inverted to

N1/2 ∝ ξ ∝
[
ωc

ωD

− c

]−ν
(6)

with ν = 1
2b
= 1.66±0.5.

We now turn to the question, why should the conventional

theory not hold for our model material?

First, let us recall that the orthogonal symmetry class, which

gives rise to the one-parameter scaling of the conventional

localization theory74, is only one among 10 possible classes in

disordered systems78,79, where the other classes do not share

the property that in two dimensions there is always localization.

The fundamental difference between our model material and

many of the model systems studied previously13,15, is that

the disorder does not enter as a prefactor of the time deriva-

tive (mass disorder), but as the force constants, which are the

off-diagonal matrix elements of the Hessian. This is sim-

ilar to electronic two-dimensional models, studied recently

numerically53–55, in which the disorder enters via the tight-

binding hopping integrals (off-dimensional disorder, “quan-

tum percolation”). In these systems a true metal-nonmetal

transition is found, contrary to the prediction of one-parameter

scaling2,11,12. Our classical system is analogous to the off-

diagonal electronic system, whith the difference that in our

system the diagonal and off-diagonal matrix elements are re-

lated by the stability condition
∑

jHi j = 0. However, a com-

mon feature might be that the quantum-interference mecha-

nism, which gives rise to the rigorous localization property in

two dimension, might be suppressed by off-diagonal disorder.

Here further theoretical work is needed.

One of the nice things with the present experiment is that the

spatial distributions of polarization vectors of modes can be

directly visualized. Looking at the mode patterns of Fig. 5 the

salient features of the vibrational states in the boson-peak and

the Debye-frequency frequency regime are visualized. The

states in the lower-frequency regime are delocalized and show

the characteristic eddy pattern of non-affine displacements,

which are induced by the structural disorder80,81. The states

in the boson-peak regime have been classified as “random-

matrix states” due to their spectral statistics82 and “diffusons”,

because their intensity obey a diffusion equation such as scat-

tered light in milky glass83. Another aspect of the boson-peak

states is that they abundantly appear in simulations of soft-

sphere systems just above the jamming transition42,57. In these

harmonic and Hertzian models the disorder-induced boson-

peak anomaly disappears with increasing the pressure. This

is not the case in systems with harder repulsion like ours and

like molecular matter. In these systems the disorder is not

smoothed out due to the residual structural frustation, which

remains, because the repulsive forces inhibit the possiblility of

relaxation.

The states near and above the Debye frequency are completely

different. They are very much localized and have therefore a

fundamentally different character as zone-boundary states in

crystalline lattices. The latter are also non-propagating, be-

cause the oscillating atoms vibrate against each other, but they

are extended, i.e. they cover the whole crystal. The localized

states of disordered materials above the Debye frequency have

been shown to form a Lifshitz-type band tail84,85, as can be

seen from Figs. 2 and 3. These states are evanescent defect

states, which exist beyond the band edge of the corresponding

crystalline lattice. Similar states have been observed recently

in a disordered two-dimensional photonic crystal86 inside the

photonic-crystal gap.

In summary, we have performed the first experimental

study of level-distance statistics of normal-mode vibrations

in densely packed two-dimensional packings of isotropically

jammed photoelastic disks. We observe wave delocalization

for frequencies smaller than ωc = 0.88±0.03ωD . Our finite-

size study is not compatible with the conventional scaling

theory of localization, which states that in two dimension all

states are localizes and only predicts a crossover to delocal-

ization if the system size is larger than the localization length.

Instead, we obtain a mobility edge in the thermodynamic limit

atωc = 0.8±0.5ωD . We argue that one-parameter scaling the-

ory might not be applicable to force-constant and off-diagonal

disorder.

Our results are surprisingly similar to the situation in three
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FIG. 5: Comparison between spatial distributions of the modes

within the Boson peak (a-b) and Anderson-localization regime (c-d).

Here results are shown for a typical value of pressure p = 26.5 N/m,

and results of other pressure are similar.

dimensions22,48–50: delocalized modes near and above the bo-

son peak and a mobility edge just below the Debye frequency

leading to Anderson localization only at the upper end of the

band of vibrational modes.
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