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Abstract: Anderson localisation of electromagnetic waves, caused by disorder-induced
arrest of wave diffusion, has been experimentally observed in systems with spatially fluctuating
permeability, but only in lower dimensions, not in three dimensions. This paper introduces a
novel theoretical approach to the Maxwell equations considering both electric and magnetic
disorder. It demonstrates that when both the dielectric constant and magnetic permeability
fluctuate in space, the spectral range for three-dimensional Anderson localisation significantly
increases.

1. Introduction

Understanding the propagation and scattering of electromagnetic radiation in random media,
especially visible light, is an issue, which is important in different parts of science [1–6].
A particularly interesting feature of waves in a disordered environment is the possibility of
localisation, i.e. the absence of diffusion, demonstrated first for electron wave functions by
Anderson [7]. Anderson localisation occurs with all kinds of waves, including atomic-matter and
gravitational waves [6, 8–14].

Localisation of classical waves has first been discussed by John et al. [15, 16] for acoustical
and later for electromagnetic waves (light) [17, 18]. The successful observation of weak
localisation of light (the back-scattering cone) [19] created an impact for looking for strong
Anderson localisation of light [4, 6, 20–23]. It was realised [24, 25] that the chances for the
observation of this phenomenon are much higher in dimensionally reduced systems. This has been
successfully demonstrated in paraxial structures with transverse (2-dimensional) disorder [26,27]
and two-dimensional photonic crystals [28]. In 3-dimensional media with a spatially fluctuating
permittivity, however, until now, Anderson localisation has not been found [21,21,29–33]. Indeed,
3D localisation effects are often obscured by absorption or fluorescence processes, making its
experimental demonstration extremely elusive [33].

It has even been demonstrated [34–36] that Anderson localisation of light in a three-dimensional
system, containing a dense collection of resonant scatterers, does not occur due to a non-radiative
(evanescent) coupling between the scatterers. The additional transport channel is associated with
disorder-induced longitudinal fields [36, 37].

Recently, the possibility of obtaining Anderson localisation in 3D systems has been made
plausible in numerical simulations of hyperuniform amorphous photonic materials [38, 39] and
systems with overlapping spherical, perfectly conducting obstacles [40, 41].

On the other hand, the theoretical description of Anderson localisation of light is, until
now, built on the ground of a mathematically questionable mapping of Maxwell’s equations to



Anderson’s Schrödinger equation of an electron in a random potential [17, 18]. This Schrödinger-
equation analogy (called “potential-type approach” in Ref. [42]) which was taken over by the
subsequent literature [4,6,25,43–45], was shown [42]) to produce results, which were at variance
with experiment: A wavelength dependence of the localisation length, predicted on base of this
equation [25, 46], was not observed experimentally.

In the following treatment we start with formulating consistent eigenvalue equations for
Maxwell’s equations in the presence of a spatially varying electric permittivity 𝜖 (r) magnetic
permeability 𝜇(r). We then generalise the coherent-potential approximation (CPA) for this
setting. In the fourth section we use the CPA results for the scattering mean-free path and the
density of states for estimating the possibility of Anderson localisation using standard localisation
theory. We find that by combining electric and magnetic disorder the chances for observing
localisation of light in three dimensions are greatly enhanced with respect to the case where only
one quantity (𝜖 (r) or 𝜇(r)) is left to vary.

2. Eigenvalue equation for Maxwell’s equations

It is a particular challenge to establish an adequate eigenvalue problem in the presence of disorder.
As mentioned in the introduction, in most of the literature [4,6,18,45,47,48], wave propagation in
the presence of a spatially fluctuating permittivity 𝜖 (r) = ⟨𝜖⟩ +Δ𝜖 (r) is treated by establishing an
analogy to the electronic Anderson problem. This is done in the following way: One first writes
down the Helmholtz equation for the frequency-dependent electric field E(r, 𝜔), as obtained
from Maxwell’s equations [49]:

𝜔2

𝑐2
𝑜

𝜖 (r)
𝜖0

E(r, 𝜔) = ∇ × [∇ × E(r, 𝜔)]

= −∇2E(r, 𝜔) + ∇[∇ · E(r, 𝜔)]

�
𝜖 (r)
𝜖0

LE (r)E(r, 𝜔) (1)

Here we introduced the linear operator LE (r) = 𝜖0
𝜖 (r)∇ × ∇×, which we call Helmholtz operator

for the electrical field. In terms of this operator Eq. (1) takes the form

𝜔2

𝑐2
𝑜

E(r, 𝜔) = LE (r)E(r, 𝜔) (2)

In the literature this equation is transformed as follows: The double curl is replaced by−∇2.
The second term ∇[∇ · E(r, 𝜔)] is ignored [6, 18, 45, 47, 48], or projected out [4]. Then the
coefficient of E on the LHS, which features the spectral parameter 𝜔2 of the eigenvalue equation,
is rewritten as 𝜔2𝜖0 + 𝜔2Δ𝜖 (r). Finally, the second term is re-interpreted as an 𝜔 dependent
potential V(r, 𝜔) = −𝜔2Δ𝜖 (r)/⟨𝜖⟩ [4,6,18,45,47,48], i.e. the spectral parameter 𝜔2 enters into
the “Hamiltonian” H(r, 𝜔) = −∇2/𝜇0⟨𝜖⟩ + V(r, 𝜔) leading to the “Schrödinger equation”

𝜔2E(r, 𝜔) = H(r, 𝜔)E(r, 𝜔) (3)

This transformation of the electromagnetic Helmholtz equation (1) to a Schrödinger-like equation
(3) was performed in order to be able to use the established theories for the Anderson localisation
of non-interacting electrons [50–52] for Anderson localisation of light [6, 18, 47].

In two-dimensional systems this approach led to results, which were at variance with experiment:
A wavelength dependence of the localisation length, predicted on base of Eq. (3) [25, 46], was
not observed experimentally and is not predicted by a treatment, in which it is avoided that the
spectral parameter 𝜔2 appears on the right-hand side of the Eigenvalue equation [42].



In the following we use versions of the electromagnetic Helmholtz eigenvalue problem,
formulated without an 𝜔 dependent potential, in order to describe the influence of a spatially
fluctuating electic permittivity 𝜖 (r) and magnetic permeability 𝜇(r) on the electromagnetic
spectrum. Such versions of the eigenvalue problem have been formulated in the literature for the
electric [53], the magnetic [54] field, and the vector potential [55, 56]. As in these treatments.

We start by defining dimensionless electric and magnetic moduli 𝑀𝜖 (r) := 𝜖0/𝜖 (r) and
𝑀𝜇 (r) := 𝜇0/𝜇(r). The generalisation of (1) for including magnetic disorder takes the form

𝜔2

𝑐2
0

E(r, 𝜔) = 𝑀𝜖 (r)∇ × [𝑀𝜇 (r)∇ × E(r, 𝜔)]

=: LEE(r, 𝜔) . (4)

The operator LE on the RHS of this equation is not Hermitian, if the (“naive”) definition of the
scalar product < E1 |E2 >=

∫
𝑑3rE∗

1 (r) · E2 (r) is used. Only if we define [57]

< E1 |E2 >:=
∫

𝑑3r𝑀−1
𝜖 (r)E∗

1 (r) · E2 (r) , (5)

the operator LE has the Hermitian property:

< E1 |LEE2 > =

∫
𝑑3r E∗

1 (r) ·
[
∇ × 𝑀𝜇 (r) [∇ × E2 (r)]

]
=

∫
𝑑3r 𝑀𝜇 (r)

[
∇ × E∗

1 (r)
]
·
[
∇ × E2 (r)

]
=

∫
𝑑3r E2 (r) ·

[
∇ × 𝑀𝜇 (r) [∇ × E∗

1 (r)]
]

!
=< E2 |LEE1 >∗ . (6)

The second line guarantees the positiveness of the spectrum. It is easily verified that for the
scalar product without the fluctuating permittivity included, LE is not Hermitian, because extra
terms involving ∇𝑀𝜖 are obtained.

Similarly an equation for the magnetic field can be derived from Maxwell’s equations

𝜔2

𝑐2
0
H(r, 𝜔) = 𝑀𝜇 (r)∇ × 𝑀𝜖 (r) [∇ × H (r, 𝜔)]

=: LHH(r, 𝜔) . (7)

Here, the operator LH is Hermitian, if the scalar product includes a factor 𝑀−1
𝜇 (r). In the case

of pure electric disorder (𝑀𝜇 = 𝑐𝑜𝑛𝑠𝑡) no special definition of the scalar product is needed.
This (properly defined) eigenvalue equation for electric disorder was used recently for treating
transverse two-dimensional Anderson localisation [42].

It is remarkable that for 𝜔 ≠ 0 Eqs. (4) and (7) automatically guarantee the transversality
conditions

∇ ·
[
E(r, 𝜔)/𝑀𝜖 (r)

]
= 0; ∇ ·

[
H(r, 𝜔)/𝑀𝜇 (r)

]
= 0 . (8)

An equation, which is mathematically equivalent to Eq. (4) is obtained for the vector potential
A(r, 𝜔), defined as ∇ ×A(r, 𝜔) = 𝜇(r)H (r, 𝜔), if the Coulomb gauge ∇ · A = 0 is applied, i.e.
the scalar potential 𝜙(r) is set equal to 0 [55,58]. This equation then guarantees the transversality
condition

∇ · 𝜖 (r)A(r) = 0. (9)

In order to formulate an analytic theory for the disorder-averaged physical quantities in a
system described by (4) and (7) it is rather disadvantageous to work with the disorder dependent



scalar product. This can be avoided using symmetrised fields [53,55,59] Ẽ := E/
√︁
𝑀𝜖 (r) and

H̃ := H/
√︁
𝑀𝜇 (r) which obey the symmetrised Helmholtz equations

𝜔2

𝑐2
0

Ẽ(r, 𝜔) = 𝑀
1/2
𝜖 (r)∇ × 𝑀𝜇 (r) [∇ × 𝑀

1/2
𝜖 (r)Ẽ(r, 𝜔)]

=: LẼẼ(r, 𝜔) , (10)

𝜔2

𝑐2
0

H̃(r, 𝜔) = 𝑀
1/2
𝜇 (r)∇ × 𝑀𝜖 (r) [∇ × 𝑀

1/2
𝜇 (r)H̃(r, 𝜔)]

=: LH̃H̃(r, 𝜔) . (11)

Eqs. (10) and (11) now constitute conventional eigenvalue equations with operators LẼ,LH̃
that are Hermitian with respect to the scalar products < Ẽ1 |Ẽ2 > =

∫
𝑑3rẼ∗

1 (r) · Ẽ2 (r) and
< H̃1 |H̃2 > =

∫
𝑑3rH̃∗

1 (r) · H̃2 (r).
In this transformed way the differential operators are manifestly Hermitian with respect to the

conventional definition of the scalar product. In this form the eigenvalue problem can be dealt
with in the usual way, using functional integrals and replica theory [51, 60].

3. Coherent-Potential approximation (CPA)

Generalising the derivation of Köhler et al. [60] we establish a coherent-potential approximation
(CPA), based on Eqs. (10), (11), along the lines of our pevious work on elasticity [61].

The CPA arises as a saddle-point equation of an effective field theory, constructed by field-
theoretic methods, see Ref. [60] and the Appendix. This variational derivation is equivalent to the
traditional method [62] requiring that the scattering 𝑇 matrix of the “perturbation” 𝑀𝛼,𝑖 −𝑀𝛼 (𝑧),
(𝛼 = 𝜖, 𝜇) be zero on the average. In the CPA the disordered system is replaced by an effective
medium, in which the fluctuating quantities (in our case 𝑀𝜖 (r) and 𝑀𝜇 (r)) are replaced by
uniform, but frequency-dependent, complex quantities 𝑀𝜖 (𝑧) and 𝑀𝜇 (𝑧), where 𝑧 = 1

𝑐0
𝜔 + 𝑖𝜂,

(𝜂 is an infinitesimal positive real number), except inside a cavity around the midpoint r𝑖 . The
volume of the cavity is 𝑉𝑐, and in this region 𝑀𝜖 ,𝜇 take their fluctuating values evaluated at r𝑖
𝑀𝜖 ,𝑖 � 𝑀𝜖 (r𝑖) and 𝑀𝜇,𝑖 � 𝑀𝜇 (r𝑖). Within CPA these quantities are assumed to be uncorrelated,
which means that 𝑉𝑐 must be larger than the correlation volume 𝜉3, where 𝜉 is the correlation
length. This. naturally introduces an ultraviolet wavenumber cutoff 𝑘 𝜉 ∝ 𝜉−1 into the effective
medium. In our treatment, this cutoff replaces the radius of the first Brillouin zone (in crystals)
and the Debye cutoff (in glasses) for the definition of the scattering density of states 𝑔(𝜔) which
samples the states relevant for the disorder scattering:

𝑔(𝜔) = 2𝜔𝜌(𝜆) = 2𝜔
1
𝜋

Im
{
𝐺 (𝑧)

}
, (12)

where 𝜌(𝜆) is the density of levels (eigenvalues), 𝐺 (𝑧) is the local Green’s function

𝐺 (𝑧) = 3
𝑘3
𝜉

∫ 𝑘𝜉

0
𝑑𝑘𝑘2𝐺 (𝑘, 𝑧) , (13)

and 𝐺 (𝑘, 𝑧) is the wavenumber dependent Green’s function of the effective medium

𝐺 (𝑘, 𝑧) = 1
−𝑧2 + 𝑘2𝑀𝜀 (𝑧)𝑀𝜇 (𝑧)

. (14)

We emphasise that – in contrast to the treatment using the nonlinear-sigma-model theory [17,18]
- in CPA the small parameter for justifying the saddle-point approximation is not the relative



variance of the fluctuating quantities [51], but the ratio 𝑉𝑐/𝑉 between the cavity volume and the
volume 𝑉 of the sample [60]. This enables to treat the case of strong disorder, where the relative
variance may take any value.

The CPA equations read [60]

0 =

〈
𝑀𝜖 ,𝑖 − 𝑀𝜖 (𝑧)

1 + 𝑞
(
𝑀𝜖 ,𝑖 − 𝑀𝜖 (𝑧)

)
Λ𝜖 (𝑧)

〉
𝜖

(15)

and
0 =

〈
𝑀𝜇,𝑖 − 𝑀𝜇 (𝑧)

1 + 𝑞
(
𝑀𝜇,𝑖 − 𝑀𝜇 (𝑧)

)
Λ𝜇 (𝑧)

〉
𝜇

(16)

with 𝑞 = 𝑉𝑐𝑘
3
𝜉
/3𝜋2. The parameter 𝑞 must be smaller than 1 and can be interpreted as a

mean-field critical percolation threshold [60]. Because the critical percolation threshold for
3-dimensional continuum percolation is around 0.3, we take 𝑞 = 0.3 in the numerical calculations
that we performed to show graphically the effect of the disorder.

The quantities Λ𝜖 ,𝜇 (𝑧) are defined by

Λ𝜖 ,𝜇 (𝑧) =
1

𝑀𝜖 ,𝜇 (𝑧)
[
1 + 𝑧2𝐺 (𝑧)

]
(17)

We note that the CPA equations (15) and (16) are completely symmetric with respect to 𝜖 and 𝜇,
i.e. they hold for both, Eqs (10) and (11). We further note that if the distributions of the two spatially
fluctuating quantities are the same, P(𝑀𝜖 ,𝑖) = P(𝑀𝜇,𝑖), it results 𝑀𝜖 (𝑧) = 𝑀𝜇 (𝑧). Therefore the
CPA equations reduce to the ones one would obtain if one would take 𝑀𝜖 (r) = 𝑀𝜇 (r) from the
outset.

The averages ⟨. . . ⟩𝜖 ,𝜇 are to be performed with distribution densities P𝜖 (𝑀𝜖 ,𝑖) and P𝜇 (𝑀𝜇,𝑖).
For our calculations, in order to be able to treat the case of strong disorder, we take log-normal
distributions [60]

P𝜖 (𝑀𝜖 ,𝑖) = Pln

(
𝑀𝜖 ,𝑖

𝑀
(0)
𝜖

, 𝜎𝜖

)
P𝜇 (𝑀𝜇,𝑖) = Pln

(
𝑀𝜇,𝑖

𝑀
(0)
𝜇

, 𝜎𝜇

)
(18)

with
Pln (𝑥, 𝜎) = [

√
2𝜋𝜎𝑥]−1𝑒− ln2 (𝑥 )/2𝜎2

. (19)

Here 𝑀
(0)
𝜖 and 𝑀

(0)
𝜇 are the medians of the moduli.

The relative variances of the two distributions 𝛾𝜖 = ⟨(𝑀𝜖 − ⟨𝑀𝜖 ⟩)2⟩/⟨𝑀𝜖 ⟩2 = 𝑒𝜎
2
𝜖 − 1 and

𝛾𝜇 = ⟨(𝑀𝜇 − ⟨𝑀𝜇⟩)2⟩/⟨𝑀𝜇⟩2 = 𝑒𝜎
2
𝜇 − 1 are the control parameters of the theory.

From the Green’s function (14) we can read off the formula for the (scattering) mean-free path

1
ℓ(𝜔) =

2𝜔
𝑐0

Im

{
1[

𝑀𝜖 (𝑧)𝑀𝜇 (𝑧)
]1/2

}
(20)

and the speed of light inside the medium [63]:

𝑣(𝜔) = 𝑐0 Re
{[
𝑀𝜖 (𝑧)𝑀𝜇 (𝑧)

]1/2} (21)

In turn, from these quantities we can calculate the frequency-dependent (unrenormalised)
diffusivity

𝐷0 (𝜔) =
1
3
𝑣(𝑟𝜔)ℓ(𝜔) . (22)



Fig. 1. “Conductance” 𝑔̃(𝜔) = 𝑔(𝜔)𝐷 (𝜔) against frequency, calculated in CPA for
a log-normal distribution of 𝑀𝜖 and 𝑀𝜇 , Dashed blue lines: Only one quantity, say
𝑀𝜖 (r) is fluctuating, the relative variance 𝛾𝜖 = 𝑒𝜎

2
𝜖 − 1 increases as 𝛾𝜖 = 0.25, 0.5,

1., 1.5, 2. 2.5.
Continuous red lines: Both quantities 𝑀𝜖 (r) and 𝑀𝜇 (r) are fluctuating, one of the
variances, say, 𝛾𝜖 is held fixed at 2.5, the other variance increases from 𝛾𝜇 = 0.25 to
𝛾𝜇 = 2.5. in steps as before.
Inset: density of eigenvalues 𝜌(𝜆) for the same CPA calculations.
The full circles in the main panel mark the end of the spectrum, given by 𝜌(𝜆) in the
inset.

Before we use the CPA for estimating the localisation properties of disordered electromagnetic
systems at finite frequency 𝜔, we would like to comment on the limit 𝜔 → 0. As pointed out
by Köhler et al. [60], in this limit the effective-medium expression of Bruggeman [64] for the
permittivity of mixed dielectric materials is obtained. Contrary to this, the CPA applied to the
potential-type treatment of Maxwell’s equation [6], mentioned in the beginning, gives just the
arithmetic average of the permittivity in the 𝜔 → 0 limit, because the non-trivial influence of the
disorder in this approach is multiplied by 𝜔2 and just vanishes in the DC limit. This shows once
more that a proper treatment of Maxwell’s equations is necessary.

4. Anderson localisation

We now turn to the discussion of the impact of electrical and magnetic disorder on Anderson
localisation of light. This phenomenon is known [8] to arise from interference of closed scattering
paths. According to the self-consistent theory of Anderson localisation [11, 52, 65] in the version



used for classical waves [66–68] the renormalised diffusion coefficient, which includes the
localisation phenomena, is given by [69]

𝐷 (Ω, 𝜔) = 𝐷0 (𝜔) − 𝐷 (Ω, 𝜔)𝑃0 (Ω, 𝜔) (23)

Here Ω denotes the frequency corresponding to the diffusion dynamics of the radiation, and
𝑃0 (Ω, 𝜔) denotes the return probability

𝑃0 (Ω, 𝜔) =
1

𝜋𝑔(𝜔)
∑︁

|q |<𝑞0

1
−𝑖Ω + 𝑞2𝐷 (Ω, 𝜔)

. (24)

The upper cutoff 𝑞0 has been introduced, because the interference is only effective in the q region,
where the diffusion approximation holds. In the original papers on electron localisation [11,52,65]
the inverse mean-free path ℓ−1 has been taken for 𝑞0, in the literature on phonon localisation [67,70]
the Debye cutoff 𝑘𝐷 , instead. Here we choose to take the correlation cutoff 𝑞0 = 𝑘 𝜉 as upper
cutoff. The self-consistent Eq. (23) can now be written in the form

𝐷 (Ω, 𝜔) = 𝐷0 (𝜔) −
3

𝜋𝑘3
𝜉
𝑔(𝜔)

∫ 𝑘𝜉

0
𝑑𝑞

𝑞2

𝑞2 − 𝑖Ω
𝐷 (Ω,𝜔)

(25)

Localisation or otherwise is now defined to occur if the quantity

lim
Ω→0

𝐷 (Ω, 𝜔) (26)

vanishes or not.
We now assume that a frequency 𝜔∗ exists (mobility edge) which separates the extended states

(𝜔 < 𝜔∗) from the localised ones (𝜔 > 𝜔∗). In the localised regime the quantity −𝑖Ω/𝐷 (Ω, 𝜔)
becomes a real quantity, namely the square of the inverse localisation length. Right at the mobility
edge 𝜔 = 𝜔∗, this quantity becomes zero, and we have

𝐷 (Ω, 𝜔) =
[
1 − 3

𝜋𝑘2
𝜉
𝑔(𝜔)𝐷0 (𝜔)

]
(27)

On the other hand, at the mobility edge, 𝐷 (Ω, 𝜔) = 0, so that the dimensionless quantity
(“conductivity”)

𝑔̃(𝜔) = 𝑘2
𝜉𝑔(𝜔)𝐷0 (𝜔) (28)

has to be equal to 3/𝜋 ≈ 1 at the mobility edge. Values of 𝑔̃(𝜔) larger than ∼1, therefore, lead to
delocalisation, values smaller than ∼1 to localisation.

In Fig. 1 we have plotted this quantity, calculated in CPA against the dimensionless spectral
parameter 𝜆 = 𝜔2/𝑐2

0𝑘
2
𝜉
. We consider two scenarios:

(𝑖) Only one of the moduli, say, 𝑀𝜖 (r) is considered to have spatial fluctuations with variance
𝛾𝜖 increasing from 0.25 to 2.5: electric (or magnetic) disorder only (dashed blue lines).

(𝑖𝑖) Setting one of the variances, say, 𝛾𝜇 = 2.5 and increasing the other, 𝛾𝜖 from 0.25 to 2.5:
Combined electric and magnetic disorder (continuous red lines).

It is seen that in the case of the combined electric and magnetic disorder the values of 𝑔̃ are
(away from the vicinity of the band edge) much lower and, in particular, the spectral range for
which 𝑔̃ is smaller than ∼ 1 is much more extended. Fig. 1 comprises the central result of the
present contribution.



In the case of one fluctuating quantity only (blue dashes) our results confirm the known fact that
for classical waves localised states exist only within a narrow vicinity of the band edge [15,18,71].
This narrow range is – according to our estimate – largely extended in the combined case.

We therefore recommend for meeting the challenge of experimentally observing 3D Anderson
localisation the consideration of disordered materials with both electric and magnetic disorder.
Such materials could be e.g. polymeric materials with superparamagnetic inclusions [72].

Let us now discuss the recent numerical results of Yamilov et al. [40,41] in the light of our
findings. The authors considered two cases of systems with the disorder induced by overlapping
spherical obstacles. These spheres were designed to have in the first case a high electric
permittivity, in the second case perfect electric conduction inside the spheres. In their first system
with high dielectric permittivity of the spheres they consider the case of electric disorder only.
In agreement with our results they find no localisation. On the other hand, by using perfectly
conducting obstacles they completely expel the time-varying electric and magnetic fields from
the obstacles, just effectively introducing a combination of electric and magnetic disorder. Thus
their numerical observation of Anderson localisation for the perfectly conducting obstacles
corresponds to our prediction of localisation for the case of combined electric and magnetic
disorder.

Summarising, we have presented a mean-field theory for combined electric and magnetic
disorder based on eigenvalue equations derived from Maxwell’s equations, which involve
manifestly Hermitian operators. The results for the dimensionless conductance suggest systems
with combined electric and magnetic disorder as candidates for 3D Anderson localisation.

Appendix: Derivation of the CPA
The 3 × 3 Green’s function matrix 𝐺𝛼𝛽 (r, r′, 𝑧), corresponding to (10) of the main text, obeys
the matrix equation [73]∑︁

𝛾

𝐴𝛼𝛾 [𝑀𝜖 (r) , 𝑀𝜇 (r) ]𝐺𝛾𝛽 (r, r′ , 𝑧) = 𝛿𝛼𝛽 𝛿 (r − r′ ) (29)

with
𝐴𝛼𝛾 [𝑀1, 𝑀2 ] =

[
− 𝑧2 𝛿𝛼𝛾 − 𝑐2𝑀1/2

𝜖 (r)∇ × 𝑀𝜇 (r)∇ × 𝑀
1/2
𝜖 (r)

]
𝛼𝛾

The complex frequency parameter is 𝑧 = 𝜔 + 𝑖𝜂. For Eq. (6) The indices 𝜖 and 𝜇 have to
interchanged.

We now apply functional-integral theory and represent the Green’s function as a functional
derivative of the following generating functional [74]

𝑍 [𝐽] =

∫
D[𝑢∗ (r)𝑢(r)]𝑒−(𝑢 |𝐴|𝑢)+(𝑢 |𝐽 |𝑢) ∝ 𝑒− Tr{ln[𝐴−𝐽 ] }

The trace operation includes a Cartesian trace and a diagonal spatial integration. The matrix
elements of the inverse-Green’s operator are

(𝑢 |𝐴|𝑢) =
∑︁
𝛼𝛽

∫ ∫
𝑑3r𝑑3r′𝑢∗𝛼 (r′)

(
𝐴𝛼𝛽 (𝑧, r)𝛿(r − r′)

)
𝑢𝛽 (r)

=
∑︁
𝛼𝛽

∫
𝑑3r𝑢∗𝛼 (r)𝐴𝛼𝛽 (𝑧, r)𝑢(r)𝛽 , (30)

those of the source fields are

(𝑢 |𝐽 |𝑢) =
∑︁
𝛼𝛽

∫ ∫
𝑑3r𝑑3r′𝑢∗𝛼 (r′)𝐽𝛼𝛽 (rr′)𝑢𝛽 (r) , (31)



and of the Green’s functions

(𝐽 |𝐺 |𝐽) =
∑︁
𝛼𝛽

∫ ∫
𝑑3r𝑑3r′𝐽∗𝛼 (r′)𝐺𝛼𝛽 (r′, r)𝐽𝛽 (r) (32)

Consequently the Green’s functions are given by the functional derivative

𝐺𝛼𝛽 (r, r′) =
1

𝑍 (𝐽=0)
𝛿

𝛿𝐽𝛼𝛽 (r, r′)
𝑍 [𝐽]

����
𝐽=0

=
1

𝑍 (𝐽=0)

∫
D[𝑢∗𝛼 (r), 𝑢𝛼 (r)]𝑢𝛼 (r)𝑢𝛽 (r′)𝑒−(𝑢 |𝐴|𝑢)+(𝑢 |𝐽 |𝑢) (33)

In Replica theory [75] one effectively just discards the prefactor 1
𝑍 (𝐽=0) and works with the first

of the 𝑛 replicas. The result is

⟨𝐺𝛼𝛽 (r, r′)⟩ =
𝛿

𝛿𝐽 (r′, r) ⟨𝑍 [𝐽]⟩
����
𝐽=0

∝
〈∫

D[𝑢∗𝛼 (r), 𝑢𝛼 (r)]𝑢𝛼 (r)𝑢𝛽 (r′)𝑒−(𝑢 |𝐴|𝑢)
〉

(34)

where the average has to be taken with respect to the fluctuating quantities 𝑀𝜖 (r) := 𝑀𝜖 ,r and
𝑀𝜇 (r) := 𝑀𝜇,r. As in Ref. [60] we now use a method (originally introduced by Faddeev and
Popov for fixing the gauge in Yang-Mills theories [76]) introducing functional 𝛿 functions in order
to replace the fluctuating quantities 𝑀𝜖 ,r and 𝑀𝜇,r by auxiliary fields 𝑄 𝜖 (r, 𝑧) and 𝑄𝜇 (r, 𝑧)
and represent this 𝛿 function, in turn, by a further integral using a second set of auxiliary fields
(“ghost fields”) Λ𝜖 (r, 𝑧) and Λ𝜇 (r, 𝑧):

𝑍 [𝐽] =

∫
D[𝑢∗𝛼, 𝑢𝛼]𝑒−(𝑢 |𝐴[𝑀𝜖 ,r ,𝑀𝜇,r ) ] |𝑢)𝑒 (𝑢 |𝐽 |𝑢)

=

∫
D[𝑢∗𝛼, 𝑢𝛼]

∫
D

[
𝑄 𝜖 , 𝑄𝜇]𝑒−(𝑢 |𝐴[𝑄𝜖 ,𝑄𝜇 ] |𝑢)𝑒 (𝑢 |𝐽 |𝑢)𝛿(𝑀𝜖 ,r −𝑄 𝜖 )𝛿(𝑀𝜇,r −𝑄𝜇)

=

∫
D[𝑢∗𝛼, 𝑢𝛼]

∫
D[𝑄 𝜖 , 𝑄𝜇]𝑒−(𝑢 |𝐴[𝑄𝜖 ,𝑄𝜇 ] |𝑢)𝑒 (𝑢 |𝐽 |𝑢)

∫
D[Λ𝜖 ,Λ𝜇] 𝑒−(Λ𝜖 |𝑀𝜖 ,r−𝑄𝜖 ) 𝑒−(Λ𝜇 |𝑀𝜇,r−𝑄𝜇 )

=

∫
D

[
𝑄 𝜖 , 𝑄𝜇]

∫
D

[
Λ𝜖 ,Λ𝜇]𝑒− tr

{
ln

[
𝐴[𝑄𝜖 ,𝑄𝜇 − 𝐽

]}
𝑒−(Λ𝜖 |𝑀𝜖 ,r−𝑄𝜖 ) 𝑒−(Λ𝜇 |𝑀𝜇,r−𝑄𝜇 ) (35)

where 𝐴[𝑄 𝜖 , 𝑄𝜇] is now the operator 𝐴[𝑀𝜖 ,r, 𝑀𝜇,r] with the 𝑀’s replaced by the 𝑄’s. The last
line results from integrating out the original fields 𝑢𝛼 (r).

As in [60] we now devise the following coarse-graining procedure:

• We tile the total space into 𝑁𝑐 cells of (approximate) volume 𝑉𝑐 = 𝑉/𝑁𝑐, where 𝑉 = 𝐿3 is
the total volume.

• Within a cell with label 𝑖 we replace the moduli by their average in each cell and assume
that the quantities 𝑀𝜖 and 𝑀𝜇 do not fluctuate anymore inside the cell.

• The fluctuations of 𝑀𝜖 ,𝑖 and 𝑀𝜇,𝑖 and are assumed to be uncorrelated, i.e.

𝑃(𝑀𝜖 ,1 . . . 𝑀𝜖 ,𝑖) =
∏
𝑖

𝑝(𝑀𝜖 ,𝑖) , (36)

𝑃(𝑀𝜇,1 . . . 𝑀𝜇,𝑖) =
∏
𝑖

𝑝(𝑀𝜇,𝑖) . (37)

• The assumption of uncorrelated fluctuations implies that the volume of the cells must be
larger or at least equal to the correlation length 𝜉 of the fluctuations of 𝑀𝜖 ,𝑖 and 𝑀𝜇,𝑖 ,
which is assumed to be the same. Consequently, the k summations in the subsequent
analysis are confined to an ultraviolett cutoff 𝑘 𝜉 = 𝜈/𝜉, where 𝜈 is of the order of unity.



The matrix elements in the exponents of the two last factors in the bottom line of Eq. (35) take
the form

(Λ𝜖 |𝑀𝜖 ,r −𝑄 𝜖 ) →
𝑉𝑐

𝑉

∑︁
𝑖

Λ𝜖 ,𝑖

(
𝑀𝜖 ,𝑖 −𝑄 𝜖 ,𝑖

)
, (38)

and the analogous expression holds for Λ𝜇 |𝑀𝜇,r −𝑄𝜇). We now start to evaluate the configura-
tional average. exponentials in (35) have to be averaged with the distribution densities 𝑝(𝑀𝜖𝑖 )
and 𝑝(𝑀𝜇𝑖 ), and they factorise obviously. For the first averaged exponential we may write

〈
𝑒−(Λ𝜖 |𝑀𝜖 −𝑄 𝜖 )

〉
=

𝑁𝑐∏
𝑖=1

〈
𝑒−

𝑉𝑐

𝑉
Λ𝑖, 𝜖 (𝑀𝑖, 𝜖 −𝑄𝑖, 𝜖 )

〉
𝑖

(39)

= 𝑒

𝑉

𝑉𝑐

ln

(〈
exp

[
−𝑉𝑐

𝑉
Λ𝑖, 𝜖 (𝑀𝑖, 𝜖 −𝑄𝑖, 𝜖 )

] 〉
𝜇

,

)
where ⟨. . . ⟩𝜖 denotes an average with 𝑝(𝑀𝜖 ,𝑖). The factor 𝑉/𝑉𝑐 = 𝑁𝑐 comes from 𝑁𝑐

multiplications of the same quantity 𝑒ln(...) . The second averaged exponential has the same form
with 𝜖 being replaced by 𝜇. Note that the two occurring volume ratios do not cancel each other
due to the average inside the logarithm. Using (39) the average of the generating functional (35)
can now be written as

⟨𝑍 [𝐽]⟩ =
∫

D[𝑄,Λ] 𝑒−𝑆eff [𝑄 𝜖 , 𝑄𝜇,Λ𝜖 ,Λ𝜇, 𝐽] (40)

with the effective action

𝑆eff [𝑄 𝜖 , 𝑄𝜇,Λ𝜖 ,Λ𝜇, 𝐽] = tr{ ln
(
𝐴[𝑄 𝜖 , 𝑄𝜇] − 𝐽

)
}

− 𝑉

𝑉𝑐

ln
(〈
𝑒− 𝑉𝑐

𝑉
Λ𝑖 (𝑀𝜖 ,𝑖−𝑄𝜖 )

〉
𝜖

)
− 𝑉

𝑉𝑐

ln
(〈
𝑒− 𝑉𝑐

𝑉
Λ𝑖 (𝑀𝜇,𝑖−𝑄𝜇 )

〉
𝜇

)
(41)

We now use the prefactor 𝑉
𝑉𝑐

≫ 1 of the action as large parameter for the saddle-point
approximation.

As we are looking for a homogeneous saddle point of the action we replace the auxiliary
fields by space-independent (but frequency-dependent) ones 𝑄 𝜖 (𝑧), 𝑄𝜇 (𝑧),Λ𝜖 (𝑧),Λ𝜇 (𝑧), which
define frequency-dependent moduli and susceptibilities in a homogeneous effective medium. In
this medium the average Green’s functions depend only on r − r′ and so do the 𝐴 matrices and
the source fields 𝐽. The fields in the effective medium are completely transverse. In k space 𝐴 is
diagonal and has two identical entries (𝐴𝑧𝑧 = 0), given by

𝐴𝑥𝑥 (𝑘, 𝑧) = 𝐴𝑦𝑦 (𝑘, 𝑧) = −𝑧2 + 𝑘2𝑄 𝜖 (𝑧)𝑄𝜇 (𝑧) := 𝐴(𝑘, 𝑧) (42)

𝐺 is also diagonal with the two entries

𝐺𝑥𝑥 (𝑘, 𝑧) = 𝐺𝑦𝑦 (𝑘, 𝑧) = − 𝛿

𝛿𝐽 (k) 𝑆eff

����
𝐽=0

=
1

−𝑧2 + 𝑘2𝑄 𝜖 (𝑧)𝑄𝜇 (𝑧)
:= 𝐺 (𝑘, 𝑧) . (43)

with 𝐽 (𝑘) = 𝐽𝑥𝑥 (𝑘). We can define a mean-field or effective-medium action as

𝑆𝑒 𝑓 𝑓 [𝑄 𝜖 , 𝑄𝜇,Λ𝜖 ,Λ𝑚𝑢, 𝐽=0] = 2
∑︁

k
{ ln

(
𝐴(𝑘, 𝑧)

)
} (44)

− 𝑉

𝑉𝑐

ln
(〈
𝑒− 𝑉𝑐

𝑉
Λ𝜖 (𝑀𝜖 ,𝑖−𝑄𝜖 )

〉
𝜖

)
− 𝑉

𝑉𝑐

ln
(〈
𝑒− 𝑉𝑐

𝑉
Λ𝜇 (𝑀𝜇,𝑖−𝑄𝜇 )

〉
𝜇

)
:= 𝑆med [𝑄 𝜖 , 𝑄𝜇] + 𝑆𝜖 [𝑄 𝜖 ,Λ𝜖 ] + 𝑆𝜇 [𝑄𝜇,Λ𝜇] (45)



Varying the action with respect to Λ𝜖 (𝑧) we obtain

𝜕𝑆eff
𝜕Λ𝜖

=
𝜕𝑆𝜖

𝜕Λ𝜖

= 0 =

〈
−𝑉𝑐

𝑉
Λ𝜖 (𝑧) (𝑀𝜖 ,𝑖 −𝑄 𝜖 (𝑧))𝑒− 𝑉𝑐

𝑉
Λ𝜖 (𝑧) [𝑀𝜖 ,𝑖−𝑄𝜖 (𝑧) ]

〉
𝜖〈

𝑒− 𝑉𝑐
𝑉

Λ𝜖 (𝑧) [𝑀𝜖 ,𝑖−𝑄𝜖 (𝑧) ]
〉
𝜖

⇒ 0 =

〈
𝑀𝜖 ,𝑖 −𝑄 𝜖 (𝑧)

exp
[
𝑉𝑐

𝑉
Λ𝜖 (𝑠)

(
𝑀𝜖 ,𝑖 −𝑄 𝜖 (𝑧)

) ] 〉
𝜖

(46)

Since 𝑉𝑐

𝑉
≪ 1 the exponential in the denominator can be expanded to first order

0 =

〈
𝑀𝜖 ,𝑖 −𝑄 𝜖 (𝑧)

1 + 𝑉𝑐

𝑉

(
𝑀𝜖 ,𝑖 −𝑄 𝜖 (𝑧)

)
Λ𝜖 (𝑧)

〉
𝜖

(47)

which is the CPA equation for 𝑀𝜖 (𝑧). Similarly we cet the equation for 𝑀𝜇 by varying the action
with respect to Λ𝜇

0 =

〈
𝑀𝜖 ,𝑖 −𝑄 𝜖 (𝑧)

1 + 𝑉𝑐

𝑉

(
𝑀𝜖 ,𝑖 −𝑄 𝜖 (𝑧)

)
Λ𝜖 (𝑧)

〉
𝜖

(48)

Varying the action with respect to 𝑀𝜖 we get

Λ𝜖 (𝑧) = 2𝑄𝜇 (𝑧)
∑︁

k

𝑘2

−𝑧2 + 𝑘2𝑄 𝜖 (𝑧)𝑄𝜇 (𝑧)
(49)

and similarly

Λ𝜇 (𝑧) = 2𝑄 𝜖 (𝑧)
∑︁

k

𝑘2

𝑧 + 𝑘2𝑄 𝜖 (𝑧)𝑄𝜇 (𝑧)
(50)

We define normalised susceptibility functions

Λ̃𝜖 (𝑧) =
1
𝑞

𝑉𝑐

𝑉
Λ𝜖 (𝑧) =

3
𝑘3
𝜉

𝑄𝜇 (𝑧)
∫ 𝑘𝜉

0

𝑘4

𝑧 + 𝑘2𝑄 𝜖 (𝑧)𝑄𝜇 (𝑧)
=

1
𝑄 𝜖 (𝑧)

[
1 + 𝑧2𝐺 (𝑧)

]
(51)

Λ̃𝜇 (𝑧) =
1
𝑞

𝑉𝑐

𝑉
Λ𝜇 (𝑧) =

3
𝑘3
𝜉

𝑄 𝜖 (𝑧)
∫ 𝑘𝜉

0

𝑘4

𝑧 + 𝑘2𝑄 𝜖 (𝑧)𝑄𝜇 (𝑧)
=

1
𝑄𝜇 (𝑧)

[
1 + 𝑧2𝐺 (𝑧)

]
(52)

with 𝑞 = 𝑉𝑐𝑘
3
𝜉
/3𝜋2. 𝑞 can be related to a critical percolation threshold and therefore must be

smaller than unity [60]. In our calculations we take 𝑞 = 0.3. 𝐺 (𝑧) is the normalised local Green’s
function

𝐺 (𝑧) = 3
𝑘3
𝜉

∫ 𝑘𝜉

0

𝑘2

𝑧 + 𝑘2𝑄 𝜖 (𝑧)𝑄𝜇 (𝑧)
(53)

from which the density of states can be calculated as

𝑔(𝜔) = 2𝜔
𝜋

Im
{
𝐺 (𝑧)

}
(54)

We finally obtain the following CPA equations

0 =

〈
𝑀𝜖 ,𝑖 −𝑄 𝜖 (𝑧)

1 + 𝑞
(
𝑀𝜖 ,𝑖 −𝑄 𝜖 (𝑧)

)
Λ̃𝜖 (𝑧)

〉
𝜖

(55)

which is the CPA equation for 𝑀𝜖 (𝑧). Similarly we get the equation for 𝑀𝜇 by varying the action
with respect to Λ𝜇

0 =

〈
𝑀𝜇,𝑖 −𝑄𝜇 (𝑧)

1 + 𝑞
(
𝑀𝜇,𝑖 −𝑄𝜇 (𝑧)

)
Λ̃𝜇 (𝑧)

〉
𝜇

(56)
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