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Does a magnetic field suppress the Coulomb gap?
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Abstract. We used electron-tunnelling spectroscopy to investigate the Coulomb correlation
in n - type Germanium. The dopant concentration was smaller than the critical concentration
for the metal-insulator (Anderson) transition. The tunnelling conductance, which probes the
electronic density of states, was found to depend strongly on both voltage and temperature.
At low temperatures it shows a conductance minimum at the Fermi energy as expected for
the Coulomb correlation gap. Applying a magnetic field up to B = 4T at T = 0.1K reduces
the magnitude of the tunneling conductance, but does not significantly change the shape of
the spectra. At higher fields, the conductance minimum disappears, suggesting a suppression
of the Coulomb gap. This could be due to the field-induced confinement of the electron wave
functions, that strongly reduces the overlap between the localized electron states.
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1 Introduction

In disordered insulating systems like weakly doped semiconductors the low-tempera-
ture transport properties are dominated by the density of states (DOS) of the local-
ized electrons. Due to the long-range Coulomb interaction between these localized
electrons, the Efros-Shklovskii theory predicts a particularity – the Coulomb gap – in
the single-particle density of states N(E) [1].

The exact energy dependence of the DOS inside the Coulomb gap has not yet been
settled. Usually, at the Fermi energy EF the DOS is expected to follow a power law
N(E, T = 0) ∝ (E−EF)D−1, depending on the spatial dimension D [1, 2, 3, 4]. Other
theories [5] predict an exponential dependence N(E, T = 0) ∝ exp{(E − EF)D−1}.
For three-dimensional (3D) systems at finite temperature and with energy disorder,
analytical and numerical results yield a power law N(EF , T ) ∝ Tα, with exponents α
of about 2 [1, 6], 2.6±0.2 [7], 2.7±0.1 [8], and 1 [9]. The exponent α may also depend
on the amount of structural disorder.

In the variable-range-hopping (VRH) regime the electrical resistance varies as R =
R0 exp

√
T0/T when the Coulomb gap N(E) ∝ (E−EF)2. Here kBT0 = C2e

2/4πεε0a,
a is the effective Bohr radius of the donors, ε the dielectric constant, e the electron
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charge, and C2 = 2.8 [1]. Indirectly, this serves to identify the energy-dependence of
the DOS.

In weak magnetic fields the hopping distance (at constant temperature), measured
in units of the average distance between the impurities remains constant. This holds
as long as the magnetic length λ =

√
h̄/eB � a. At small fields the hopping resistance

ln{R(B)/R(0)} ∝ (B/B0)2 increases exponentially with B because a magnetic field
confines the wave function [4]. The parameter B0 = C3

(
h̄/ea2

)2 (T/T0)
3/2 with C3 =

288. Above a characteristic field BC = n1/3h̄/ea the resistivity of weakly-doped
semiconductors ln{R(B)/R(0)} ∝ B ln

√
B/B0. As discussed in Ref. [4], the field-

dependence of the resistivity reflects the tunnelling factor of the hopping rate being
exponentially reduced by the confinement of the wavefunctions. Using a semiclassical
method, Ioselevich [10] derived an analytical formula for the tunnelling probability to
interpolate between the high- and low-field limit.

So far the effect of the magnetic field on the Coulomb gap itself has been neglected.
Here we report on tunnelling experiments on n-type Ge, that seem to indicate a strong
suppression of the Coulomb gap in large fields.

2 Experimental

Our samples are neutron-transmutation doped [11] n-type Ge. Its shallow As donors
are produced by a nuclear reaction with thermal neutrons 74Ge (n, γ) 75Ge → 75As.
To obtain a small degree of compensation K, the original Ge crystal had been enriched
by isotopic 74Ge. The ratio between the concentration of acceptors and donors is
K = na/nd = 12 % and the donor concentration is nd = 3.12 · 1017 cm−3. This is
close to the disorder-driven metal-insulator (Anderson) transition [12] at the critical
impurity concentration 3.4 · 1017 cm−3 of germanium.

We have measured the temperature dependence of the bulk resistance from 0.1
to 1 K and at B = 0 − 3 Tesla using the standard four-probe DC method with the
magnetic field parallel to current flow I. The tunnelling experiments on mechanically-
controllable break junctions were performed at T = 0.1 K in magnetic fields up to
8 Tesla using the setup described in Ref. [13]. The samples were glued electrically
isolated onto a flexible bending beam. They were broken at low temperatures to avoid
oxidation of the interface. The contact size could be adjusted by a micrometer screw
and a piezo tube. The current-voltage reistance of the high-resistance junctions was
recorded in the standard two-terminal mode. The bulk part of the samples contributed
less than about 5 per cent to the total resistance. A magnetic field could be applied
perpendicular to current flow. However, Ge is a rather isotropic compound, and we
do not expect any strong dependence on the direction.

A note on ’tunnelling’. Usually tunnelling spectroscopy requires a tunelling barrier
at the interface like a thin insulating layer or a vacuum gap, as reviewed for example
in Ref. [14]. In contrast, the break-junction results presented here have been obtained
on junctions that are small enough for a few hop processes to dominate the contact
resistance. One can then take advantage of the fact that in the VHR regime charge
transport is a (thermally activated) tunneling process [15]. The junctions are also
sufficiently large that a depletion layer has not yet been formed at the interface [16].
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Fig. 1 Resistance R vs. 1/
√

T of n-type Ge at the magnetic fields of B(Tesla) = 0.0, 1.0,
1.5, 2.0, 2.5, and 3.0 (from bottom to top).

3 Experimental results

Fig. 1 shows the temperature dependence of the bulk resistance in a magnetic field.
The ln (R) ∝ 1/

√
T behaviour clearly supports the existence of a Coulomb gap with

N(E) ∝ (E − EF)2. The slight difference of the slope above and below about 0.2 -
0.3 K cold be attributed to the cross-over phenomenon of the DOS as discussed by
Shlimak it et al. [17]. For the same data, the large positive magnetoresistance in
Fig. 2 demonstrates the field-induced confinement of the wave function as described
above (so far we have no bulk resistance data at higher fields).

Fig. 3 shows the tunnelling conductance dI/dU versus applied voltage U at T =
0.1 K and in various magnetic fields. The junction of Fig. 3(a) has a larger conductance,
and thus a larger cross-sectional area, than that of Fig. 3(b). It is therefore more in
the regime of bulk transport, and has smaller spectral anomalies than the junction
in Fig. 3(b). For both junctions, up to about 4 T the shape of the spectra does not
change, although the conductance is considerably reduced with respect to the zero-
field data. At about 5 T, the zero-bias minimum becomes smaller, and disappears at
higher fields. Both the zero-bias contact resistance and Rx = dU/dI at U = 4 mV vary
as B2 up to about 4 Tesla, levelling off at larger fields (Fig. 4). This seems to indicate
the transition from weak to strong fields at the characteristic field BC , which is near
the theoretical BC = h̄n1/3/ea ≈ 1.4 Tesla, at an effective Bohr radius a ≈ 30 nm of
this Ge sample.
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Fig. 2 Logarithm of the normalized magnetoresistance in weak fields at the indicated tem-
peratures. Solid lines as guide to the eye.
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Fig. 3 Differential conductance dI/dU vs. voltage U of two Ge break junctions at the
indicated magnetic fields. The temperature was T = 0.1 K.
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Fig. 4 Differential contact resistance Rx = dU/dI at U = 4 mV vs. B2 of the junction in
Fig. 3a (circles) and 3b (squares). Both junctions show a very similar behaviour.

4 Discussion

The close coincidence between the vanishing of the Coulomb-gap anomaly and the
crossover from weak field to strong field may help to explain our results. According
to Efros and Shklovskii [4], the crossover from weak to strong fields occurs when the
magnetic potential VB(r) = h̄2(x2 + y2)/8mλ4 is larger than the Coulomb potential
VC(r) = e2/4πεε0|r|. Here the field B is assumed to point in z direction. To excite
an electron-hole pair (i, j) with energy ∆ij at the Fermi level requires a minimum
distance rij = e2/4πεε0∆ij. Because of this condition, the DOS around the Fermi
level is depleted and the Coulomb gap being formed. In a magnetic field the electron
is affected by the Coulomb potential of the hole (and vice versa) only if the hole is
located inside the cigar-shaped region in which VC(r) > VB(r).

The distances rij, responsible for the formation of the Coulomb gap, are much
larger than the inter-donor separation n

−1/3
d . They are obviously of the same or-

der of magnitude as the hop or tunnel distance in our break junctions. At some
crossover field, the electron-hole interaction for hopping in the x − y plane becomes
inefficient. Therefore, the disappearance of the Coulomb-gap anomaly might be a sim-
ilar crossover phenomenon as the low-field/high-field crossover due to the shrinking of
the wave-functions. The crossover from a cubic to a linear integrated DOS considered
by Shlimak et al. [17] is based on the same physical idea.

Furthermore, a strong magnetic field may not only make the Coulomb gap ineffi-
cient. The Coulomb gap could be completely suppressed since the field confines the
wave function to a cigar-like shape along the B – direction. Therefore electrons can
interact only in z direction, transforming the problem from three to one dimensions.
And in one dimension a Coulomb gap cannot exist.
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5 Summary

We have studied low-temperature transport and tunnelling in an Anderson insulator
with long-range Coulomb interaction. Our most important finding is that at low
temperature the minimum of the differential tunnelling conductance is suppressed
when the applied field exceeds some characteristic field BC . As explanation we propose
a transition from 3D to 1D behaviour due to the field-induced confinement of the
electron wave functions.

We thank H. Friedrich for discussions. This work was supported by the SFB 252 Darm-
stadt/Frankfurt/Mainz and the RFFT-No. 97-02-18280.

References

[1] A. L. Efros and B. I. Shklovskii, J. Phys. C 8 (1975) L49
[2] M. Pollak, Discuss. Faraday Soc. 50 (1970) 13; G. Srinivasan, Phys. Rev. B 4 (1971)

2581; V. Ambegaokar, B. I. Halperin, and J. S. Langer, Phys. Rev. B 4 (1971) 2612
[3] M. Pollak, J. Non-Crystal. Solids 35-36 (1980) 83
[4] A. L. Efros and B. I. Shklovskii, Electronic properties of doped semiconductors, Springer-

Verlag, Berlin, New York 1984
[5] A. L. Efros, J. Phys. C 9 (1976) 2021
[6] E. I. Levin, V. L. Nguen, B. I. Shklovskii, and A. L. Efros, Sov. Phys. JETP 65 (1987)

842
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