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By event-driven molecular dynamics simulations we investigate magnetotransport in a two-dimensional
model with randomly distributed scatterers close to the field-induced localization transition. This transition
is generated by percolating skipping orbits along the edges of obstacle clusters. The dynamic exponents
differ significantly from those of the conventional transport problem on percolating systems, thus
establishing a new dynamic universality class. This difference is tentatively attributed to a weak-link
scenario, which emerges naturally due to barely overlapping edge trajectories. We make predictions for the
frequency-dependent conductivity and discuss implications for active colloidal circle swimmers in a
hetegogeneous environment.
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Electronic transport in two-dimensional (2D) disor-
dered structures under the influence of a magnetic field
exhibits a fascinating wealth of observed phenomena
[1–11], including the quantum Hall effect [12–15]. The
field has gained new momentum by recent investigations
on disordered graphene [16–18] and other topological
insulators [19,20]. For many of these phenomena classical
magnetotransport constitutes the basis of a semiclassical
description [13,21–23]. For instance, the edge states in
quantum Hall systems are the quantum analogue of
“skipping orbits,” trajectories formed by circular arcs
bouncing along the edges of a mesoscopic structure.
One of the widely investigated classical models for

transport in disordered systems is the Lorentz model
[24,25]. In this model a particle is specularly scattered
by circular or spherical obstacles, which may overlap and
are distributed randomly according to a Poisson process.
Transport within the Lorentz model and the associated
percolation transition have been studied extensively in the
past [26–33]. The Lorentz model has been considered also
in the presence of an applied magnetic field [1–6,34–38];
i.e. the linear paths between successive specular scattering
events are replaced by circular arcs. It turned out that in the
presence of the field a description of the transport in terms
of the Boltzmann equation is no longer appropriate because
of the breakdown of both ergodicity [23,39] and the
Markov property of the scattering sequence [3–5]. The
resulting strongly correlated kinetics exhibits a rich sce-
nario of anomalous magnetoresistance [1–4,34–37]. Let us
note that the circular motion is not only realized by
electrons in a magnetic field, but also by active particles
subject to asymmetric driving [40–45]. Such particles in the
presence of randomly distributed obstacles [46,47] provide

a colloidal analogue of the Lorentz model with magnetic
field.
An interesting feature of this Lorentz model is the

existence of a magnetic-field-induced localization, which
is of percolative character [1,2,4,6]. Via the classical-
quantum correspondence this transition is also relevant
for the quantum localization in a magnetic field. Very
recently, a theoretical investigation of spin-Hall topological
insulators with random circular obstacles has shown that,
because of edge-state percolation, a similar insulator-
conductor transition emerges [48]. For the magnetic tran-
sition a relation for the field-dependent critical density has
been derived by Kuzmany and Spohn [6]. A detailed
numerical investigation of this transition and the associated
critical transport has remained a challenge so far.
Here, we present results of large-scale molecular dynam-

ics (MD) simulations for the Lorentz model with circular
motion. We focus on the field-induced localization tran-
sition and investigate the nature of the trajectories leading
to critical slowing down and anomalous diffusion. In
particular we determine the static and dynamic critical
exponents both for the conventional and the magnetic
transition and argue for a new universality class of the
latter. We shall present a heuristic argument for the
suppression of transport with respect to the standard
transport scenario on percolating systems.
Our setup describes a two-dimensional gas of classical,

independent carriers of charge q and mass m in a random
array of overlapping hard-disk obstacles of radius σ in the
presence of a perpendicular, uniform magnetic field B. The
particles move with constant velocity v, and the trajectories
become skipping orbits [49] consisting of circular arcs
with cyclotron radius R ¼ mv=qB connected by specular
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scattering events (Fig. 1). We employ event-driven MD
simulations similar to the field-free case [28,33,50].
Furthermore we consider uniformly distributed obstacles
of number density n, leaving as control parameters the
dimensionless density n� ¼ nσ2 and the dimensionless
ratio R=σ. At densities n� > n�c ¼ 0.359 081… [29,31,51]
the accessible void space consists only of disconnected
pockets, prohibiting long-range transport. At lower den-
sities an infinite void-space cluster emerges, and a finite
diffusivity D arises if the particles can permeate the entire
system via skipping orbits; see Fig. 1. At low densities the
skipping-orbit motion occurs only around isolated obstacle
clusters, which corresponds to a magnetic-field-induced
insulating phase (topological insulator). Whereas deep in
the conductive phase the trajectories are dominated by
many scattering events similar to the field-free case, close
to the transition the motion is characterized by regular
skipping orbits jumping occasionally between isolated
obstacle clusters.
We have determined the mean-square displacement

(MSD) δr2ðtÞ≔h½RðtÞ − Rð0Þ�2i as averages over time,
tracer ensemble, and disorder. We have used large system
sizes of 104σ with periodic boundaries. As an example we
show data for R=σ ¼ 0.9 in Fig. 2. For moderate densities
(n� ≳ 0.1) the MSD grows linearly in time δr2ðt → ∞Þ≃
4Dt for long times, where D is the diffusion coefficient.
Decreasing the density n� this linear regime is delayed to
longer and longer times, until eventually at a critical density
n�m ¼ n�mðRÞ the long-time behavior becomes subdiffusive,
δr2ðt → ∞Þ ∼ tγ, with an observed exponent of γ ¼
0.581� 0.005 [52]. The inset of Fig. 2 shows a rectification
by means of the local exponent γðtÞ≔d log ½δr2ðtÞ�=d logðtÞ
as a function of time, corroborating the long-time asymp-
totics. Such fractional (or anomalous) diffusion is found
widely in complex systems, but the physical origins are
often difficult to pin down [54–56]; here it emerges
naturally from a critical phenomenon. The anomalous

exponent is related to the dynamic critical exponent z
via γ ¼ 2=z, which gives z ¼ 3.44� 0.03. This value is
incompatible with the known dynamic exponent zlat ¼
3.036� 0.001 (corresponding to γlat ¼ 0.658; see the
inset of Fig. 2) for two-dimensional random walkers on
percolating lattices [30,57], valid also for the field-free
localization transition [29,31,58,59]. Although the values
of z and zlat differ only by 10%, the data cannot be
described in a satisfactory way [52] with an assumed
exponent zlat, even if corrections to scaling [30] are
included. Decreasing the density below n�m the MSD
converges at long times δr2ðt → ∞Þ ¼ l2, which defines
l as the localization length.
The data close to the magnetic transition suggest a

dynamic scaling scenario similar to the localization tran-
sition for transport on percolating clusters [31]. Here the
localization length l is identified with the mean-cluster size
diverging as l ∼ jεj−ðν−β=2Þ upon approaching the transi-
tion, where ε ¼ ðn� − n�mÞ=n�m is the dimensionless sepa-
ration parameter. The exponent ν quantifies the divergence
of the largest finite cluster of linear extension ξ ∼ jεj−ν
(correlation length), and β measures the weight of the
infinite cluster ∼εβ for n� > n�m (order parameter). In 2D,
the values for standard percolation are known exactly:
ν ¼ 4=3, β ¼ 5=36 [57]. We verified by means of a
rectification plot that, indeed, our data for l are compatible
with these values [Fig. 3(a)].
The MSD is expected to obey dynamic scaling,

δr2ðtÞ ¼ t2=zδr̂2�ðt̂Þ, with scaling functions δr̂2þð·Þ and
δr̂2−ð·Þ for the conducting and the insulating side,

FIG. 1 (color online). Typical trajectories for classical magneto-
transport. Left: conductive phase well above the magnetic
transition (R=σ ¼ 2.0, n� ¼ 0.3); right: almost at the transition
(R=σ ¼ 0.9, n� ¼ 0.1), see the red dots in Fig. 4. FIG. 2 (color online). Mean-square displacements δr2ðtÞ for

R=σ ¼ 0.9. The density n� decreases from top to bottom. The
dashed line indicates the critical asymptote ∝ t2=z with z ¼ 3.44.
Inset: local exponent γðtÞ≔d log ½δr2ðtÞ�=d logðtÞ as a function of
time at the magnetic transition, n� ¼ n�mðRÞ, for three cyclotron
radii: R=σ ¼ 0.5 (cyan circles), 0.9 (blue triangles), and 2.0 (red
squares). The two horizontal lines mark the subdiffusion ex-
ponent for the universality classes of lattice percolation (2=zlat)
and of the magnetic localization transition (2=z), respectively.
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respectively. Here time enters only in a rescaled way
t̂ ¼ t=tx with a crossover time tx ∼ lz. The scaling func-
tions become constant for small argument, δr̂2�ðt̂ ≪ 1Þ ¼
const (critical regime), whereas for large argument they
approach δr̂2þðt̂ ≫ 1Þ ∼ t̂1−2=z on the conducting side and
δr̂2−ðt̂ ≫ 1Þ ∼ t̂−2=z on the insulating side. Hence one infers
that the diffusion coefficient vanishes as D ∼ εμ with a
magnetic conductivity exponent μ ¼ ðz − 2Þðν − β=2Þ ¼
1.82� 0.04. This exponent differs significantly from the
corresponding standard value for random resistor networks
on lattices, μlat ¼ 1.310 [27,30].
We have measured diffusivitiesD ¼ Dðn; RÞ throughout

the phase diagram; see Fig. 4. In particular, we have
verified the magnetic transition scenario also for two other
values for the cyclotron radius and found similar results for
the conductivity exponent at R=σ ¼ 0.5 and R=σ ¼ 2.0

[52,60]. In order to judge whether the slight variation of
these values with R is significant or just due to asymptotic
corrections and the limited accuracy, we made a rectifica-
tion plot [Fig. 3(b)] with the same value μ ¼ 1.82 for all
values of R and obtain satisfactory rectifications. We
conclude that, within our accuracy, the dynamic critical
exponents of the magnetic transition have values μ ¼
1.82� 0.08 and z ¼ 3.44� 0.06 [52] and do not depend
on the field parameter 1=R.
As mentioned in the introduction, a relation between the

critical density n�m of the magnetic localization transition
and the applied field B has been suggested by Kuzmany
and Spohn [6]. They argued in terms of the cyclotron radius
R ¼ mv=qB that one should consider the percolation of
disks of effective radius Rþ σ. This argument leads to a
critical density given by

n�mðRÞðσ þ RÞ2=σ2 ¼ n�c ¼ 0.359081…; ð1Þ

this line of magnetic transitions is included in Fig. 4. We
have verified that the critical magnetic density n�m observed
in our simulations coincides with this prediction to at least
two significant digits at the three values of R explored,
which suggests that Eq. (1) is an exact relation.
The phase diagram displays a second transition line

which is independent of the magnetic field and occurs at the
percolation density n�c. We have verified that the values of
the scaling exponents characterizing this localization tran-
sition are the same as in the field-free case, irrespective of
the magnitude of the magnetic field.

(a)

(b)

FIG. 3 (color online). (a) Rectification plot of the squared
localization length ðl=σÞ2jεj2ν−β vs jεj ¼ jn� − n�mðRÞj=n�mðRÞ in
the insulating phase for different cyclotron radii R. Error bars
combine statistical errors and uncertainties in reading off l2 from
the long-time asymptotes of δr2ðtÞ. Thin solid lines indicate
weighted averages of the data points and shaded bars the
uncertainty of the respective mean value; only data points covered
by the bars were taken into account. (b) Rectification plot of the
diffusion constant ðD=vσÞε−μ vs ε in the conducting phase. Data
for different R are shifted downwards by factors of 2. For all the
three values of R the same conductivity exponent μ ¼ 1.82 was
used.
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FIG. 4 (color online). Phase diagram: magnetic field σ=R ∝ B
vs density n�. The isodiffusivity contours are spaced logarithmi-
cally and increase from the phase boundaries towards the inner
region. The red line corresponds to the magnetic transition ac-
cording to Kuzmany and Spohn [6], n�mðRÞ ¼ n�cσ2=ðσ þ RÞ2. The
big red dots indicate the parameters for the trajectories of Fig. 1.
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Why do the values for μ and z differ from their
conventional ones? It is well known that the dynamic
exponents for transport on percolating systems may differ
from those of the standard random resistor network due to
the presence of weak links. It has been demonstrated by
means of mapping the traditional nodes-links-blobs model
of percolation clusters to conductance networks [61] that if
the distribution of conductances Γ along weak links obeys a
singular statistics, ϱðΓÞ ∝ Γ−a with 0 < a < 1, there exists
an exponent relation

μ ¼ max ½μlat; ðd − 2Þνþ 1=ð1 − aÞ�; ð2Þ

where d is the dimension of the embedding space. This
relation has been shown to be exact to all orders in a
renormalization group ε-expansion [62]. The conductances
can also be interpreted as transition probabilities across the
weak links. Machta and Moore [63] have shown that weak
links emerge in the (field-free) Lorentz model and lead to a
value of a ¼ ðd − 2Þ=ðd − 1Þ. Accordingly, in d ¼ 3 weak
links dominate the transport while in d ¼ 2 the standard
random-resistor exponents are valid.
If the weak-link scenario is responsible for the modified

value μ, a certain value of a ¼ 1 − 1=μ for the distribution
of weak links has to be rationalized. As noted above, near
the magnetic transition the centers of the skipping orbits
move along the perimeter of a percolation cluster formed by
circles of radius σ þ R. This cluster is generated by isolated
obstacle clusters; see the right panel of Fig. 1. Aweak-link
scenario can be identified considering the transitions of the
trajectories between these clusters. The weak links corre-
spond to configurations at which the circles formed by the
centers of the skipping orbits have a very small overlap; see
Fig. 5. As the two Cartesian components of the centers of

the skipping orbits are canonically conjugate to each other
[14], their possible values inside the overlap area A
represent the phase space for the transition. Thus the
transition probability across the weak link is proportional
to this overlap region A. Let us speculate how the decrease
of the overlap region A induces a suppression of transport,
i.e. an increase of the conductivity exponent μ. Following
Machta and Moore [63], the probability density PðWÞ for
the width W of the overlap of randomly distributed disks
(Fig. 5) approaches a constant PðW → 0Þ ≠ 0 in the limit
W → 0. By geometric considerations one can work out that
A ∼W3=2 for W → 0. Thus the probability density ϱðΓÞ of
the transition rates Γ ∝ A satisfies ϱðΓÞ ¼ PðWÞdW=dΓ ∼
PðW → 0ÞdW=dA ∼ A−1=3 ∼ Γ−1=3 and thus a ¼ 1=3. By
virtue of the hyperscaling relation, Eq. (2), this leads
to a value of μ ¼ 3=2 which is closer to the observed
value μ ≈ 1.82 than the standard conductivity exponent
μlat ¼ 1.310.
In conclusion we have studied for the first time dynamic

critical behavior of the low-density, magnetic-field-induced
localization transition in the Lorentz model, using high-
quality data obtained by state-of-the-art event-driven MD
simulations. We have identified that this transition com-
prises a new universality class of dynamic percolation in
that the dynamic exponents are different from their counter-
parts in conventional percolation problems.
We were able to corroborate a weak-link scenario for

transitions between the barely overlapping edge states.
Remarkably, weak links are relevant for the magnetic 2D
Lorentz model with magnetic field—in contrast to the usual
case (without field) where weak links are only of impor-
tance in d ¼ 3 [28,30,31,63]. We mention also that near the
magnetic transition the path described by the centers of the
skipping orbits constitutes a disordered topological insu-
lator, as this directed path runs along the perimeter of an
effective percolating cluster of disks.
Our findings have direct implications for the complex

frequency-dependent conductivity ΣðωÞ, measurable in a
conventional transport setup for magnetoresistance of a 2D
electron gas [64]. By the Einstein-Kubo relation ΣðωÞ ∝
ZðωÞ [65], where ZðωÞ is the Fourier-Laplace transform of
the velocity autocorrelation function, the subdiffusive
motion directly at the transition translates to an anomalous
power-law dispersion Σðω → 0Þ ∼ ω1−2=z [33,66], with a
rich cross-over scenario as n�↓n�m (see Ref. [52] and
Fig. S3 therein).
Finally, we point out that the field-induced percolation

transition, which is entirely of geometric origin, may also
be realized experimentally by colloidal circle swimmers
[40–45] in a heterogeneous environment [46,47]. If in our
model the condition of specular reflection at the obstacles is
replaced by an appropriate distribution of random reflec-
tions [47], the maximum distance between the center of an
orbit and an obstacle is still σ þ R, and the condition for a
curvature-induced percolation transition is also given by

A

W
σ

R

FIG. 5 (color online). Visualization of the weak-link scenario of
the field-induced percolation transition. Filled (apricot) circular
regions are obstacles, the continuous (blue) arcs form a skipping
orbit, and dashed circles are loci of skipping-orbit centers. The
(green) overlap area of center loci scales as A ∼W3=2 for
vanishing width W.
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Eq. (1). It will be worthwile to study this transition in the
future.
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I. ANALYSIS OF THE CRITICAL DYNAMICS

In this section, it will be shown that for the magnetic local-
ization transition discussed in the main paper the dynamic
exponents � and ´ deviate significantly from their lattice
values. Data sets for three different field strengths, corres-
ponding to cyclotron radii R=� D 0:5; 0:9; 2 are analyzed.
For each value of the cyclotron radius R, a series of re-
duced obstacle densities n� near the magnetic transition line
n�m.R/ D n

�
c .1CR=�/

�2 is considered, anticipating a predic-
tion by Kuzmany and Spohn [1].

The mean-square displacements (MSDs) contain inform-
ation on the critical dynamics from two perspectives. First
for near-critical obstacle densities, the long-time asymptotes
of the MSD yield the diffusion constant D and the local-
ization length `, respectively, as functions of the distance
" D .n� � n�m/=n

�
m to the transition. Both quantities display

critical singularities,

D � "� ." # 0/ ; (S1)

` � j"j��Cˇ=2 ." " 0/ ; (S2)

from which the conductivity exponent � and the combination
� � ˇ=2 can be inferred. Second, the MSD is asymptotically
subdiffusive at the transition,

ır2.t !1In� D n�m/ � t
2=´ ; (S3)

which allows one to determine the dynamic exponent ´. Finally,
the exponent relation

´ D 2C �=.� � ˇ=2/ (S4)

serves as a consistency check.
Anticipating universality, precise values for the exponents

are known from random walkers on percolation lattices, map-
pings to random resistor networks, and conformal field the-
ory. In two dimensions, � D 4=3, ˇ D 5=36 [2], and
�lat D 1:310.1/, which implies ´lat D 3:036.1/ [3, 4]; the
numbers in parentheses indicate the uncertainty in the last di-
git. A sensitive test whether the expected universality class
describes a given data set is achieved by so-called rectification
plots. For example, the product D"�� with given exponent �
should approach a constant value for " # 0.

If the value of the exponent is not known a priori (e.g.,
from theoretical considerations), data interpretation in terms
of critical power laws is a delicate issue for two reasons. First,
the prediction of a power-law is only asymptotic: it should
hold better and better for longer and longer times, such that
power-law-like corrections slowly fade out. Often data appear
to follow straight lines on double-logarithmic scales and it is
tempting to ignore systematic drifts in the slope, thereby merely

assigning effective exponents. Second, the quality of the data
becomes worse as longer times are probed, both from statistical
fluctuations (individual trajectories) but also systematic vari-
ations (finite size, sample-to-sample fluctuations, uncertainties
in the critical point). As a consequence of these effects, the er-
ror bars obtained blindly from regression algorithms typically
underestimate the actual error significantly.

A. Localization lengths

Figure 3a of the main paper establishes that the product
`2j"j2��ˇ is independent of " for the investigated range of
densities. Deviations are merely found for the largest values
of j"j, as expected. At R=� D 0:9, the data point at the
smallest j"j was discarded as an outlier, possibly because the
corresponding data for ır2.t/ do not reach sufficiently far
into the asymptotic regime. We conclude with a high level
of confidence that the localization length ` diverges at the
transition with the exponent � � ˇ=2 attaining its value on
lattices. In passing, the data also substantiate the Kuzmany and
Spohn [1] prediction for n�m.R/.
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Figure S1. Rectification plot of the diffusion constant D for obstacle
densities above the magnetic transition, using the lattice value �lat for
the conductivity exponent. Deviations from the expected exponent
are tested by a weighted power-law regression. The results and their
uncertainties are shown by straight lines and shaded areas, respectively.
Numbers next to each line give the obtained slope ��. Data for
different R are shifted downwards by factors of 2.
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B. Diffusion constants

For the diffusion constants, let us first assume that the mag-
netic transition falls into the same dynamic universality class
as standard transport on percolation lattices. Rectification with
the lattice exponent �lat, however, does not show convergence
as " # 0 (Fig. S1). Rather, the data for D"��lat on double-
logarithmic scales are well described by straight lines with
slope ��, indicating a power law D � "�.�latC��/ over al-
most the whole density range investigated. The data provide
strong evidence that the value �lat does not describe the critical
dynamics of the magnetic-field-induced localization transition.
Rather, the exponent adopts a new value � D �lat C��. At
R=� D 0:9, the data follow D � "� with this value of the
exponent over almost two decades in ".

For each cyclotron radius R, we have performed a “power-
law regression” of D"��lat as function of " with weights given
by the uncertainty of each data point, combining statistical and
read-off errors. Details of the fitting procedure are given in
Appendix A, the obtained estimates and their uncertainties for
the slope �� are shown in Fig. S1. Increasing the magnetic-
field strength from R=� D 2 to 0:5, the deviation appears
to increase from �� � 0:37˙ 0:03 to 0:53˙ 0:07. Taking
into account both statistical errors and possible systematic
errors due to insufficient asymptotics, in all cases the obtained
slopes�� are definitely non-zero and attain values much larger
than the uncertainty of the data. (A worst case scenario for
R=� D 0:9 has been included in the figure, using only 4 data
points for the fit.) This means that the field-induced vanishing
of the diffusion constant cannot be described by the standard
universality class.

C. Mean-square displacements

The second approach to the critical dynamics is based on the
subdiffusive growth of the MSD precisely at the localization
transition, ır2.t/ � t2=´. Since it is much easier to generate
data for large intervals in time rather than ", this approach typ-

R=� 0.5 0.9 2.0
n� 0:1600 0:0994 0:0399

fit range for t .105; 107/ .105; 108/ .103; 107/

� 0:066.3/ 0:076.2/ 0:077.1/

�´ 0:341.9/ 0:395.5/ 0:404.4/

�� 0:43.1/ 0:499.7/ 0:510.4/

 0:59.2/ 0:581.5/ 0:582.5/

´ 3:37.8/ 3:44.3/ 3:44.3/

� 1:7.1/ 1:82.4/ 1:81.4/

Table S1. Results from the analysis of the rectified MSDs (middle
part, Fig. S2) and the local exponents .t/ (bottom part, inset of
Fig. S2). The slopes �� were obtained from power-law regression
fits. The remaining lines were calculated from �´ WD ´ � ´lat with
2=´ WD 2=´lat�� and the exponent relation Eq. (S4). The numbers
in parentheses specify the uncertainty in the last digit as obtained
from the regression method.
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Figure S2. Rectification plot of the mean-square displacement ır2.t/
based on the lattice value ´lat for the dynamic exponent. On double-
logarithmic scales, the obtained straight lines for times t � 103�v�1

suggest subdiffusion but with a different dynamic exponent ´ (see
Table S1). Data for different R are shifted downwards by factors of 2.
Inset: The local exponent .t/, defined in Eq. (S5), does not converge
to 2=´lat, rather a new value 2=´ is adopted.

ically yields more accurate results. A rectification test using the
value ´lat for the dynamic exponent fails clearly (Fig. S2). On
double-logarithmic scales, the data follow straight lines over
up to 7 orders of magnitude in time with negative slopes ��
deviating significantly from zero (middle part of Table S1).

An alternative analysis of the MSD is based on the local
exponent

.t/ WD d log
�
ır2.t/

�
=d log.t/: (S5)

Numerically, we found that the simple scheme of finite dif-
ferences is sufficient to obtain reasonable results for .t/, see
inset of Fig. S2 and bottom part of Table S1. (Note that we
have evaluated the correlation functions at lag times which are
approximately uniformly distributed on the logarithmic scale.)
For all three values of R, the local exponent falls clearly below
2=´lat near t � 102�v�1 and remains at low values for longer
times. In particular, there is no tendency to approach 2=´lat
at long times. At weak magnetic field (R=� D 2), the local
exponent converges quickly to its apparent long-time limit,
.t !1/ D 2=´ � 0:582.5/, which is more than 10% smal-
ler than the value 2=´lat � 0:659 on lattices. The data for .t/
at R=� D 0:9 approach the same limit, but later, and follow
it within 1% accuracy over 3 decades in time (t > 105�v�1).
At R=� D 0:5, .t/ approximately resembles the curve at
R� D 0:9 up to t � 105�v�1, but then appears to increase
further; this part of the data for .t/, however, suffers from stat-
istical noise and is still far from 2=´lat. On basis of the critical
MSDs, we conclude that the magnetic value of the dynamic
exponent, ´ � 3:44, is (within our accuracy) independent ofR,
and ´ is clearly different from ´lat. Thus, the critical dynamics
due to field-induced localization is not described by the lattice
universality class.

Finally, we note that the discrepancy in the dynamic expo-
nents is unlikely to arise from asymptotic corrections to scaling.
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The standard scenario predicts that [5]

ır2.t !1/ ' At2=´.1C Ct�y/ (S6)

with universal correction exponent y D ˝df=dw � 0:521 [4],
using ˝ D 72=91 [6] and non-universal correction amplitude
C < 0. In particular, the critical long-time asymptote is ex-
pected to be approached from below, at variance to what we
observe for the magnetic transition. Even if a positive sign of
C is admitted, Fig. S2 demonstrates impressively that devi-
ations of the MSD from At2=´lat cannot be rationalized by the
(lattice) exponent y.

D. Consistency checks

The question remains whether the exponents ´ and � are
independent of the magnetic field (Fig. S2) or not (Fig. S1).
Moreover, both exponents are linked via Eq. (S4). The analysis
of .t/ appears to be the most sensitive tool, and the results
in Table S1 motivate the hypothesis of a common value  D
0:582 ˙ 0:010, or equivalently ´ D 3:44 ˙ 0:06 and � D
1:82˙0:08, at all magnetic field parameters 1=R, which needs
to be tested against the data for the diffusion constant. (The
increased uncertainties reflect also errors not covered by the
fitting procedure.) Figure 3b of the main paper shows an
alternative rectification plot of D with conductivity exponent
� D 1:82. Considering only data points close to the transition,
the data are indeed compatible with such a scenario. The figure
suggests that the asymptotic regime, however, sets in earlier
(at larger ") for stronger fields.

II. FREQUENCY-DEPENDENT CONDUCTIVITY

From the simulated MSDs we also make a prediction for
the complex a.c. conductivity ˙.!/ of the sample, which can
be measured in experiments. The connection is based on the
Einstein–Kubo relation ˙.!/ / Z.!/ [7], where Z.!/ is
the Fourier–Laplace transform of the velocity auto-correlation
function:

Z.!/ D lim
"#0

1

d

Z 1
0

hv.t/ � v.0/i ei.!Ci"/tdt : (S7)

After some manipulation, one finds

Z.!/ D D � i!
Z 1
0

�
1

2d

d
dt
ır2.t/ �D

�
ei!t dt ; (S8)

which is conveniently evaluated numerically from the simula-
tion data for ır2.t/ andD using the simplified Filon algorithm,
see ref. [8] for details. Figure S3 shows the results for different
densities at fixed magnetic field.

In the low-frequency limit, ˙.! ! 0/ D ˙0 / D, one re-
covers the d.c. conductivity˙0, corresponding to the long-time
diffusion constant D. Our data (Fig. S3) exhibit a suppression
of ˙0.n�/ by almost 3 orders of magnitude as the magnetic
transition is approached, n� ! n�m. At high frequencies,˙.!/

10−6 10−3 100

ω/vσ−1

10−3

10−2

10−1

100

R
eZ

(ω
)/
v
σ
∝

R
eΣ

(ω
)

R/σ = 0.9

∼ ω1−2/z n∗
0.2
0.12
0.11
0.102
0.0994

Figure S3. Loss part of the frequency-dependent conductivity
Re˙.!/ / ReZ.!/ for obstacle densities approaching the field-
induced localization transition at fixed magnetic field (R D 0:9�).
The data were obtained from a numerical Fourier–Laplace transform-
ation of the mean-square displacements, see text. The solid straight
line indicates the critical asymptote, ˙.! ! 0/ � !1�2=´ with
´ D 3:44, the dashed straight line shows !1�2=´lat for comparison.

is almost insensitive to changes of the obstacle density. Thus,
a pronounced frequency-dependence develops in ˙.!/, which
is most prominently manifested in an anomalous power-law
dispersion right at the transition:

˙.! ! 0In� D n�m/ � !
1�2=´ : (S9)

This power law and the slow asymptotic approach to it are
both inherited from the MSD, and both are corroborated nicely
by our data. It is also evident that the anomalous dispersion
˙.!/ � !1�2=´lat , as expected from the lattice universality
class, does not describe the data.

Appendix A: Power-law regression

The exponents in Figs. S1 and S2 were determined from the
regression of the power law model,

y.x/ D ˛.x=x0/
ˇ ; (S1)

using a weighted least-squares approach. Take n observations
y D .y1; : : : ; yn/ with uncertainties .�y1; : : : ; �yn/ at given
input x D .x1; : : : ; xn/. First, the data are transformed to
their logarithms, �i D log.xi / and �i D log.yi /, and the
uncertainties �yi are converted to �i D log.1 C �yi=yi /,
employing the geometric coefficient of variation of the log-
normal distribution. Let us define a weighted average and a
weighted 2-norm based on .�1; : : : ; �n/:

Ń WD

nX
iD1

wi´i ; k´k
2
WD

nX
iD1

wi´
2
i ; wi WD

��2iP
i �
�2
i

:
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Then, minimization of the weighted residual

� � Ǫ C Ǒ.�i � N�/2

yields estimates Ǫ ; Ǒ for the model parameters; further, x0 WD
exp. N�/. From the theory of linear regression, the uncertainties

on Ǫ and Ǒ are given by

.�˛/2 D 1
.X

i

��2i ; .�ˇ/2 D
X
i

��2i

.� � N�2 :
It is convenient to let an ordinary least-squares routine operate
on the transformed data Q�i D �i=�i and Q�i D �i=�i .

For mere amplitude fits in regression plots (e.g., Figs. 3a,b
of the main paper), the exponent is fixed to ˇ D 0. In these
cases, we have used weighted averages of the original data
with wi / .�yi /�2:

Ǫ D Ny ; .�˛/2 D
ky � Ǫk

n � 1
: (S2)
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