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Local Oscillators vs. Elastic Disorder: A
Comparison of Two Maodels for the Boson Peak*
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In order to study the vibrational properties of harmonic disordered solids
we consider two models for disorder: Randomly fluctualing elastic constants
(intrinsic disorder) and coupling to local oscillators (defects) with random
eigen frequencies. The first model 15 treated in self-consistent Born approz-
imation (SCBA), whereas the second can be solved eractly. This enables
us to discuss the accuracy of the SCBA, In both models an enhancement of
the low-frequency vibrational density of states over that predicted by Debye
is obtained ("boson peak”) as a result of the presence of the disorder. In
the frequency regime above the boson peak an almost exponential decrease of
the reduced density of states is obtained, which is widely observed in experi-
ments. Whereas the gross features of the models are similar, the details can
be different, depending on the model parameters chosen.

It is aryued that models involving intrinsic disorder are suitable for
structurally disordered solids, whereas defect models seem more adequate for
disordered crystals.

PAGS number: 65.60.+a

1. INTRODUCTION

The origin of the low-frequency vibrational anomalies of disordered
solids and the associated low-temperature thermal ones have been inten-
sively discussed in the past decades.™® In particular the low frequency
enhancement of the vibrational density of states (DOS) g(w) with respect to
Debye’s w? law - which appears as a peak if represented as g(w)/w? (?boson
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peak”) - has been attributed to a lot of different microscopic origins.* 27 The
main controversy is between models with local defects (e. g. the two-level
model®? or the soft-potential model”} and models with randomly modified
bulk properties (sce, for example, refe.81912:13:16) T the present contribu-
tion we compare two models of disorder in a harmonic Debye-like solid.*®

In the first model an elastic continuum is considered in which the local
elastic constant (square of the sound velocity) is assumed to vary randomly
in space. Such a model can be treated by field theoretical techniques to
derive a self-consistent Born approximation (SCBA).1415,19

In the second model the Debye waves are supposed to interact with
local oscillators the eigen frequencies of which are randomly distributed. It
is well-known that such a model can be solved exactly.?® Here the Green’s
function of the oscillators acts as the self energy of the Debye waves.

In both models the DOS exhibits a boson peak. The position is given
by the frequency where the imaginary part of the complex sound velocity
becomes comparable to its real part, or - in other words - where the disorder
induced mean free path becomes comparable to the wavelength (Toffe-Regel
limitZl). In both models the boson peak becomes stronger and shifted to-
wards lower frequencies if the degree of disorder - as given by the variance
of the fluctuating parameters - is increased. Beyond the boson peak the
reduced DOS g{w)/w? exhibits an approximately exponential decrease as it
is observed frequently experimentally.l® We are able to explain this in terms
of the spatial variation of the Green’s function of the perturbed waves.

Both models produce an instability if the degree of disorder is increased
beyond a critical value, and the boson peak can be interpreted as a precur-
sor phenomenon of this instability. We conclude that from the DOS alone
it is difficult to distinguish between the underlying microscopic mechanisms,
but in the case of structurally disordered solids we favor the elastic con-
stant model, because it appears to be more adequate and has less adjustable
parameters. Defect models might be useful for disordered crystals.

2. ELASTIC CONSTANT DISORDER

We consider (longitudinal) waves in a random medium with an elastic
constant
A+2p
my

= R(x) =) =+ AL) &

which is supposed to be varying randomly in space. A and p are Lamé’s
constants and mg is the mass density. c(r) is the local sound velocity and
co is the average one. We assume Gaussian disorder with A = 0 and a
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correlation funetion
C(r) = Alro)Alrg + 1) = 75 6(r) (2)

Here = is the variance of /£, divided by its mean, times the cube of a cor-
relation length (which is assumed to be smaller than the length scales of
interest, e. g. the wavelength in the boson peak regime).

The equation of motion in frequency space (z = w +0) for the matrix
of Green's functions Gy;(r,r’, 2) of the waves can be written as

3
Z (225.;3: + V\;f((r)v,g) (;Ej (1"., I"‘IT z) = —5§j§(I‘ — 1‘,) (3)
=1

This model is equivalent to that for an electron moving in a random
environment with energy E = —w? It therefore can be treated with the
same field-theoretical techniques used for the electronic problem.??

The functional weight for calculating the configurational average is

PIAW) = Be B ) TTAE) (@

Applying the replica trick,”*? the generating functional for calculating
the Green’s function takes the form

ZU)" = [ D) o3 <ulA@)|u>, < Jlu> "

(n is the number of replicas) where the matrix element is given by

<ulA(Z)u> = i i /dgru,? (r) [—thsij 7 Vgﬁ’(rjvj] ug (r)

a=lij=1

> [@r[ewr s Ee @ ww)?] @

=1

The v are the replica indices?® indices which run from 1 to n. The source is
given by

L
<tus= [y 2
a=1
and we have
Cy(r,r') = lim 137227?'[']“{1‘)]'! (®)
: n—0 n 8Jp (r)0J 1 (r)) I(r)=0
52
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We can now perform the configurational average explicitly to obtain

(et fdﬂm(r>cv-ua)2> = [DlaEIR % [ ETAW? 1 [ PrAE)(V - ue)?
_ 87 Law(V - )}V - u)? (10)

‘We now apply a Hubbard-Stratonovich transformation to the right-hand side
of (10):

6%7 Yo (V- u®)?(V - u®')?
- é/ D[Aaa’ (I‘, Z)] 3_% ZC‘O” f dgrAaC\t’ (I‘, 2)2
o3 T | Erhae (1, 2)(V - u)(V o u¥) gy

The configurationally averaged generating functional for J = 0 takes the
form:

7Y / Dlu®(r)] / Dl (r, 2)]e—3 < WA u > =5 TrA?

x /D[A(mr(r, Z)]e—%'n'lnA[A] e—_2.1§TrA2 0

Here the trace operation implies a summation over all internal indices and
an integral over the continuous variables. The matrix element < u|A[A]ju >
is given by

< ulA[AJju >= f Fr Y ud < rlA[A]r >20 u? (13)

ij o
with
< r|A[A]lr >&' = —2%8;j000: — B0aat ViV — Vilkaw (r,2)V; (14)

We are now looking for a saddle-point which makes the exponents in (12)
stationary. The corresponding saddle-point equations can be solved with a
replica-diagonal and r independent effective field®® A,y (r,2z) = A(2)8au-
JFrom the stationarity condition one obtains the following self-consistent
equation:

A =-1 % e
2\, GG

(15)

where kp is the Debye wavenumber cutoff. This approximation is the self-
consistent Born approximation (SCBA). It can also be derived by conven-
tional persurbation theory.?"?8 In such a treatment the irrudicible graphs
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can be classified to comprise a so-called self-energy function %(z), and, as
it turns out, minus the function A(z) plays the role of this function. We
therefore define

1.2
B(z)=-AR) =1 3 21 k2IEC% - %(2)) e

2
k| <kp

The local configurationally averaged Green’s function is obtained as

S o= 3 _ZQMQ(lC%_E(z)) o

|k|<kp |k|<kp

where G{k, z) is the Fourler transform of {Gy(|r — r'[,2)). IFrom G(z) the
DOS can be calculated as follows:

o) = Z1m{6(2)} (18)

Tt is interesting to notice that the SCBA becomes equivalent to the coherent-
potential approximation (CPA)%27 in the continuum limit and in the limit
of small disorder, i. e. v <« 1. The latter condition is, however, always
tulfilled, because the system becomes unstable for v > 0.5. It has been
demonstrated in Ref.® that the results of the CPA compare very well with
those of a numerical simulation of the same disordered system. We shall
discuss the accuracy of the SCBA further in the end of the next section.

3. LOCAL HARMONIC OSCILLATORS, COUPLED TO
ELASTIC WAVES

We consider N harmonic oscillators, which are located at positions r;
and have displacements z;(¢). They are coupled to longitudinal waves that
propagate with a sound velocity ¢g.?’ The Lagrangian is

N
L= 3T ke +/d*r— (r,)° ~ & (V- u(r, 1))
i=1
-> / d*rug(r) (V - u(r,t)) (19)
4
v;(r) Is the potential energy of the host atoms in the presence of the

inpurity:
vi(r) = v(r —ry) (20)
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This could be, for example, a screened Coulomb potential:

1

v —x;

’U(l" _ I'li) — 1 e—rn\rfl-i‘ (21)

The equations of motion (Lagrange equations) for the two sets of coordinate
are

svofe = [P () @

1
i(r,t) - gV (V- ulr,t)) = Y, %—Vw(r)xi(t) (23)
=~ My
1
Equation (22) can be readily solved for ;(2) in frequency space:
1
w(e) = - [ ) (7 ule, ) Ora(2) (20
with the impurity Green’s function
() = sy (25)
I3 - _22 T wzz

Inserting this mto (23)leads to

—22u(r,t)—cdV (V - u(r,?)) Z va(l /cl2r'vl( (V' u(r, 1) Gri(z)
(26)

We now introduce a spatial Fourier transform of v;(r):
y(r) =v(r—r;) = z il (rri),, (k) (27
k

with

1 —ikr 47”’0 1
o) = [ dreTo(jr)) = 0y (28)

Then the right-hand side of (26) takes the form

—ZVZE“‘(P “)uk—/d?’ ’Zc’k Ty Vo, 2)Cri(2)  (29)

mp

Now, if the impurities are distributed randomly in space with concentration
p, we can take an average over the positions of the impurities and the values
of w?, so that we obtain

S e He G g(2) = p o 10T (2) (30)
4
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Introducing now the spatial Fourier transform of the displacement fields and
using the fact that we consider longitudinal excitations for which V(V-u) =
(V - V)u holds, we finally arrive at the following expression for the Green’s
function of the perturbed elastic waves:

1

Gk, z) = —2% + k2 g — B(2)]

(31)

with the self energy being proportional to the averaged oscillator Green’s
function
v(0)?

Zilz) = p'mom

G1(z) = 9G1(2) (32)

where we have introduced a coupling parameter g = P:,SO;TZL and assumed
& > kp, which means that we can replace v(k) by »(0) in the range of
integration.

‘We are now left with the task of calculating the average Green'’s function

G1(z), but this is trivial, because its imaginary part is proportional to a delta
function so that

) = [ At Pd)ow? - uf) = 7P(u?) (33)

Instead of using the exact equation (33) one could assume a Gaussian
distribution

1 _ 12 N2
Polul) = e 57 (W — @0) (34)

and perform the same steps that led to eq. (16) to derive a SCBA for the
oscillators®!

1/2
E =
1) = s (35)
which can be solved to
o 1. -
21(z) :—Q—GI(Z) = §[z—~\/z~20] (36)

with 7 = w? — 22, Comparing this with (33) we have obtained in SCBA

a Green’s function that corresponds to a half-elliptic distribution with the

same width. i
Plw?) — 2 2\2 ;
(w?) 71_0\/20 (w? — w?) (37)

In Fig. 1 we compare the Gaussian spectra with the half-elliptic ones
for different width parameters . Obviously the main effect of the mean-field
approximation is cutting off the tails of the distribution. From this result we
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Fig. 1. Gaussian distribution for wg = 0.9, o = 0.04 (dashes), 0.1 (dash-dots)

and 0.8 (dots), compared with the corresponding half-elliptic distributions
{full lines)

can draw some interesting conclusions concerning the accuracy of the SCBA
and the use of a Gaussian distribution in the case of the elastic disorder:
For the elastic constants we have used a Gaussian distribution (4), al-
though - even for small width «y - this always implies the presence of a small
but finite amount of negative elastic constants K, which is unphysical. In
SCBA, as it turns out, the spectrum is stable, provided v < v, = 0.5. The
same holds in the case of the oscillators (see Fig. 1): In the case of a Gaus-
gian distribution there is a finite probability for the presence of negative w?
for any (even very small) value of o. In SCBA - which corresponds to the
half-elliptic distribution (37) - the tails of the Gaussian are cut off, and there
is a sharp transition to instability for o, = %wé. ‘We conclude that an analo-
gous thing happens in the case of elastic disorder; the tails of the Gaussian,
which had to be used to be able to perform the functional integrals, are cut

off by the SCBA.
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On the other hand it is noteworthy in this context that an infinitely
large random matrix, in which all off-diagonal elements are Gaussian dis-
tributed with the same variance has a half-elliptic spectrum?®3%33 of the
same width. The tails of the spectrum re-appear if the matrix is truncated
to have finite size. If eq. (3) is discretized the equation of motion of the
elastic constant model is governed by a tri-diagonal random dynamical ma-
trix D with Gaussian distribution of the off-diagonal elcments D;;, but the
diagonal elements are determined by the sum rule 33, Dy = 0. The sum
rule is due to momentum conservation and leads to Debye’s g(w) oc w? law
for w — 0. It has been demonstrated in ref.? that such a dynamical matrix
has the same statistical properties, namely those of the Ganssian orthogo-
nal ensemble (GORE)*? as the infinitely large matrix. So we might conclude
that the SCBA for the elastic disorder model, which gives the correct De-
bye behaviour and eliminates the negative w? tail, might even be a better
approximation than in the case of the oscillators.

Returning to the oscillators it is, of course, morc scnsible to use a half-
elliptic (or other distribution with a sharp lower cutoff), than a Gaussian
distribution. In our numerical calculation in the next section we shall do so
and compare the results with the SCBA results of the elastic disorder model.

4. RESULTS AND DISCUSSION

In Fig. 2 we have plotted the reduced DOS* g(w)/w? against w for
the elastic disorder model for different values of the disorder parameter
. Clearly there is a strong boson peak anomaly near 1/10 of the Debye
frequency. Very similar results are obtained for the oscillator model with
wp = cokp = 1 and ¢ = 1 (Fig. 3). In Figs. 4 and 5 the influence of the
variation of the parameters wg and g are depicted.

In both models the boson peak becomes stronger and is shifted to lower
frequencies if the disorder (given by the parameters v and o) is increased.
In both cases there is an instability if the disorder is increased beyond the
critical values 7. = 0.5 and o, = 0.5wi. This feature is shared with the
earlier model calculations based on the random force-constant models and
the CPA %1013 The hoson peak oceurs (as in the earlier investigations) as a
precursor of the instability. As to be expected the boson peak appears also in
the temperature dependence of the specific heat if represented as C(T)/T®.
C(T) is calculated from the usual formula

I

ew/l

o) = [ dos()/Tf

(38)

In the following we shall demonstrate that the boson peak frequency wg
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Fig. 2. Reduced DOS g{w)/w? for the elastic disorder model with (from top
to bottom) v = 0.495,0.49,0.47,0.45,0.4,0.3,0.2,0.1,0.0. In all pictures the
frequencies are given in units of the Debye frequency wp = cokp = kz®p/h.
Insert: the function ¢’(w) for the same parameters

marks the ?Toffe-Regel frequency”, where the mean free path becomes equal
to the wavelength of the low-frequency excitations.?>® In order to do so we
define an effective complex sound velocity®

e(2) = ¢ (w) — i’ (w) = /e — T(2) , (39)
which is related to the scattering mean free path by

1 2wd'(w)
)~ )P (0

The wavelength is given by

Mw) = 27T/l~c(w) = 27c (w) fw (41)
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Fig. 3. Reduced DOS g(w)/w?* for the oscillator model with g = 1,wp =
1 and (from top to bottom) o = 0.495,0.49,0.47,0.45,0.4,0.3,0.2,0.1,0.0.
Insert: the function ¢{w) for the same parameters

50 that we obtain for the Ioffe-Regel ratio

AMw) _ & w)d(w)

N o (w)

o) "I T W)
From the inserts of Figs 2 and 3 we see that the boson peak frequencies
coincide with the frequencies at which ¢”(w) ~ 0.1, which corresponds to
£ =5 \. We therefore can state that the boson peak appears just at the fre-
quency where the waves start to be seriously be affected by the scattering
and %(0) = w/c/(0) ceases to be a ”good” label to classify the modes (anal-
ogon to "good quantum number”). It has often been speculated that waves
beyond the Ioffe-Regel limit are Anderson-localized.?® However, it has been
demonstrated in Refs.,'%? that the modes above the boson peak frequency
are not localized but of diffusive nature. Just at the top of the band there is
a mobility edge. In fact there ig a fundamental difference between electron

(42)
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g(w)/w

Fig. 4. Same as Fig. 3 with ¢ = 1,0 = 0.48 and (from top to bottom)
wp =1.2,1.1,1.0,0.9

localization and wave localization: In the case of electrons there is no phys-
ical limit for the disorder. So, if the mean free path becomes of the order
of the de-Broglie wavelength, at both band edges localized states appear.
The corresponding mobility edges move towards the center of the band as
the disorder is increased until finally all states are localized. In the case of
waves in a random medium the disorder cannot increased beyond a certain
value given by <, and o, in our models. Therefore localized states will be
confined to the vicinity of the Debye frequency.®°

Let us now turn to a discussion of the "trans-boson” regime w > wpg. In
the semilogarithmic representation of Figs. 2 - 5 we see that in this regime

the reduced DOS of the systems with strong disorder can be approximately
described as

glw)/u? o emw/w" (43)

Tt has been shown recently'® that such a behaviour is experimentally ob-
served in a large number of disordered materials which exhibit a boson peak.
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2(0)/w

Fig. 5. Same as Fig. 3 with wg = 1.0, = 0.495 and (from top to bottom)
g=1,0.8,0.6,04,0.2,0.0

We shall now give an explanation of this behaviour.

Eq. (17) for the local Green’s function (valid for both models) can be
rewritten using Parseval’s theorem

&) = ﬁ /_ D:Q B f(k, k)G, 2) = / O:odgrf(r,kp)G('r,z) (44)

with the cutoff function f(k,kp) = 6(kp — k), which has the Fourier trans-

form 5 (ko)
PR stn{kpr
flr kp) = f(kDr)Q ( T

— COS(k}DT)> (45)
where § = k3, /672 is the number density. G{r, z) takes the well-known form

1 giwr/c(z) 1 6i72(w)7'6~r/2€(w) "
dare(2)?r drr [cf — ()] (46)

f{r,kp) is a function which equals 1 for rkp < 1 and becomes very small
beyond 7kp > 1. Therefore r2f(r,kp) has a peak below k51 at, say, rg.

G(r,z) =
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Fig. 6. Reduced specific heat capacity C(T)/T3 for the elastic disorder
model with {from top to bottom} v = 0.49,0.45,0.4,0.2,0.0.

Because k(w) < kp holds, we can approximate sin(kr) by its argument.
Replacing the » integral by the value of the Green’s function at » = ry,
ignoring the frequency dependence of the denominator and using (18) we
arrive at (43) with

1 0 roc’ (w)

ot 2wl(w) 2P )

In the regime, where ¢’(w) is large and only weakly w dependent we
expect an approximate exponential decrease of the reduced DOS as shown
in our SCBA calculations and in the experiental data. As demonstrated
in Ref.1® this exponential decay is also verified in the reduced DOS of a
computer simulation of a quenched liquid. Furthermore, relation (47} has a
remarkable relevance concerning the experimental method used in:'® There
it was noted that the DOS measured by nuclear clastic scattering from Feb”
inside large molecules, which are immersed in a disordered host, has an w*
that is appreciably smaller than that obtained from neutron scattering data
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1/0

D

Fig. 7. Reduced specific heat capacity C(T)/T? for the oscillator model
with wp = 1,9 =1 and (from top to bottom) o = 0.49,0.45,0.4,0.2,0.0.

of the host. This observation can be attributed to a lesser sensitivity of the
large probe to short-wavelength excitations leading to a & cuttoff smaller
than kp which, in turn, corresponds to a larger ry.

Up to this point the discussion of the boson peak and the trans-boson
exponential was explained by a ¢”(w), which is similar for the two models,
as verified in the inserts of Figs. 2 and 3. However, there is an important
difference. From the SCBA equation (16) one easily derives the relation

N -5 = JL+ 26 (48)
from which we obtain the Rayleigh-Klemens relation?!:3% in the limit w — 0
(using the w = 0 solution of (48) 233(0) = 1 — +/T —27)

Y w) = ﬁwwg(w) o u? , (49)
which implies Rayleigh's £(w) o< w™* law. We are convinced that for any
harmonic system with quenched disorder, in which translational invariance
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(which gives Debye’s law) is guaranteed, there must be such a Rayleigh-
Klemens asymptotics. This is so, because the scattering perturbation at low
frequencies decreases as w?. Therefore, at low enough frequency, the SCBA
(which reduces to the Born approximation in this limit) becomes exact.?”

In the case of the oscillator model the frequency dependence of " {w)
is identical to that of the distribution P(w?), just arbitrary. In the half-
elliptic model (in the stable region) limy_o 5"(w) = limy—o P(w?) = 0.
The spectrum just starts at a finite frequency. This failure of reproducing
the Rayleigh law in the sclf energy is shared with earlier effective-medium
theories®® for the boson peak and can be traced to an incomplete incorpo-
ration of translation invariance into the theory. In the case of our oscil-
lator model the defects are not allowed to move with the long-wavelength
phonons, which then is the reason for the failure of reproducing the Rayleigh
asymptotics. We believe that a recent theory dealing with low-density disor-
dered solids, which does not show the Rayleigh asymptotics'® faces a similax
problematics. In experimental data, on the other hand, the low-frequency
asymptotics is not governed by Rayleigh’s law but by anharmonic effects® 15
related to sound damping, which lead to £(w) o w?. This will be demon-
strated in detail in a forthcoming publication.3?

Let us now discuss the physical relevance of the elastic constant model in
comparison with the defect model. If we consider an amorphous material it
is difficult to imaginc the difference of "host” and "defect”. The fluctuating
elastic constant model is just what one expects as a first step for describing
the influence of disorder on waves in a solid. The only fit parameter®® in
the theory is the disorder parameter -y, whereas (restricting ourselves to the
half-elliptic distribution) there are three for the oscillator model. In the
soft- potential defect model” there are even more fit parameters because the
defects are described by anharmonic potentials. Of course in this theory a
boson peak appears, because the quartic potentials effectively act as quasi-
harmonic oscillators, We are convinced that defect models are more adequate
for disordered crystals, in which the defects can be defined in a unique and
physical way. The present exercise then allows for understanding why the
boson peak and other disorder-induced features are so similar in disordered
crystals and amorphous solids.
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