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We present a theory for tunneling spectroscopy in a break-junction semiconductor device for materials in
which the electronic conduction mechanism is hopping transport. Starting from the conventional expression for
the hopping current we develop an expression for the break-junction tunnel current for the case in which the
tunnel resistance is much larger than the effective single-hop resistances. We argue that percolationlike meth-
ods are inadequate for this case and discuss in detail the interplay of the relevant scales that control the
possibility to extract spectroscopic information from the characteristic of the device.
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I. INTRODUCTION

Tunneling spectroscopy is one of the most widely used
tools for obtaining information on the electronic structure of
solids.1,2 If the tunneling takes place between electrons of the
same energy(elastic or resonant tunneling) the tunneling cur-
rent is a convolution of the densities of states(DOS) of the
contact materials.3 Thus the DOS of one material can be
extracted if the DOS of the other material is known. In the
case of inelastic tunneling the electronic transitions occur
with emission or absorption of phonons. In this case the tun-
neling current becomes also sensitive to the phonon DOS.4

Applying tunneling spectroscopy to doped semiconduc-
tors in the hopping regime at low temperatures has proven to
be very useful in revealing the influence of the electron–
electron interaction on the DOS of the impurity band in the
meV range. Such experiments have been performed with
conventional metal-barrier-semiconductor contacts5,6 as well
as with mechanically controllable break junctions.7 Both
methods reveal the Coulomb gap in an impressive way.

The theoretical interpretation of break-junction experi-
ments in which both contacts consist of a doped
semiconductor7 is more involved than that of a metal-
insulator-semiconductor structure.8 As the physical nature of
the inelastic tunneling transitions between the contacts ap-
pears to be similar to those between the localized states in
hopping transport the question could arise whether all tran-
sitions in question are a part of a global disordered resistor
network which would have to be treated by conventional
percolation methods. The assumption that this is indeed the
case has, for example, been the basis of the arguments in
Ref. 9.

At present it does not seem clear whether in the hopping
regime the traditional method for the calculation of the tun-
neling current due to Bardeen3 is applicable or has to be
replaced by a more sophisticated version.

Even the question whether or not information on the elec-

tronic DOScan be extracted from break junction tunneling
experiments is discussed controversially in the literature. In
Ref. 9 it is claimed that the tunneling current should exhibit
strong mesoscopic fluctuations as a function of the applied
voltage. Indeed, if this would be true, little information on
the global electronic DOS of the material could be obtained.
On the other hand, other theoretical arguments10 lead to the
conclusion that, under certain conditions, information on the
electronic DOS can be obtained. Furthermore, neither in
experiments7 nor in simulations of tunneling between mate-
rials with localized states11 are strong fluctuations of the tun-
neling current as a function of the voltage observed.

Therefore we address this issue here from a fundamental
point of view. We start from the rate equations for hopping
transport and derive an expression for the tunneling current
on the basis of these equations. The further development of
the theory exploits the fact that the typical transition prob-
abilities in hopping transport are orders of magnitude larger
than those across the junction. This is due to the fact that the
junction separation is large compared to the characteristic
hopping length in the bulk and due to the fact that the inverse
of the vacuum tunnel parameterk is much smaller than the
localization lengtha−1, which is the tunnel parameter of the
hopping transitions. Therefore a separate equilibrium is es-
tablished in both contacts with two separate chemical poten-
tials the difference of which is controlled by the bias voltage.
The resulting expression for the current is similar to the con-
ventional expression for tunneling spectroscopy. Using this
expression we discuss under which conditions concerning
the length scales and the electron-phonon coupling simplifi-
cations of the current formula occur.

II. THE TUNNELING CURRENT

In our derivation of an expression for the tunnel current in
a break junction made of a lightly doped semiconductor we
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first recapitulate the general theory of hopping transport in an
impurity band of a bulk semiconductor, then we consider the
case of two parts of a break junction separated very far from
each other. These steps will then enable us to study the break
junction under realistic conditions.

In the standard theory of hopping transport12,13 the impu-
rities are assumed to provide localized electronic states at
sitesRm,Rn with localization lengtha−1 and characteristic
energiesem,en. Charge carriers(electrons or holes, depen-
dent on the type of doping) perform phonon-assisted tunnel-
ing transitions(hopping transitions) between these states un-
der the influence of an externally applied electric fieldE. The
interaction between the charge carriers is assumed to be
Coulomb-like(Hubbard-interaction effects are ignored). For
definiteness we assume the dopant to ben type, i.e., we
consider electrons with chargeq=−e (e= uqu is the elemen-
tary charge). If the interaction is treated in Hartree-Fock
(HF) approximation(i.e., if many-particle jumps are ignored)
the dynamics of the charge carriers can be described by the
simple rate equation

drm

dt
= o

n

frns1 − rmdWnm− rms1 − rndWmng. s1d

Hererm is the probability to find a charge carrier at sitem,

Wnm= nsuVnmudexpH− 2aRnm+
b

2
sVnm− uVnmudJ s2d

is the transition probability for a hop from the siten to the
sitem, b=1/kT, Rnm= uRnmu is the distance between the sites
sRnm=Rn−Rmd, andVnm=Vn−Vm, where

Vm = em + esERmd + o
m8Þm

e2rm8

4pe0eRmm8
s3d

is the energy of a charge carrier at sitem (e is the dielectric
constant of the host). nsuVnmud is the spectral function which
describes the influence of the electron-phonon coupling
(“attempt-to-escape frequency”). The quantitynsuVnmud char-
acterizes the ability of the phonon to induce the transition.
Since phonons with different energy can interact with local-
ized electrons differently well, this frequency is a function of
the energy transferred in one hop.

As a model for a break junction we now consider two
samples made of a lightly doped semiconductor which are
separated by a distancel (see Fig. 1). We distinguish between
sites situated on the left and right with respect to the separa-
tion (“left sites” and “right sites”) and denote the labels of
the left sites with lower case lettersm,n and those of the
right sites with upper case onesM ,N. Since the junction is a
break junction both samples have the same densities of states
in the absence of the electric field, that isNLsVduE=0

=NRsVduE=0.
If both samples are separated very far from each other,

there are no transitions between left sites and right sites.
Therefore, Eq.(1) is valid for each of the samples separately.
Since both samples are in equilibrium, the solutions to the

transport equations are simply Fermi functions with two dif-
ferent chemical potentialsmL andmR. For the left sample we
have, for example

rmueq= fm =
1

1 + exphbsVm − mLdj
. s4d

If we now decrease the sample separation, tunneling tran-
sitions between the left and the right sample become possible
with transition probabilities

WmM = nsuVmMudexpH− 2klmM +
b

2
sVmM − uVmMudJ . s5d

The rate equations for the occupation probabilitiesrmstd and
rMstd acquire additional terms of the formoM rMs1
−rmdWMm. It is important to note that the tunnel transitions
between the left and the right sample donot contain the
localization lengtha but thevacuum tunneling parameterk
between the two bulk samples.k−1 is assumedly a few Ang-
stroms, whereasa−1 typically takes values around 10 nm.
Moreover, the site separationRmM is replaced by the effec-
tive tunneling lengthlmM= l +dlmM. dlmM is a small correction
to the tunneling distance between the two samples taking
into account the different wave function amplitudes for a
given pairsm,Md of localized states.

If one knows the solution to the transport equations one
can calculate the current from the formula

j = −
e

VFo
m

Rm
drm

dt
+ o

M

RM
drM

dt G . s6d

HereV is the total volume which contains the sites contained
in the summation in Eq.(6).

We now distinguish between two fundamentally different
situations which can be controlled by the experimentally ad-
justable parameterl. If l is small enough, a common equilib-
rium between the two samples can be established. In this
case the standard methods for solving the transport problem
in a disordered hopping system, namely Mott’s
optimization,17 percolation theory,12,13 or the effective-
medium approximation12 can be applied. However, if 2kl
becomes appreciably larger than the exponents of the domi-

FIG. 1. Geometry of the break junction used in our theoretical
treatment, which is schematically the sample geometry of the tun-
neling experiments in Ref. 7. The hatched area is the active tunnel-
ing region. The electric field is directed along the positivex axis. In
the experiments of Ref. 7Lx<3 to 4 mm,Ly=0.8 mm,Lz=1 mm,
and lz=0.2−0.4 mm. A first estimate forl is 10 nm.
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nant bulk transition probabilities(2) (which is already the
case ifl becomes larger than a few nm), a separate equilib-
rium is established in the two samples before a tunneling
transition can take place. In this situation, which is the one
we are interested in, the tunnel transitions are not a part of a
percolating network because the charge carriers that cross the
break junction cannot optimize their paths. In fact, the tun-
neling experiments reported in Ref. 7 are performed in such
a way that the resistance of the tunneling contactRtu is by
orders of magnitudes larger than the equilibrium bulk resis-
tanceReq, so that the current is determined by jumps across
the contact. Furthermore, care was taken to adjust the dis-
tance l in such a way to make sure that the resistanceRtu
across the junction did not show the temperature dependence
of the bulk resistanceReq~esT0/Tdx, x<0.5 which would in-
dicate that a common thermal equilibrium of the two con-
tacts would exist. In the rangeRtu'103Req this regime was
reached. It is this regime in which the Coulomb gap was
observed. Accordingly, a charge carrier can hardly optimize
its path by returning across the junction. We therefore make
use of the separation of time scales in the present situation.

The time for a tunneling transition can be estimated as

ttu <
exph2klj

knl
, s7d

whereas the equilibration time is roughly

teq<
exphsT0/Tdxj

knl
, s8d

so that we haveRtu/Req= ttu/ teq. As mentioned above this
ratio is of the order of 103 in the tunneling experiments, so
that one can be sure that the two samples equilibrate sepa-
rately before the tunnel transitions take place. In this situa-
tion the quantitiesrm and rM can be considered as Fermi
functions as before, and we obtain for the tunneling current

j = −
e

V
s1 − e−bsmR−mLddo

mM

RmM fms1 − fMdWmM. s9d

Due to the disorder the expression(9) is unsuitable for prac-
tical analytical calculations. However, the experiments show
that the disorder induced fluctuations of the tunneling current
are small. In the experiments of Ref. 7, e.g., the disorder
induced fluctuations were smaller than 10%. Thus the experi-
ments indicate that the expression(9) can be simplified fur-
ther by a suitable averaging procedure.

For calculating the configuration average we use the den-
sities of statesNL/RsV,Rd. In the presence of an electric field
they are quantities which depend on the energyV and on the
position vectorR. The latter dependence describes the space
charge region. The space-charge region is the region in the
sample, in which the charge carrier density in the presence of
the field differs from that in the absence of the field. Such a
region exists since the screening length in the hopping re-
gime is a large length. Due to this fact the density of states in
the vicinity of the boundary in the direction of the electric
field is different from that in the sample. Accordingly, the
density of states depends also on the position, that isNL/R
=NL/RsV,Rd. This dependence is only negligibly deep in the

interior of the sample. There we haveNL/R=NL/RsVd indepen-
dent ofR. Performing the configuration average by means of
the densities of states we obtain the expression

kj l = −
e

V
s1 − e−bsmR−mLddE

VL

dRE
VR

dR8E dVdV8sR − R8d

3NLsV,RdNRsV8,R8dfRsV8df1 − fLsVdg

3WsuR − R8u,V8,Vd s10d

for the configuration averaged current. Here the bracketk¯l
symbolizes the configuration average.

To investigate the applicability of the averaging procedure
we now investigate the disorder induced fluctuations of the
tunneling current. Since the electric field is directed along
thex direction we focus onjx, thex component of the current
(j = jxex, ex is the unit vector inx direction) and compare the
standard deviationkk jx

2ll=k jx
2l−k jxl2 with the first moment

k jxl. According to Eq.(9) the quantityjx can be written in the
form

jx = o
mM

jmM. s11d

Therefore we obtain

kk jx
2ll = o

nN
o
mM

kk jnNjmMll. s12d

Since the quantitiesjnN depend only on the indicesn andN
the currentsjnN and jmM in Eq. (12) are only correlated if
eithern=m or N=M, or both equalities hold. Therefore

kk jx
2ll = o

nN

kks jnNd2ll + o
n

o
NÞM

kk jnNjnMll

+ o
M

o
nÞm

kk jnMjmMll. s13d

In our averaging procedure the calculation of the configura-
tion average amounts to an integration over the positions of
the sites. Therefore the quantitieskks jnMd2ll=s1

2, kk jnNjnMll
=s2

2, and kk jnNjmNll=s3
2 are independent of their indices.

Consequently,

kk jx
2ll = N2s1

2 + N2sN − 1dss2
2 + s3

2d. s14d

HereN is the number of initial sites, which is assumed to be
the same as the number of final sites. In the same way we
obtain k jxl=N2k jl, wherek jl=k jnml. Accordingly,

kk jx
2ll

k jxl2 =
1

N2

s1
2

k jl2 +
1

N

s2
2 + s3

2

k jl2 s15d

for a junction withN@1. This argument shows that disorder
induced fluctuations of the tunneling current are negligible in
tunneling junctions of sufficiently large size.

While the calculation of the standard deviation indicates
that the averaging procedure is applicable to tunneling junc-
tions of sufficiently large size the experimental situation is
often unclear. The situation for the experiments of Ref. 7 is
depicted in Fig. 1. In this experiment the contact area is of
macroscopic size(Ly<0.8 mm,lz<0.2–0.4 mm). Therefore
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we expect thatN is a large number. The total number of
initial sites in the contact area is of the order of 106. The
numberN, however, must be somewhat smaller, since only
pairs in a strip of widtheU+kT in energy space contribute to
the sum. The real number depends on the width and structure
of the impurity band, which is not well known. Therefore the
smallness of the fluctuations in the experimental situation
remains the main indication which justifies the application of
the averaging procedure.

We would like to emphasize that the same averaging pro-
cedure can also be applied to the conductivity of the bulk.12

However, in this case a different expression for the current
has to be used, which takes into account that the particle
optimizes its path through the sample. Doing so, it often
returns to its initial site. Therefore the distribution functions
become functions of the transition probabilities, so thatfm
→rmshWmnjd. The latter quantities are calculated from the
Miller-Abraham random resistor network. Percolative as-
pects of hopping transport are included if the statistical cor-
relation between the transition probabilities in the distribu-
tion functions is taken into account, as it is done in the
effective-medium theories. In a tunneling experiment, how-
ever, the situation is different. A particle, that has managed to
cross the junction, never returns to its initial site to look for
a better path, since every hop it can perform in its new sur-
rounding is easier to perform than a hop across the junction.
Accordingly, the particles equilibrate in their new surround-
ing on a time scale which is small compared to the tunneling
time. Mathematically, this fact is expressed in that the occu-
pation numbers are independent of the transition probabili-
ties, so that the quantitiesjnm in Eq. (11) depend only onn
and on m, but not on any other site. The latter fact is a
consequence of the separation of time scales.

Equation(10) is all what the kinetics tells us. If we want
to simplify this equation further we have to use additional
knowledge on the samples, that is, about the length scales
present in the system. Such scales are the localization length
a−1, the tunneling distancel, the screening lengthle, and the
sample lengthLx. Different relationships between these
length scales yield different expressions for the current, as
discussed further below.

III. METAL-LIKE CONDITIONS

The expression(10) takes a particularly simple form in
the case of metal-like conditions, i.e.,le! l, Lx@ le, and le
!a−1. The first condition means that we can use the approxi-
mation mR−mL=eEl=eU. Here U is the voltage applied to
the sample. If the second condition holds there is a region in
the samples in which the densities of states are independent
of R. If the third condition applies mainly sites outside the
space charge region contribute to the integral(10), so that the
DOS measured is the densities of states in the bulk.

In the limit of strong disorder it is unlikely to find neigh-
boring sites on opposite sides of the break junction with the
same energy. Therefore mainly inelastic transitions are rel-
evant in this limit. Furthermore, as mentioned before, jumps
upwards in energy can be ignored at low temperatures since
there are plenty of accessible sites, which can be reached by

jumps down in energy space. Accordingly, we obtain14 for
beU.1

k jxl = eW̃E dVdV8NLsVdNRsV8d

3usV8 − VdusmR − V8dusV − mLdnsuV − V8ud, s16d

where we have defined

1

V
E

VL

dRmE
VR

dRMsRm − RMdexph− 2klmMj ; − W̃ex.

s17d

HereVL sVRd is the volume of the left(right) sample, over
which the integration takes place. Since the transition prob-
abilities are exponentially small quantities with respect to the
decay constantk−1 the range of integration penetrates only
over a distance of the order of a few times ofk−1 into the
sample. Thus the relevant volumeV is of the order ofAl,
whereA=Lylz is the area of the cross section of the break-
junction.

Since the junction is a break-junction the densities of
statesNL andNR agree with each other if the electric field is
switched off, as noted above. Therefore they differ only in
the position of the zero point of the energy axis if the electric
field is switched on. That isNRsVd=NLsV−eUd. Accordingly,
we obtain

k jxl = eW̃E
mL

mL+eU

dV8E
mL

V8
dVNLsVdNLsV8 − eUdnsV8 − Vd.

s18d

If it were not for the functionnsV8−Vd, which describes the
energy dependence of the electron-phonon coupling, we
would now have a tool for extracting information on the
density of localized states. If this energy dependence is not
known one might have difficulties in interpreting inelastic
tunneling spectra.10

If we assume the deformation potential approximation to
hold and that a Debye model for the phonons describes the
situation adequately well, the energy dependence ofn is
known and the integrals in Eq.(18) can be evaluated.

In deformation potential approximation the functionnsEd
takes the form

nsEd = n0
uEu

F1 +S E

2"sa
D2G4 , s19d

wheres is the velocity of sound, andn0 is a constant.15 This
approximation takes into account that the overlap between
the phonon-wave function and the wave functions for local-
ized electrons decreases rapidly if the phonon-wavelength
becomes small compared to the localization length.

Of particular interest is the situation in which the DOS
shows a pseudogap centered at the Fermi energy, as it is the
case in the presence of a Coulomb gap at finite temperature.
In this case the DOS has the structure
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NLsVd = N0 + NguV − mLug, s20d

whereg<2 for three-dimensional systems at zero tempera-
ture andN0 vanishes at zero temperature.13,16Using (19) and
(20) in Eq. (18) we obtain(see the Appendix)

k j xl ~ uUu3+z s21d

for euUu!"sa, wherezù0 depends on the parameters ap-
pearing in Eqs.(19) and (20). Therefore the data for the
tunneling conductance appear to scale to zero in an experi-
ment, which is performed in the regimebeU.1. Since the
applied voltages are very small in the regimebeU!1 we
expect that this is also the behavior which would be observed
in experiments. However, we would like to stress that the
true value of the tunneling conductance at zero bias is non-
zero. To calculate the derivative of the current at zero bias
we use Eq.(10). Doing so, we obtain

dk jxl
dU U=0 = e2n0W̃skTd2fN0

2J00 + 2N0NgskTdgJ0g

+ Ng
2skT2gdJggg, s22d

where

Jgl =
1

4
E dxdyxgyl

ux − yuexps− ux − yu/2d
coshsx/2dcoshsy/2d

. s23d

In the Appendix also results foreuUu'"sa are presented.
According to Eqs.(21) and (22) the tunneling conduc-

tance scales to zero with decreasingU for beU.1 and ap-
proaches a constant atbeU!1. The zero bias tunneling con-
ductance itself increases at least quadratically with
increasing temperature. This strong temperature dependence
is not observed in the experiments of Ref. 7. Therefore one
has to ask whether Eq.(19) is really applicable to the mate-
rials of interest. This approximation is based on the notion
that the charge carriers move to keep each part of the host
lattice locally electrically neutral,18 so that the Fourier trans-
formed Coulomb potential, that provides the coupling be-
tween the electron and the phonon system, can be replaced
by a constant, the deformation potential constant. However,
in the systems of interest the mobile charge carriers are slow
compared to the sound velocity and therefore the electro-
magnetic potential, which provides the electromagnetic cou-
pling between the electron and the phonon system, is of very
long range. Accordingly, the electron-phonon coupling con-
stant already drops to zero for interaction events with very
small energy transfer. To model this effect phenomenologi-
cally we use the approximation

nsuEud = n0usv − uEud s24d

which has already been applied successfully in other non-
equilibrium hopping problems.19 In this approximation the
maximal amount of energy transferred in one hop isv. If v
is small enough, we can expandNLsVd in Eq. (18) around
V=V8 an retain only the first term. Then Eq.(18) takes the
simple form

k jxl = en0W̃vE
mL

mL+eU

dVNLsVdNLsV − eUd s25d

for eU.v. This equation has the same form as that which
would be obtained for purely elastic transitions, although en-
ergy is exchanged with the phonon system. Therefore we call
this approximation the quasielastic approximation. It is Eq.
(25) which has been used in the interpretation of the experi-
ments of Ref. 7.

For a DOS of the form(20) Eq. (25) yields

k jxl = enovW̃eUFN0
2 +

2

g + 1
N0NgueUug

+
fGs1 + gdg2

Gs2 + 2gd
Ng

2ueUu2gG . s26d

Here Gsxd is the Gamma function.22 For large eU the
asymptotic of this expression agrees with that of the conven-
tional deformation potential approximation up to numbers.
For smalleU it differs appreciably from that. These differ-
ences manifest themselves in particular for smallv. In this
case the tunneling conductance approaches the constant
value

dk jxl
dU

= e2n0vW̃N0
2 s27d

for NgueUug /N0!1. The temperature dependence of the tun-
neling conductance is in this case governed by the tempera-
ture dependence ofN0

2, and thus weaker than that of Eq.(22).
This sets the situation in the quasielastic approximation apart
from that in the conventional deformation potential approxi-
mation and allows one to decide whether the hops in an
experiment are quasielastic or inelastic. Ifv is small but
larger thankT Eq. (27) crosses over to Eq.(22) if eU be-
comes small compared tov. If v,kT, the same dependence
as in Eq.(27) is also observed atU=0.

The data of Ref. 7 are not in line with the strong tempera-
ture dependence of Eq.(22) [see, e.g., Fig. 1 of Ref. 7 San-
dow et al. (2001)]. They are, however, in line with Eqs.
(25)–(27). Accordingly, the hops were quasielastic.

At this point it is tempting to use the experimental data to
estimatev. However, unfortunately the expression for the
tunneling resistance depends too strongly on quantities
which are not well known to yield a reliable estimate. Ac-

cording to Eq.(17) W̃ is of the order

W̃<
l

s2kd3 exps− 2kld. s28d

While l <10 nm the quantityk−1 has not been determined so
far. Its determination requires further experiments.

IV. INSULATORLIKE CONDITIONS

In this section we consider the case in which the localiza-
tion length is the smallest length scale in the system
(strongly localized regime). Accordingly, the inequalityle
@a−1 is not satisfied. There are not enough sites which can
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be occupied by charge carriers to screen out the electric field
on a distance of the order of the localization length. There-
fore in the insulatorlike case one measures essentially the
DOS in the space-charge region.

For lightly doped materials far from the metal–nonmetal
transition the space-charge region can be quite large. Due to
this fact there is also an electric field inside the sample.
Therefore the simple approximationeU=eEl does not hold.
Instead of this relationship we haveeU=eUL+eEl+eUR.
HereUL sURd is the potential difference across the left(right)
sample. The charge carriers, which are important for the tun-
neling current, jump from the left surface of the right sample
to the right surface of the left sample. Doing so, they have to
change their energy byeEl. Accordingly, mR−mL=eEl. In
order to relate the difference of the chemical potentials to the
voltage applied to the sample we express the electric field by
U. To this end we focus on the situation that the time for
local equilibration in the right and in the left sample is the
smallest time scale in the problem. This implies that also the
resistance of the contacts is large compared to the resistance
of the samples, but small compared to the tunneling resis-
tance. In this case the impact of the space charge region on
the tunneling experiment is largest. Furthermore, we assume
that the screening of the external electric field can be de-
scribed within the Debye approximation. In the context of
hopping transport this approximation has been discussed,
e.g., in Refs. 20 and 21. If we use this approximation we

obtain U=4leE+ lE. Accordingly, eEl=eŨ, where Ũ
=Ul / s4le+ ld. Since in this case the DOS to the right is re-
lated to the DOS to the left by the relationship

NRsV, x = ld = NLsV − eŨ, x = − Lxd s29d

we obtain for the tunnel current the expression

k jxl = eW̃f1 − exps− beŨdgE
mL

mL+eŨ
dV8E

mL

V8
dV

3NLsV,x = 0dNLsV8 − eŨ, x = − LxdnsuV − V8ud.

s30d

From the practical point of view the most important differ-
ence between Eqs.(16) and(30) seems to be that the differ-
ence between the chemical potentials is reduced, and there-

fore U is replaced byŨ. Due to this replacement the range of
integration in Eq.(30) is getting small if le@ l. This fact
renders measurements of tunneling currents more difficult.

Moreover, the exponent exps−beŨd, which turned out to be
negligible in the metal-like situation, might prove to be es-
sential in this case. Since the results of the experiments of
Ref. 7 were independent of the tunneling distancel we con-
clude that in these experiments the conditionl . le was met.
Accordingly, in these experimentsle was at most of the order
of a few times the average site spacing.

In the literature the order of magnitude of the screening
length is a controversial point. In Refs. 16, 20, and 21 dif-
ferent expressions for the screening length have been ob-
tained. The fact that the tunneling current depends on the
screening lengthle raises the question whether this depen-

dence can be used in order to obtain further information onle
experimentally. We would like to mention that screening ef-
fects in tunneling experiments have been also discussed in
Ref. 11.

V. CONCLUSIONS

Starting from the usual rate equations for hopping trans-
port in the impurity band of a doped semiconductor we have
derived an expression for the tunnel current across the gap of
a break junction device in which the contact material is a
doped semiconductor. The fact that the tunnel resistance in a
break-junction tunneling experiment is much larger than the
resistance of the material leads to a separation of time scales
between the tunneling and the dynamics inside the contact.
Therefore a separate equilibrium inside the contacts is estab-
lished with different chemical potentials. This simplifies the
resulting expression for the tunnel current as opposed to a
situation in which the contacts would be in equilibrium with
each other and in which the tunnel and sample dynamics
would be part of a common optimization or percolation prob-
lem. Due to the separation of time scales the situation in
break-junction tunneling experiments is not percolationlike.
The resulting expressions for the tunnel current look very
similar to those in conventional tunnel or point contact spec-
troscopy. They become equal to these expressions if metalli-
clike conditions apply, i.e., if the screening length is the
smallest length scale in the problem. However, in the impu-
rity band of lightly doped insulators the localization length is
the smallest length scale. Therefore the relevant contact den-
sities of states are those in the space charge region. An in-
creasing extent of the space charge region leads to a reduc-
tion of the difference between the local chemical potentials,
which affects the measurement ifl is smaller or of the order
of le. If the break junction separationl is larger than the
screening length the influence of space charge effects be-
come negligible.

We have investigated our expression for the tunneling cur-
rent in two approximations, in the conventional deformation
potential approximation and in an approximation which only
takes into account hops with small energy transfer. The latter
is called the quasielastic approximation. In the conventional
deformation potential approximation the tunneling conduc-
tance has a powerlike current–voltage characteristic for
beU.1. Accordingly, the tunneling conductance scales to
zero with decreasing voltage in this regime. AtbeU,1 this
trend is changed. The zero bias tunneling conductance is
finite, even if the density of states vanishes at the Fermi
energy. Its temperature dependence is governed by the tem-
perature dependence of the density of states and by the tem-
perature dependence of the width of the strip of accessible
sites.

In the quasielastic approximation the expression for the
tunneling current takes the same form as for a metal. For
large voltages the current–voltage characteristic has the same
asymptotic in this approximation as our expression for the
conventional deformation potential approximation. For small
voltages the quasielastic approximation reflects in an ohmic
tunneling conductance, which only crosses over to the results
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of the conventional deformation potential approximation if
the characteristic inelastic energy is large compared to the
thermal energy. In the opposite case it leads to a zero-bias
tunneling conductivity which depends on temperature only
via the density of states.

The characteristic features of the tunneling conductance
in deformation potential approximation, in particular the
strong temperature dependence of the zero bias tunneling
conductance, are not observed in the experiments. The mea-
surements are, however, in line with our results for the quasi-
elastic approximation. Therefore, we conclude that only hops
with very small energy transfer were important in the experi-
ment. Additional data are available from further analysis of
the tunneling conductance measurement and new experi-
ments on the break junction in the next time.

Let us now discuss the previous theoretical work concern-
ing break-junction tunneling between materials in the hop-
ping regime. In our opinion the conclusions9 that the tunnel-
ing current should be strongly fluctuating and strongly
voltage dependent for large voltages have two reasons: First
it has been assumed that the current limiting hop across the
tunnel gap leads upwards in energy in contrast to our plau-
sible reasoning. Second it was assumed that only a few tun-
neling events contribute to the current, whereas in a realistic
situation the numberN of “initial sites” for these events is
very large. We have demonstrated that in this situation the
fluctuations of the single current contributions do not signifi-
cantly affect the measured current because of relation(15).
Accordingly, we conclude, in contrast to Ref. 9, that statisti-
cal fluctuations of the tunneling current are negligible if the
contact area of the break-junction is of macroscopic size, as
it was, e.g., the case in Ref. 7. This conclusion is in line with
the results of the experiments of Ref. 7, in which the current
did not show measurable fluctuations.

Our expression for the tunneling current in deformation
potential approximation agrees, however, with that of Ref. 10
for not too smallU. For very smallU the exponent of our
result differs from that of Ref. 10 in two ways. First, the
expression for the tunneling current in Ref. 10 yields zero for
the tunneling conductance at zero bias. This is in contrast to
Eq. (22) which is nonzero. The reason for this difference is
that in Ref. 10 the occupation numbers have been replaced
by step functions, and jumps upward have been ignored.
These approximations become inapplicable at zero bias.
They ignore that forkT.eU the width of the strip of pos-
sible initial and final sites is not governed byeU but by kT,
and that forU→0 upward hops with very small energy
transfer are as likely and as frequent as downward hops.
Second, the expression of Ref. 10 yields for smallU a
current-voltage characteristic that differs from our approach.
The reason for the difference is that in our treatment we
assume that charge carriers on the left side do not affect
charge carriers on the right side. Accordingly, the common
DOS can be replaced by a simple product of the DOS. In
Ref. 10, however, it has been assumed that the Coulomb
interaction between the left sites and the right sites is impor-
tant, and that therefore also the common DOS cannot be
replaced by a simple product. We expect that such correla-
tion effects become unimportant with increasing sample
separation. Tunneling experiments, however, are performed

in such a way that the results are independent of the sample
separation. Therefore these correlations should be not essen-
tial.

APPENDIX

Performing the integral(18) with the deformation-
potential function(19) and the electronic DOS(20) we find
that

k jxl = eW̃n0s2"sad3+2gNg
2l3fA2I00sl2d

+ 2AlgI0gsl2d + l2gIggsl2dg, sA1d

where

Iabsl2d =
Gs1 + adGs1 + bd

Gs4 + a + bd 3F2f1,3/2,4;2

+ sa + bd/2,5/2 +sa + bd/2;− l2g, sA2d

l=eU/ s2"sad andA=N0/ fNgs2"sadgg (3F2 is the hypergeo-
metric function). Accordingly, l is determined by the volt-
age, andA is a measure for the depth of the dip of the density
of states.

To get an expression for the tunneling current for smalll
we expand Eq.(A2) with respect tol. Doing so, we obtain

k jxl ~ Cl3+zf1 − Bl2 + Osl4dg. sA3d

Herez=2g, B=12/fs2+gds5+2gdg, and

C =
fGs1 + gdg2

Gs4 + 2gd
eW̃n0s2"sad3+2gNg

2 sA4d

for A/lg!1, andz=0, B=6/5, and

C =
1

9
eW̃n0s2"sad3+2gNg

2A2 sA5d

for A/lg@1.
For largel we obtain

k jxl ~ Dl1+2gf1 − E/l + Os1/l2dg, sA6d

whereE=1 and

D =
1

6
eW̃n0s2"sad3+2gNg

2A2 sA7d

for A/lg@1, andE=2g+1 and

D =
fGs1 + gdg2

6Gs2 + 2gd
eW̃n0s2"sad3+2gNg

2 sA8d

for A/lg!1.
In order to get some feeling for typical values of the pa-

rameterl we use the parameters of Ref. 7. In these experi-
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ments voltages up to 8 mV have been used. If we use
2000 m/s as the estimate for the sound velocity and a value
of 2a<108 m−1 we find that in these experiments the param-
eterl changed from 0 to 80. However, the data of Ref. 7 also
show that in the most interesting region the parameterl took
on only values of the order of 10 and smaller. Accordingly,l
is probably neither small nor large in the most interesting
region in an experiment, so that in many cases the expression
(A2) has to be used for the interpretation of data.
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