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We review a new theory of viscoelasticity of a glass-forming viscous liquid near and below the glass
transition. In our model we assume that each point in the material has a specific viscosity, which
varies randomly in space according to a fluctuating activation free energy. We include a Maxwellian
elastic term and assume that the corresponding shear modulus fluctuates as well with the same
distribution as that of the activation barriers. The model is solved in coherent-potential approxi-
mation (CPA), for which a derivation is given. The theory predicts an Arrhenius-type temperature
dependence of the viscosity in the vanishing-frequency limit, independent of the distribution of the
activation barriers. The theory implies that this activation energy is generally different from that
of a diffusing particle with the same barrier-height distribution. If the distribution of activation
barriers is assumed to have Gaussian form, the finite-frequency version of the theory describes well
the typical low-temperature alpha relaxation peak of glasses. Beta relaxation can be included by
adding another Gaussian with center at much lower energies than that responsible for the alpha
relaxation. At high frequencies our theory reduces to the description of an elastic medium with
spatially fluctuating elastic moduli (heterogeneous elasticity theory), which explains the occurrance
of the boson-peak-related vibrational anomalies of glasses.

PACS numbers: 65.60.+a

I. INTRODUCTION

It has been shown by Maxwell [1] that in materials
with high viscosity the elastic response becomes as im-
portant as the viscosity. He suggested that the shear
rate of such materials is given by the sum of a viscous
term σ/η (where σ is the applied stress and η the vis-
cosity) and an elastic term d

dtσ/G∞ (where G∞ is the
high- frequency elastic modulus). This suggestion im-
plies - in agreement with experimental findings - that a
high-viscosity material acts as an elastic material if an al-
ternating stress with high enough frequency ν = ω/2π is
applied. As shown by Maxwell [1] such a material tends
exponentially to thermal equilibrium after an external
shear perturbation with a relaxation time

τ = η/G∞ . (1)

If the time scale of external forces is smaller than τ the
material acts like a solid, if it is larger than τ like a liquid.
Therefore one defines the glass-transition temperature Tg

to be that temperature at which τ is larger than a typ-
ical time scale of a glass blower’s manipulation, which
corresponds to a viscosity of ∼ 1012 Pa s.
In glass-forming materials η varies exponentially with

the inverse temperature as η(T ) ∝ exp{EA(T )/kBT }. If
the differential activation energy EA(T ) does not depend
on temperature, the material is called strong, if it does,
fragile [2–4]. In fragile materialsEA is often parametrized
with the Vogel-Fulcher equation EA/kBT = B/(T −T0),
which would lead to a divergence at T0. Before reaching
this value, however, EA(T ) becomes constant in most
substances.
The value of this low-temperature activation energy

of the viscosity does not agree to that of the diffusivity
(Stokes-Einstein violation) [5–7]. We shall give an expla-
nation for this anomaly below.

It has also been noticed, that the activation energy
EA(T ) has a similar temperature dependence as the
high-frequency shear modulus G∞(T ) [8–13]. This has
been rationalized by observing that the activation bar-
rier, which has to be overcome during an activated re-
laxation step, comprises essentially elastic energy, which
only involves the shear degrees of freedom [9], and one
writes (“shoving model” [8–13])

EA = V G∞ . (2)

The proportionality factor V is the volume of the ma-
terial region, which participates in the relaxation step
(activation volume). This relation will be of significance
for our model of heterogeneous viscoelasticity to be de-
scribed below.

Following Maxwell [1] one can define a frequency-
dependent effective viscosity as

1

ηeff(T, ω)
=

1

η(T )
+

s

G∞
, (3)

where s = −iω + ǫ is the Laplace frequency pa-
rameter (with ǫ → +0). This quantity is related
to an effective frequency-dependent shear modulus
Geff(ω) = sηeff(ω) = G′(ω)− iG′′(ω). Using Eqs. (1)
and (3) one obtains for the mechanical loss modulus the
Debye-shaped function

G′′(ω) = G∞
ωτ

1 + (ωτ)2
(4)
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The maximum of the loss function, which is due to the
structural relaxation - characterized by Maxwell’s relax-
ation time τ - has been called α maximum and the pro-
cess α (primary) relaxation. The maximum of dielectric
loss function, which is coupled to the mechanical relax-
ation [14–16], shows also the temperature variation of
η(T )−1, but the shape of the dielectric spectrum is dif-
ferent from that of the mechanical spectrum [16, 17].
However, in all glass-forming materials the α max-

imum of mechanic and dielectric loss peaks deviates
strongly from the Debye shape, i.e. it is much broader
(stretching). Furthermore, on the high-frequency (or low-
temperature) side of the alpha peak there is a second fea-
ture, which in some materials is a peak, in others only
a shoulder: the secondary or beta relaxation peak [18–
20]. It is commonly believed that, while the alpha peak
describes viscous structural relaxation, the beta peak is
due to residual motions within the already frozen glassy
material [19, 20].
Above Tg many features of the glass transition, in

particular the associated non-trivial fractal time depen-
dence of the relaxation functions - including the stretch-
ing of the α relaxation peak - are captured by the mode-
coupling theory (MCT) [21–23]. This theory - in its
original version - describes a sharp transition towards a
non-ergodic state, in which the relaxation function does
not fully decay, but tends to a finite value f , the non-
ergodicity parameter. This transition appears at a tran-
sition temperature Tc, which is higher than Tg.
It has become clear in the meantime that the critical

temperature of the MCT denotes not a sharp transition,
but rather a crossover in the liquid dynamics from a fluid
regime to an activated regime [24, 25]. The activated
dynamics is missing in the original MCT.
In order to take the activated dynamics into account

MCT has therefore been generalized [26–29]. In this ver-
sion MCT does not only treat momentum relaxation,
which can be visualized by a succession of scattering
events but also density relaxation, which is a succession
of hopping events (relaxation steps). Such a distinction
is also important in the theory of high-resistivity metals
[30], where it leads to a cross-over in the temperature
coefficient of the electronic resistivity.
Within such a treatment [26–30] the resistive transport

coefficient - in our case the effective viscosity - is given
by

1

ηeff
(s) ∝ δ(T ) +

1

m(s)
, (5)

where δ(T ) ∝ exp{−EA/kBT } describes the activated
viscous motion and m(z) is the MCT memory function,
which generalizes the scattering and contains the mech-
anism of structural arrest. If one replaces the memory
function by the result for the ideal-glass regime of the
original MCT, namely m(z) = mf/s, where mf is the
long-time limit of the memory function, which can be
identified with the shear modulus of the glass [31, 32],
one arrives at Maxwell’s conjecture (3).

On the other hand, there is nowadays ample evidence,
in particular from molecular-dynamics simulations, that
near Tg the local re-arrangements exhibits a strong spa-
tial heterogeneity [25, 33, 34]. (dynamical heterogeneity).
There are presently continuous efforts to formulate a

theory of the glass transition which combines dynamical
heterogeneity and the mode-coupling scenario [24, 25, 35–
40]. These theories make contact to former spin-glass
theories and the related replica formalism. In particular
aspects of dynamical heterogeneity have been recently
attempted to be incorporated into MCT by treating it
as a Landau-type mean-field approximation within the
replica approach and introducing the Gaussian fluctua-
tions beyond the mean-field saddle point [41–44].
The idea of heterogeneity of relaxation processes has

been also developed together with the concept of a very
ragged free-energy landscape in configuration space, in
which the glassy relaxation is considered to take place
[18, 45–47].
In many publications dealing with dielectric and me-

chanic loss measurements [48–51] one quantifies the ideas
of dynamic heterogeneity and ragged free-energy land-
scape to assume that the Maxwell-type relaxation pro-
cesses may take place independently and one would be
allowed to take the average over a distribution of relax-
ation barriers Ei or relaxation times τ = τ0e

Ei/kBT ,

G′′(ω) = G∞

∫
dτg(τ)

ωτ

1 + (ωτ)2
. (6)

Many authors, e. g. Goldstein [45] and Palmer et al.
[52], however, point out that near the glass transition re-
laxation processes are highly cooperative and are likely
to involve more events that occur in series than in paral-
lel. In fact, it is known [53], that spatially heterogeneous
transport is neither well described by a parallel nor serial
equivalent circuit. This is so, because the currents seek
the path of least resistance, which, in the strong-disorder
limit, amounts to a percolation problem, which is well
described by coherent-potential and effective medium ap-
proximations [53–56].
The phenomenon of dynamic heterogeneity in glass-

forming materials is paralleled by the observation that in
the high-viscosity/glassy regime the local elastic moduli
also exhibit spatial heterogeneities [57–64] (elastic hetero-
geneity). These, in turn, can be shown to be responsible
for vibrational anomalies, which trade under the name
“boson peak” [56, 60, 65–70]. Quite recently, the present
authors have demonstrated [71], that the two types of dy-
namic heterogeneities can be reconciled within the same
theoretical framework, namely the coherent-potential ap-
proximation (CPA) [56], applied to spatially inhomoge-
neous viscoelasticity. In the present contribution we re-
view this theory and, in particular, show, how it can be
generalized to include also secondary relaxation.
In the next section a derivation of the CPA for a spa-

tially fluctuating viscosity is derived. In section III. the
heterogeneous model is introduced and solved. The con-
sequences for the alpha and beta relaxation and the ω = 0
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viscosity are demonstrated and discussed. The paper is
finished by some conclusions.

II. DERIVATION OF A CPA FOR A SPATIALLY

FLUCTUATING VISCOSITY

This derivation follows closely the derivation of the
CPA for heterogeneous-elasticity theory, i.e. elasticity
theory with spatially fluctuating elastic coefficients [56].
We consider a heterogeneous viscous liquid in which

the viscosity has different values at different locations
in space, η → η(r) which are assumed to fluctuate ac-
cording to a given distribution P [η(r)]. Representing the
pressure term as usual in terms of the compressibility K,
the linearized Navier-Stokes equations in frequency space
take the form [72, 73] (s = −iω + ǫ):

sρmvℓ(r, s) =
∑

m

(
K

s
∂ℓ∂mvm(r, s) + 2∂mη(r)V̂ℓm(r, s)

)

(7)
where ρm is the mass density and ∂ℓ ≡ ∂/∂xℓ. vℓ(r, s)
are the Cartesian coefficients of the Eulerian velocity

field, and V̂ is the traceless shear strain rate tensor

V̂ℓm = Vℓm − 1
3 tr

{
Vδℓm

}
with Vℓm = 1

2

(
∂ℓvm + ∂mvℓ

)
.

We can cast this set of equations into the form

0 =
∑

m

Aℓm[η] (8)

where the linear operator A[η] has the matrix elements

< r|A[η]|r′ >ℓm= Aℓm[η]δ(r− r
′) (9)

with

Aℓm = sδℓm −
1

ρm

(
K

s
∂ℓ∂m −

2

3
∂ℓη(r)∂m (10)

+∂mη(r)∂ℓ + δℓm
∑

n

∂nη(r)∂n

)

A is the inverse of the resolvent operator of the linear
stochastic equations (7). Correspondingly, the matrix of
Green’s function [87] is given by

G(r, r′)ℓm =< r|A−1[η]|r′ >ℓm (11)

This matrix can be represented as a functional integral
over mutually complex-conjugate vector fields [56, 74]
vαℓ (r), v̄

α
m(r) in n replicas of the system[88] (α = 1, . . . , n)

as

G(r, r′)ℓm =

n∏

α=1

∏

µν

∫
D[v̄αµ (r), v

α
ν (r)]v̄

1
ℓ (r)v

1
m(r′)

× e

−
∑
α

< v
α|A|vα >

(12)

=
δ

δJ
(1)
ℓm (r, r′)

Z[J(r, r′)]

∣∣∣∣
J=0

(13)

Here we have defined a generating functional

Z[J(r, r′)] =

n∏

α=1

∏

ℓm

∫
D[v̄αℓ (r), v

α
m(r)]

× e

−
∑
α

< v
α|A|vα >

e

−
∑
α

< v
α|Jα|vα >

(14)

with source-field matrices Jα
ℓm(r, r′). The operator A can

now be identified as the action of a Gaussian field theory.
Its matrix element can be cast into the form

< v
α|A|vα >=

∫
d3r

1

ρm

(
s
∑

ℓ

|vαℓ (r)|
2

+
1

2s
K tr{Vα(r)}2 + η(r)

∑

ℓm

|V̂α
ℓm(r)|2

)
(15)

where the trace tr runs over the Cartesian indices. We
now apply a procedure common in deriving effective field
theories (Fadeev-Popov method [75]). First we replace
the fluctuating viscosity η(r) by a “place-holder” field
Q(α)(r, s) with the help of a functional delta function.
The latter is then, in turn, expressed as a functional in-
tegral over a second auxiliar field Λ(α)(r, s):

Z[J ] =

∫
D[v, v̄]

∫
D[Q] e−<v|A[Q]−J|v>δ[η −Q]

=

∫
D[v, v̄]D[Q,Λ] e−<v|A[Q]−J|v>

e
<Λ|η−Q>

=

∫
D[Q,Λ] e−Tr{ ln[A[Q]− J ] }

e
<Λ|η−Q>(16)

In this expression we have suppressed the replica in-
dices for brevity. In the third line of Eq. (16) we have
integrated out the original velocity fields v̄α and v

α. This
can be done, because the functional integral in the sec-
ond line is just a Gaussian. The trace Tr has to be taken
over the continuous spatial variables, the Cartesian in-
dices and the replica indices.
We now follow Köhler et al. [56] in coarse-graining our

system of volume V into Nc = V/Vc cells of diameter ξ
and volume Vc = ξ3, which is the correlation length of
the fluctuations ∆η(r) = η(r) − 〈η〉, defined by

ξ3 =
1

〈η2〉

∫
d3r〈∆η(r + r0)∆η(r0)〉 (17)

The fluctuating field η(r) is then averaged over a given
cell with label i, which gives a value ηi, which still fluctu-
ates from cell to cell. The statistical fluctuations of these
values can now be assumed to be uncorrelated, i.e.

P (η1 . . . ηi . . . ηNc
) =

Nc∏

i=1

p(ηi) (18)

We now associate with all fields discretized numbers cor-
responding to the center vectors ri of the cells: Λ

(α)(r) →
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Λ
(α)
i and Q(α)(r) → Q

(α)
i . Using this the scalar product,

which appears in the exponential in Eq. (16), can be
written as:

< Λ|η −Q >=
Vc

V

∑

α

∑

i

Λ
(α)
i (r)

(
η
(α)
i −Q

(α)
i

)
(19)

We now start to evaluate the configurational average.
Due to the Fadeev-Popov transformation the only term
to be averaged over is the term e<Λ|η−Q>.
Assuming that all the Nc coarse-graining cubes behave

the same on average and using that the individual cubes
are not correlated, we can write

〈
e<Λ|η−Q>

〉
=

∏
α

∏
i

〈
e
Vc

V Λ
(α)
i (η

(α)
i −Q

(α)
i )

〉

i

= e

∑
α

V
Vc

ln
(〈

exp
[
−Vc

V
Λ

(α)
i (η

(α)
i −Q

(α)
i )

] 〉

i

)

(20)

Note that the two occurring volume ratios do not can-
cel each other due to the average inside the logarithm.
Using (20) the generating functional (16) can be written
as

Z[J̃ ] =

∫
D[Q,Λ] e−Seff[Q,Λ, J̃ ] (21)

where we have now replaced the source field matrix
Jα(r, r′) by translational-invariant one J̃(r − r

′), which
is not supposed to depend on the replica index α. The
effective action takes the form

Seff[Q,Λ, J̃ ] = Tr{ ln
(
A[Q]− J̃

)
} (22)

−

n∑

α=1

V

Vc
ln
(〈

e
−Vc

V
Λ

(α)
i (η

(α)
i −Q

(α)
i )

〉
i

)

Since the factor V
Vc

in the effective action (22) is much
larger than unity a saddle point approximation can be
employed to evaluate the integral in (21).

We now assume the “fields Q
(α)
i and Λ

(α)
i to be the

same in all replicas. Varying the effective action with
respect to the fields Qi,s and Λi,s yields the following

equation for the saddle-point quantities Q
(α)
i,s and Λ

(α)
i,s :

0 =

〈
−Vc

V Λ
(α)
i,s (ηi −Qi,s)e

−Vc
V

Λi(ηi−Qi,s)
〉
i〈

e−
Vc
V

Λi,s(ηi−Qi,s)
〉
i

,

from which follows

0 =

〈
ηi −Qi,s

exp[Vc

V Λi,s(ηi −Qi,s)]

〉

i

(23)

Since Vc

V ≪ 1 the exponential in the denominator can
be expanded to first order:

0 =

〈
ηi −Qi,s

1 + Vc

V (ηi −Qi,s)Λi,s

〉

i

(24a)

The second saddle point equation gives

∂ tr{ ln[A(Q) ] }

∂Qi

∣∣∣∣
Qi=Qi,s

=

Vc

V Λi,s

〈
e
−Vc

V
Λi(ηi−Qi,s

〉
i〈

e−
Vc
V

Λi,s(ηi−Qi,s

〉
i

=
Vc

V
Λi (24b)

The left-hand side can be evaluated under the assump-
tion that the saddle point field Qs is constant in space,
i.e. Qi,s ≡ Q for all i. This corresponds to the introduc-
tion of an effective homogeneous medium in which

Q(s) = η(s) = G(s)/s (25)

As in all effective-medium theories the effective medium
is identified with the real medium, in which η(s) is the
macroscopic frequency-dependent viscosity and G(s) the
corresponding macroscipic shear modulus.
The homogeneus Matrix A[Q] is both diagonal in the

Cartesian indices and with respect to the k vectors in k

space. The three diagonal elements (in Cartesian space)
are the inverse longitudinal and transverse Green’s func-
tions of the effective medium 1/GL(k, s) and (two entries)
1/GT (k, s), which are given by

1/GL(k, s) = s+
1

ρm
k2

(
K

s
+

4

3
Q(s)

)
(26a)

1/GT (k, s) = s+
1

ρm
k2Q(s) (26b)

Defining a new field (“susceptibility function”)

Λ̃(s) = 3Vc/ν̃V Λα(s) with ν̃ = ν3/2π2 the CPA
equations (24a) and (24b) become:

0 =

〈
ηi −Q(s)

1 + ν̃
3 (ηi −Q(s))Λ̃(s)

〉

i

(27a)

Λ̃(s) =
3

k3ξ

∫ kξ

0

dkk4
1

ρm

(
4

3
GL(k, s) + 2GT (k, s)

)
(27b)

It is easily shown that the CPA equation (27a) is equiv-
alent to the following equations

Q(s) =

〈
ηi

1 + ν̃
3 (ηi −Q(s))Λ̃(s)

〉

i

(28a)

1 =

〈
1

1 + ν̃
3 (ηi −Q(s))Λ̃(s)

〉

i

(28b)
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For frequencies, which are much smaller than those, in
which the inertial term in the Navier-Stokes equation (7)
is important (at GHz frequencies and above) the suscep-

tibility function Λ̃(s) can be replaced by its low-frequency
limit

Λ̃(s)
s→0
−→

2

Q(s)
(29)

III. HETEROGENEOUS-VISCOELASTICITY

THEORY

A. Model

We now consider a heterogeneous viscoelastic model,
in which equation (3) holds locally with both spatially
fluctuating viscosity and shear modulus

1

ηeff(r, s)
=

1

η(r)
+

s

G(r)
(30)

The local viscosity is assumed to be governed by a lo-
cal free energy ln[η(r)/η0] = F (r)/kBT with F (r) =
E(r) − TS(r). E is the local energy barrier and S
is a multi-excitation entropy [76, 77], which is related
to E by a compensation (Meyer-Neldel) rule [76–79]
S(r)/kB = αE(r), so that we have η(r) = η0e

βeffE(r)

with βeff = [kBT ]
−1−α. The activation barrier, in turn,

is assumed [10, 13] to be related by E(r) = V G(r) to
the local high-frequency shear modulus, where V is an
activation volume.
Taking (29) into account the CPA equation (28a) be-

comes

Q(s) ≡ η(s) =

〈
η
(i)
eff

1− 2ν̃
3 + 2ν̃

3 η
(i)
eff /η(s)

〉

P (E)

(31)

where 〈. . . 〉P (E) denotes an average over the distribution
P (E) of activation energies E. The explicit form of the
local Maxwellian viscosity is

1

η
(i)
eff (s)

=
1

ηeff(E, s)
=

1

η0
e−βeffE +

sV

E
(32)

In contrast to the local viscosity, which is, together with
the distribution P (E) the input to the CPA calculation,
Q(s) ≡ η(s) is the macroscopic frequency-dependent vis-
cosity, which is the output of the calculation. The macro-
scopic viscosity is related to the macroscopic frequency-
dependent shear modulus by

sη(s) = G(s) = G′(ω)− iG′′(ω) (33)

where G′′(ω) is the mechanical loss function.
In the present treatment we use for P (E) a single Gaus-

sian (α relaxation) and a superposition of two Gaussians
(β relaxation). We cut off P (E) at E = 0, i.e. P (E) = 0
for E < 0.

We emphasize that in the very high frequency regime,

where the full susceptibility function Λ̃(s), Eq. (27b)
has to be taken and where viscous effects become irrele-
vant, our theory reduces to heterogeneous elasticity the-
ory, which describes the high-frequency anomalies asso-
ciated with the boson peak [56, 60, 65–70]. This means
that the present theory describes both dynamical and
vibrational heterogeneities.

B. The case ω = 0 and the Stokes-Einstein violation

As we want to compare in the following the behavior of
the heterogeneous viscosity with diffusive single-particle
motion in the same energy landscape, (heterogeneous dif-
fusivity) in the ω = 0 limit, we quote the CPA equations
for this problem from Köhler et al. [56]:

D(s) =

〈
D(i)

1 + ν̃
3

(
D(i)(s)−D(s)

)
ΛD(s)

〉

i

(34)

with ΛD(s) = 3
k3
ξ

∫ kξ

0
dkk4[s+D(s)k2]−1 Here D(s) is

the dynamic diffusivity and D(i) = D0e
−βeff,DE(i)

are the
local diffusivities with βeff,D = [kBT ]

−1 − αD [89]
In the s = 0 limit ΛD → 1/D(s = 0) ≡ 1/D, and we

obtain for the ω = 0 diffusivity the CPA equation

ν̃

3
=

∫ ∞

0

dEP (E)
1(

3
ν̃ − 1

)
D

D(i) + 1
(35a)

For the viscosity η = Q(0), on the other hand, we obtain
from (31)

2ν̃

3
=

∫ ∞

0

dEP (E)
1(

3
2ν̃ − 1

)
η

η(i) + 1
(35b)

If the macroscopic viscosity and diffusivity are
parametrized as η ∝ eβeffEA , D ∝ e−βeff,DEA,D , the in-
tegrands in Eqs. (35a) and (35b) become step functions
θ(E−EA) and θ(EA,D−E), resp. in the low-temperature
limit, and we arrive at

1−
2ν̃

3
=

∫ EA

0

dEP (E)
ν̃

3
=

∫ EA,D

0

dEP (E) (36)

This means that (within CPA) both the diffusivity and
viscosity with spatially fluctuating activation energies ac-
quire an Arrhenius behavior, independently of the details
of P (E). This result is well known for the diffusivity and
(for charged carries) conductivity in disordered materials
[56, 80]. It reflects the fact that the carrier look for a path
of minimum resistance through the material, which is a
percolation path. In the percolation theory of hopping
conduction [80] the number ν̃/3 is the continuum perco-
lation threshold, which we now call pD. The analogous
quantity for the viscosity is pη = 1− 2pD, where the fac-
tor 2 can be traced back to the two transverse cartesian
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FIG. 1: Mechanical loss curves G′′(ω) = ωη′(ω) vs. ωη(0)
for fixed inverse temperature βeffE1 = 26, calculated in CPA
according to Eq. (37) with a single Gaussian distribution
with widths σ varied from 0.1 to 0.3 in steps of 0.05. The
experimental data (symbols) are from metallic, organic and
inorganic glasses [81–84].

degrees of freedom of the shear motion [56]. So we note
the result that except for the special case pD = 1/3 the
activation energy for diffusion and viscosity should be
different. The explanation is that the percolation pro-
cess for a single-particle and cooperative motion in three
dimension is different. If we take for pD = ν̃/3 the three-
dimensional continuum percolation threshold ≈ 0.3 we
arrive at pη = 1− 2pD = 0.4. Using Eqs. (36) we arrive
for a Gaussian distribution centered at E1 with width
parameter σ/E1 = 0.3 at EA,D/E1 = 0.843 and EA/E1

= 0.925, i.e. the ratio is EA,D/EA = 0.91. This ratio
(Einstein-violation parameter) depends on dimensional-
ity through pD, but it is non-universal, as it depends on
(and becomes smaller with) the shape of the distribution.

All the above considerations assume that the energy
distribution for the local diffusion coefficient is the same
as that for the local viscosity, i.e. that locally the Ein-
stein relation holds. Especially in materials consisting of
several diffusing species - like metallic and ionic glasses
- this assumption is certainly unjustified. It would be
much more plausible to take the small-energy Gaussian,
responsible for the beta relaxation, as that distribution
for the diffusion. This would be in agreement with ex-
perimental findings relating the beta energy scale with
that of the diffusion in metallic glasses [20].

C. Alpha relaxation

We turn now to the frequency dependence of the
viscosity, as predicted by our theory of heterogeneous
viscoelasticity. We can reformulate the CPA equation
(31) in terms of the dimensionless viscosity η(s)/η(0)
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FIG. 2: Mechanical loss curves G′′(ω) = ωη′(ω) vs. ωη(0)
for inverse effective temperatures βeffE1 = 16, 18, 20, 22,
24, calculated in CPA, Eq. (37) for a Gaussian distribution
of width σ = 0.25, (straight lines) and in VCA, Eq. (38),
(dashed lines). The symbols denote the same experimental
data as in Fig. 1.

as follows:

η(s)

η(0)
=

〈
1

qη

(
eβeff (EA−E) + sV η(0)

E

)
+ pη

η(0)
η(s)

〉

P (E)

(37)

with pη = 2ν̃
3 and qη = 1 − pη. It can be seen

from this representation that the strongest contribu-
tion to the integral comes from the energy E ≈ EA, so
that effectively the function η(s)/η(0) is approximately
a universal function of the scaled frequency parameter
sV η(0)/EA ≈ sV η(0)/E1, where E1 is the peak energy
of the principal Gaussian (for EA ≈ E1 see section E).
This quasi-universality is inherited by the loss function
G′′(ω) ∝ ωη(0) · η′(ω)/η(0) = ωη′(ω). In all our calcu-
lations we measure viscosities in units of η0, mechanical
loss functions in units of E1/η0 and frequencies in units
of E1/V η0. The activation volume obviously enters only
into the frequency scale.
In Fig. 1 we show the result of CPA calculations for a

Gaussian distribution of activation energies with varying
width σ together with a number of measured mechanical-
loss spectra. [81–84][90]. A very important point is that
the left wing of the alpha relaxation spectra is given by
G′′(ω) = ωη(0). Because previously there was no proper
theory for calculating the ω = 0 value of the viscos-
ity, efforts to describe the alpha maximum in terms of
a distribution of activation energies have rested on shaky
grounds.
Near the alpha peak the frequency dependence of η(s)

starts to be effective, which causes the strong asymmetry
of the alpha relaxation spectrum. We see from Fig. 1 that
for the chosen value of the inverse effective temperature
βeffE1 = 24 the CPA curves for a width parameter σ/E1

= 0.2 fits the data best.
It is of interest to compare our CPA calculation with
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FIG. 3: Dielectric loss spectra calculated by means of the
Gemant-DiMarzio formula (39) from η(s) data calculated in
CPA with βeffE1 = 15 and σ/E1 = 0.25 and the Gemant-
DiMarzio parameter V ∗/kBT varied by decades (top to bot-
tom) from 10−1 to 105. The very top (red) line is the me-
chanical loss function G′′(ω).

the previously used procedure (Eq. (6) ) of averaging
the local viscosities. In the theory of disordered systems
this amounts to averaging over the Hamiltonian and has
been called virtual-crystal approximation (VCA). If the
self-consistent term in the denominator of (31) is omitted,
one obtains

Q(s) =

〈
η
(i)
eff (s)

〉
, (38)

which is just the same as (6), except for the fact that in
our model G∞ is also assumed to fluctuate.
In Fig. 2 we compare the CPA calculations for differ-

ent inverse effective temperatures with VCA calculations
using (38). It is clearly seen that the approximate time-
temperature scaling of the alpha peak, which is obeyed
in CPA, is not reproduced in VCA. This can be traced
again to the fact that the ω = 0 value of the viscosity in
VCA, which corresponds to a parallel-circuit formula is
not correct, because it does not recognize the percolation
aspects of the viscous currents. On the other hand, at
frequencies much higher than that of the alpha relaxation
peak, the percolation aspects lose their importance, be-
cause at these frequencies the viscous flow is an alternat-
ing one, probing only relaxational transitions to adjacent
free-energy minima. In this frequency regime - as we will
see in the paragraph on beta relaxation - the CPA ap-
proximately becomes equalent to the VCA, which means
thaat the VCA and the corresponding expressions (6),
(38) are justified in the high-frequency/low-temperature
regime.

D. Dielectric relaxation

As noted in the introduction the peaks of dielectric
loss data in glass-forming materials follow precisely the
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FIG. 4: Mechanical loss spectra for a distribution P(E) with
two Gaussians of weight x1 = 0.8 and x2 = 0.2 centered at
E1 ≡ 1 and E2/E1 = 0.1. The width of the high-energy peak
is σ1/E1 = 0.25. The widths σ2/E1 of the second, low-energy
peak is varied (from bottom to top) from 0.05 to 0.35 in equal
steps of 0.05. The effective inverse temperature is set βeffE1

= 25.

inverse viscosity, and hence the peaks of the mechanical
loss data. It has been noted, however that the shape
of the loss curves are not the same [16, 17]. However,
according to Gemant [14], DiMarzio and Bishop [15] and
Niss et al. [16] they can be related to each other by

ǫ′′(ω) = Im

{
1

1 + V ∗

kBT G(s)

}
, (39)

where V ∗ is a microscopic volume. A very similar for-
mula can also be obtained within the mode-coupling for-
malism, applied to the coupling of special degrees of free-
dom (in this case the local dipoles) to the bulk relaxing
dynamic variables [27, 85, 86], assuming that the bulk
density fluctuations are essentially frozen.
In Fig. 3 we show the result for the dielectric loss

for different values of the coefficient V ∗/kBT . It is seen
that with increasing V ∗/kBT the peak is shifted to the
left and the stretching of the alpha peak becomes less
pronounced. A detailed discussion of (39) can be found
in the paper by Niss et al. [16].

E. Beta relaxation

As noted by Johari and Goldstein [18] and many au-
thors later [19, 20] there exists a relaxation regime at the
high-frequency and low-temperature side of the alpha-
relaxation peak, which is sometime a peak, sometime a
shoulder and sometime just a wing. This part of the en-
ergy spectrum has been reported [20] to be related to the
glassy, i.e. solid-like yield dynamics.
We attempted to include this by adding a second Gaus-

sian to the primary Gaussian, which describes the alpha
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FIG. 5: Mechanical loss spectra for a two-Gaussian distribu-
tion P(E) as in Fig. 4 calculated in CPA (31) and VCA (38).
The parameters are the same as in Fig. 4 except that the
inverse effective temperature is varied between βeffE1 = 12
and 24, and the width of the low-energy Gaussian is fixed to
be σ2/E1 = 0.1. Note that the frequency axis is not scaled
with the ω = 0 viscosity.

relaxation, but with much lower center. The distribu-
tion is truncated at E = 0. Therefore with increasing
width of the second Gaussian the latter becomes an al-
most constant wing on the low-energy side of the primary
Gaussian. From Fig. 4, where we have varied the width
of the secondary Gaussian, we see that by doing this we
can describe the transition from a beta wing to a beta
maximum.
As the beta relaxation is probed at frequencies much

higher than the principal alpha peak it is worth wile to
check, whether in this regime the VCA gives similar re-
sults as the CPA. In Fig. 5 we show calculations with
two Gaussians in CPA (Eq. (31) ) and VCA (Eq. (38)

) for different temperatures and a fixed small width of
the low-energy Gaussian. It can be seen that at high fre-
quency the beta peak is reproduced in the VCA, which
demonstrates that in the regime much above the alpha
peak the VCA indeed agrees to the CPA. It can be shown
that in VCA the temperature and/or frequency depen-
dence reflexts the underlying barrier distribution P (E)
with E ∝ −T lnω. So the peak at high omega reflects
the low-energy peak of P (E). On the other hand, the
alpha peak - as discussed above - differs apprecially from
the principal maximum of P (E).

IV. CONCLUSION

In conclusion we can state that we have established
a theory, which combines a theory for the DC viscos-
ity, low-temperature α and β relaxation and the high-
frequency vibrational anomalies within a unified frame-
work. This has been achieved by assuming that the vis-
cous and elastic coefficients of Maxwell’s theory of vis-
coelasticity fluctuate in space according to a frozen dis-
tribution of activation barriers. We have found an expla-
nation of the discrepance of the activation energies for
diffusion and viscosity in terms of the different percola-
tive properties of the two heterogeneous transport prob-
lems and a theory for the joint alpha and beta relaxation
below the glass transition.a

Acknowledgement

W. S. is grateful for helpful discussions with U.
Buchenau, J. C. Dyre, W. Götze, A. Loidel, T. Lunken-
heimer, and R. Schilling

[1] J. C. Maxwell, Philos. Trans. Roy. Soc. London 157, 49
(1867).

[2] C. A. Angell, in Relaxations in Complex Systems, edited
by K. L. Ngai and G. B. Wright (US GPO, Washington
DC, 1985).

[3] A. C. Angell, J. Noncryst. Sol. 131, 13 (1991).
[4] A. C. Angell, Nature 410, 663 (2001).
[5] F. Fujara et al., Z. Phys. B 88, 195 (1992).
[6] J. A. Hodgdon and F. H. Stillinger, Phys. Rev. E 48, 207

(1993).
[7] S.-H. Chen et al., PNAS 103, 12074 (2006).
[8] J. C. Dyre, N. B. Olsen, and T. Christensen, Phys. Rev.

B 53, 2171 (1996).
[9] J. C. Dyre, J. Noncryst. Solids 235-237, 142 (1998).

[10] J. C. Dyre, Rev. Mod. Phys. 76, 953 (2006).
[11] U. Buchenau, Phys. Rev. B 80, 172201 (2009).
[12] J. C. Dyre and W. H. Wang, J. Chem. Phys. 136, 224108

(2012).
[13] T. Hecksher and J. C. Dyre, J. Non-Cryst. Solids 407,

14 (2015).

[14] A. Gemant, Trans. Faraday Soc. 31, 1582 (1935).
[15] E. A. DiMarzio and M. Bishop, J. Chem. Phys. 60, 3802

(1974).
[16] K. Niss, B. Jakobsen, and N. B. Olsen, J. Chem. Phys.

123, 234510 (2005).
[17] K. Niss, B. Jakobsen, and N. B. Olsen, J. Chem. Phys.

123, 234511 (2005).
[18] G. P. Johari and M. Goldstein, J. Chem. Phys. 53, 2372

(1970).
[19] P. Lunkenheimer, L. C. Pardo, M. Köhler, and A. Loidl,
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