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Abstract – We consider the localisation properties of a lattice of coupled masses and springs
with random mass and spring constant values. We establish the full phase diagrams of the system
for pure mass and pure spring disorder. The phase diagrams exhibit regions of stable as well as
unstable wave modes. The latter are of interest for the instantaneous-normal-mode spectra of
liquids and the nascent field of acoustic metamaterials. We show the existence of delocalisation-
localisation transitions throughout the phase diagram and establish, by high-precision numerical
studies, that the universality of these transitions is of the Anderson type.
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Coherent wave phenomena in disordered systems are a
recurring theme of modern physics. For condensed matter
at the quantum scale, Anderson localisation [1,2] has
recently been re-modernised by a series of beautiful exper-
iments for Bose-Einstein condensates and the exponential
decay of the localised waves has been directly measured [3].
Results agree very well with recent spatially resolved stud-
ies in semiconductor systems [4]. Similarly, light locali-
sation continues to be at the forefront of many research
activities [5]. For classical waves, localisation phenomena
have an equally impressive history [6] and recent ultra-
sound propagation experiments [7] can now probe the
spatial and multifractal structure of states close to the
Anderson transition. Phonon localisation, i.e. absence of
diffusion of acoustic or vibrational degrees of freedom has
been addressed first in the seminal paper by John et al. [8]
and thereafter in connection with the low-temperature
thermal properties of glasses and the related enhance-
ment of the vibrational density of states, the so-called
“boson peak” [9–13]. Also the localisation properties of the
Hessian Matrix of the potential-energy landscape of liquids
and glasses —“instantaneous normal modes”— have been
investigated and related to the liquid-glass transition [14].
A very interesting new avenue of research has opened

up recently due to the realisation that the seminal work
on electromagnetic metamaterials [15] has a companion in
acoustic systems as well [16]. Hence hitherto unexplored

(a)E-mail: s.d.pinski@warwick.ac.uk

and deemed unphysical regions of the phase diagram for
disordered vibrations —those with apparently negative
masses and spring constants— are now recognised to be
of considerable interest for metamaterial applications and
offer an entirely novel perspective of Anderson localisa-
tion. Let us emphasise that systems with such negative
masses and stiffnesses have already been built such as,
e.g., arrays of sub-wavelength Helmholtz resonators [16].
These devices show negative acoustic refraction as
well as promise for acoustic superlensing and cloaking
applications.
In this paper, we address the localisation properties of a

simple cubic lattice of particles with varying mass mi and
varying nearest-neighbour harmonic force constants kij .
We present for the first time the complete phonon locali-
sation diagram for such a system, including the unstable
regime. We achieve this by transforming the known elec-
tronic potential-disordered phase boundary [17] to that of
the mass-disordered phonon phase boundary and by using
high-precision transfer-matrix methods (TMM).
For simplicity we deal with “scalar displacements”
ui(t) = ui(ω)e

iωt [11] obeying equations of motions in the
frequency domain

−ω2miui =
∑

j

kij(uj −ui) , (1)

where the sum runs over the 6 nearest neighbours of a
lattice site i.
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Fig. 1: (Color online) Phase diagrams of (a) mass disorder with disorder parameter ∆m and (b) spring disorder with disorder
parameter ∆k vs. squared frequency ω2. Black and grey shaded areas in (a) denote the critical region obtained from the
transformation as in eqs. (2) of the correspondingly shaded critical region in the electronic phase diagram of [17] see the inset
in the lower left corner for a reconstruction of the different shape of the ∆m, ω2 diagram compared to the W , E one, due to the
transformation ∆m=W/|ω2|=W/(6−E). Light shadings denote localised regions, dark shadings indicate regions beyond the
band edges. Open blue diamonds denote transition points determined by finite-size scaling. Solid red circles denote estimated
transition points (see text) and green crosses denote maxima in the DOS, divided by ω2 (“boson peaks”). The large open circles
mark the locations of the critical eigenstates in fig. 2. The horizontal dash-dotted lines indicate the border between stable and
unstable regions, the dotted lines denote ω2 = 0 and 6. The red line for (b) marks a region of low numerical accuracy where the
phase boundary is less well determined. Error bars for TMM data are computed as described in the text. For the “boson peak”,
errors denote the width of the peak at 95% of its height. Top insets: blow-ups of the phase boundaries in the stable regions.

In our calculations we use two types of disorder: In
the case of mass disorder we allow the masses mi to
be uniformly distributed in the interval [m−∆m/2,m+
∆m/2] with m= 1 and keep kij = k= 1 constant. In the
case of spring disorder we keep mi =m= 1 constant and
distribute the kij uniformly in the interval [1−∆k/2, 1+
∆k/2]. If the width of the distributions ∆m and ∆k
exceeds 2, negative masses/spring constants appear and
mimic the unstable part of the Hessian of a liquid [18,19] or
the harmonic properties of an acoustic metamaterial [16].
The present model can be related to Anderson’s [1]

tight-binding model for electron localisation with Hamil-
tonian H=∑i |i〉εi〈i|+

∑
ij |i〉tij〈j|. For mass disorder

we set tij ≡ kij = const = 1 and obtain the relations (E is
the quantum energy)

E ≡−ω2+6, εi ≡ ω2 (mi− 1) , (2)

while for spring disorder (mi =m= 1), we have

E ≡−ω2, tij ≡ kij , εi ≡−
∑

j

kij . (3)

With relations (2) and (3) we can reuse many of the
results for the Anderson model [17,20]. In particular,
the analogy establishes the existence of localisation-
delocalisation transitions for the vibrational mass-disorder
model. We introduce the electronic width parameter
W =∆m|ω2| for the width of the electronic disorder distri-
bution. This allows us to estimate the vibrational mass

disorder phase boundary from the electronic on-site
disorder phase boundary [17].
In fig. 1(a) we show the estimated mobility edges

for the case of vibrational mass disorder. The phase
diagram is intriguing in many respects. We first note
that the region for ω2 � 6 corresponds to the E � 0
region in the Anderson model and similarly ω2 � 6 is
associated with E � 0. The much studied centre of the
band at E = 0 for the Anderson model becomes the
rather less distinct ω2 = 6 line in fig. 1(a). For ω2 � 6,
we see that much of the extended phase belongs to the
region of possible negative masses with ∆m> 2. Hence
this region corresponds to a well-studied counterpart in
the Anderson case. Furthermore, the E � 0 region also
extends into negative values of ω2 and gets transformed
into a much reshaped form for ω2 < 0. The particular
form of this puddle of extended states, towards the ω2 = 0
axis, is driven by the so-called re-entrant behaviour for
the Anderson model [17,20]. Similarly, the re-entrant
behaviour at ω2 > 12 can be traced to the corresponding
re-entrant shape of the mobility edge at E �−6. As we
will show, these extraordinary mobility edges and hence
the phase diagram for the mass disorder case are indeed
confirmed by our direct high-precision numerics.
For spring disorder, (3) corresponds to a disorder distri-

bution consisting of the sum of 6 independently chosen
random numbers. Even when each kij is chosen accord-
ing to the uniform distribution as above, the resulting
distribution of εi has not previously been studied for the
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Anderson model —although studies with pure hopping
disorder exist [21]— such that there are no phase diagrams
to compare with. We have determined this phase diagram
using our high-precision TMM.
In the TMM a quasi–one-dimensional bar with fixed

cross-section M ×M for lengths L�M is considered.
Equation (1) is then re-arranged into a form in which
the amplitudes of vibration for a cross-sectional sheet can
be calculated solely from those in the preceding cross-
sectional sheet. If we denote the i-th M ×M sheet of
displacements by Ui, eq. (1) can be expressed recursively
as (Ui+1, Ui) =Ti · (Ui, Ui−1) with suitably defined trans-
fer matrix Ti [22]. The standard TMM for the Anderson
problem [23] is then used to calculate the Lyapunov expo-
nent λM of the mapping via Ti’s and the reduced decay
length ΛM = λM/M .
We performed TMM calculations at various values

of ∆m, ∆k indicated in the phase diagrams in fig. 1.
For every disorder value, we calculate ΛM for a range
of frequencies and system widths M = 6, 8, 10 and 12
to a relative error of 0.1%. The transition is initially
estimated as the frequency where the M = 12 and M =
10 lines cross. The error shown is the difference with
respect to the frequencies where the M = 12 and the
M = 6 data cross. We see from fig. 1(a) that these
rough estimates are in excellent agreement with the phase
boundaries as established from the analogy with the
Anderson transition. In fig. 1(b) the same method is used
to obtain the phase diagram for the spring disorder. In
addition, we performed studies at larger system sizes,
up to M = 20 with 0.1% error, for the delocalisation-
localisation transitions at three representative regions
in the phase diagrams indicated by open diamonds in
fig. 1. We found clear transitions from extended behaviour,
with increasing ΛM values for increasing M , to localised
behaviour, where ΛM decreases when M increases. The
transition frequencies obtained are in excellent agreement
with the estimates by the method described above. Most
interestingly, the predicted re-entrant behaviour in the
complex frequency spectrum of the mass disorder phase
diagram is also observed in the TMM results. The small
pocket of extended states in the phase diagram (cf.
fig. 1(a)) is clearly identified by the two transitions from
localised to delocalised and back to localised at ∆m= 9.
For spring disorder we see that in the “central region”

around ω2 = 6 states remain extended up to the largest
considered spring disorder ∆k= 10. This is similar to the
electronic case with pure hopping disorder [21] where even
very strong hopping disorder does not lead to complete
localisation close to E = 0. Whether the re-entrant
behaviour of the phase border above the instability line
for ω2 > 8 is genuine remains to be determined by higher-
precision calculation. We note that it coincides with the
vanishing of the “boson peak”. Such a re-entrant regime
is absent in the off-diagonal Anderson system. For the
spring-disorder model it could signify a combined effect of
localisation and instability. For ω2 < 0 (and ∆k� 4), we

observe an even larger area of extended states than for
mass disorder. The localisation-delocalisation transition
on the ω2 < 0 side is very similar to that observed in the
instantaneous-normal mode spectra [18]. The significance
of the delocalised unstable modes to the energy landscape
of a liquid remains to be discussed.
We find that both for mass and spring disorder, the
ω= 0 hydrodynamic mode remains extended regardless of
the disorder strength. This is in agreement with previous
studies in one- and two-dimensional systems [13]. What
is also common to both mass and spring disorder is the
observation of very strong shifts of the crossing points of
ΛM when changingM . Such a behaviour is to be expected,
however, since we are effectively dealing with transition
regions in the vicinity of the band edges where density-
of-states effects can dominate the scaling. This is again
similar to the situation for the electronic case where the
transition at the mobility edges for E �= 0 is also more
difficult to study [24,25].
We have also computed the density of states g(ω)

of our models by directly diagonalizing the dynamical
matrix. We have divided g(ω) by ω2 in order to detect
maxima which correspond to “boson peaks”, which have
been discussed in the literature [11] and in particular the
relation of these maxima to the first Van Hove singularity
of the underlying lattice [26]. In the stable regime below
the boson maxima the vibrational excitations are essen-
tially wave-like excitations as evidenced by characteris-
tic peaks in the vibrational density of states [22] due to
the standing waves in the simulated box [27]. For mass
disorder we find such maxima within the whole phase
diagram between ω= 0 and the mobility edge as shown in
fig. 1(a). For spring disorder the “boson peaks” disappear
slightly above the line ∆k= 2 (cf. fig. 1(b)). We have some
evidence from our density-of-states calculations and from
the form of the wave functions that indeed wave-like exci-
tations persist in the unstable region of the mass-disorder
model, whereas there is no evidence for wave-like excita-
tions in the spring disorder model for ∆k > 2.5. This strik-
ing difference may be due to the fact that for mass disor-
der the disorder fluctuations are suppressed by a factor ω2,
leaving a slightly disturbed spectrum of the simple cubic
lattice in the small-ω regime. For spring disorder the band
character is obviously destroyed already for small values
of ∆k.
We turn now to a discussion of our high-precision

determination of the critical parameters. In order to
ascertain the existence of a divergent correlation length
ξ(ω2)∝ |ω2−ω2c |−ν at ω2c with critical exponent ν, we
need to proceed, as in the electronic case, via a finite-size
scaling (FSS) procedure [28]. The FSS includes corrections
to scaling which i) account for the nonlinearities of the
∆m, ∆k dependence of the scaling variables (relevant
scaling) and ii) for the shift of the point at which the
ΛM (ω

2) curves cross (irrelevant scaling). This analysis is
by now standard and we refer to the literature for details of
when fits are acceptable as stable and robust as well as for
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Table 1: Values of critical parameter ω2c and ν for spring and mass disorder computed from FSS performed in the given M and
ω2 ranges. The goodness-of-fit parameter Γq is also shown for each fit. Errors denote the standard error-of-mean estimates.

∆m M ω2 ω2c ν Γq
1.2 8 to 20 12.15 to 13.1 12.68± 0.06 1.57± 0.14 0.84
4 8 to 20 3.75 to 4.25 4.13± 0.04 1.57± 0.08 0.99
9 8 to 20 −1.65 to −1.5 −1.62± 0.04 1.57± 0.41 0.87

∆k M ω2 ω2c ν Γq
1 10 to 20 12.48 to 12.6 12.527± 0.003 1.58± 0.05 0.62
10 6 to 16 18.8 to 20.3 19.75± 0.05 1.51± 0.08 0.84
7 8 to 20 −3.5 to −2.75 −3.33± 0.11 1.59± 0.29 0.51

(a) (b)

Fig. 2: (Color online) Schematic representation of critical amplitude distributions obtained from exact diagonalisation for
(a) ∆m= 4 at ω2 = 4.134 and (b) ∆k= 1 at ω2 = 12.526. All sites with uiL

−3/
∑
i ui > 1 are shown as small cubes and those

with black edges have uiL
−3/
∑
i ui >

√
1000. The color scale distinguishes between different slices of the system along the axis

into the page.

error estimates via Monte Carlo approaches [28]. Details
for the chosen expansions in the present case can be found
in ref. [22]. In table 1, we show the results for the high-
precision FSS analysis at the 6 representative disorders.
We find that in all cases, a consistent, robust and stable
fit can be found with quality-of-fit parameter Γq larger
than 0.1.
As our results show, we find that the critical expo-

nents for both mass and spring disorder in the stable,
unstable and negative ω2 regions of the phase diagram
agree with each other within the error estimates. In addi-
tion, they agree equally well with current estimates of
the corresponding exponent for the Anderson model of
localisation [24,28,29]. Therefore we conclude that the
scalar model of lattice vibrations studied here falls into
the universality class of the Anderson transition [30,31].

In fig. 2 we have represented critical amplitude distrib-
utions of the states marked with black circles in fig. 1. We
see that the structure for mass disorder is quite differ-
ent from that of the spring disorder. An evaluation of
the multifractal properties of these states might possibly
exhibit different spectra for the two models [19].
Let us briefly comment on the relevance of our results

for disordered, acoustic metamaterials [16]. Those that
have been built thus far to exhibit an effective negative
mass operate via resonance effects around specific frequen-
cies [32]. Taking a set of those units, slightly detuned
individually to be off resonance, will result in a distrib-
ution of ∆m values. This distribution can be constructed,
at least in principle, to mimic the uniform distribution
assumed here. Similarly, experimentally realised distrib-
utions of ∆m values can be studied with our approach.
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We emphasize that while such differing distributions may
lead to modified phase diagrams, they do not alter the
universality of the phase transitions [17].
When we cross the threshold values ∆m,∆k= 2 into

the unstable regime, we find that the general characteri-
sation of the vibrational states into extended, critical and
localised remains and that the mobility edges continue to
exist. We see that upon further increasing the disorder, we
retain large regions of extended states, particularly for the
case of spring disorder. This implies that extended vibra-
tions —and hence their transport of vibrational energy—
in acoustic metamaterials are robust with respect to size-
able amounts of disorder suggesting that acoustic cloaking
devices do not need to be perfect. The regimes of extended
states for ω2 < 0 have a particular relevance for acoustic
metamaterials. Namely, they show that the disorder in
masses and springs can give rise to an attenuation in time
of the vibrations throughout all of space. This then indi-
cates that it should be possible to build acoustic cloaking
devices which have cloaking properties in some regions,
but also damping/attenuation characteristics in others.
In conclusion, our results show that a disordered

scalar phonon model exhibits all the rich features of the
Anderson localisation-delocalisation transition. While
the critical exponents are universal and of Anderson
type, the mass-disorder and spring-disorder models
exhibit completely different localisation phase diagrams.
The re-entrant behaviour of the mass-disorder system
—inherited from the Anderson model with on-site
disorder— is present both on the stable and unstable side
of the phase diagram. The spring-disorder phase diagram
is dominated by delocalised states. Localised states exist
on both sides near the band edges. In the stable regime
∆m< 2,∆k < 2 localised states exist only at the upper
band edge in agreement with earlier investigations [8,11].
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