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Anderson Localization is an interference effect yielding a drastic reduction of diffusion – including
complete hindrance – of wave packets such as sound, electromagnetic waves, and particle wave func-
tions in the presence of strong disorder. In optics, this effect has been observed and demonstrated
unquestionably only in dimensionally reduced systems. In particular, transverse localization (TL)
occurs in optical fibers, which are disordered orthogonal to, and translationally invariant along, the
propagation direction. The resonant and tube-shaped localized states act as micro-fiber-like single-
mode transmission channels. Since the proposal of the first TL models in the early eighties, the
fabrication technology and experimental probing techniques took giant steps forwards: TL has been
observed in photo-refractive crystals, in plastic optical fibers, and also in glassy platforms, while
employing direct laser writing it is now possible to tailor and design disorder. This review covers all
these aspects that are today making TL closer to applications such as quantum communication or
image transport. We first discuss nonlinear optical phenomena in the TL regime, enabling steering
of optical communication channels. We further report on an experiment concerning the validity
of the traditional way of introducing disorder into Maxwell’s equations for the description of An-
derson localization of light. Within this approach a strong wavelength dependence of the average
localization length is predicted. In our experiment we do not find such a dependence. We trace
this discrepancy to an approximation concerning the divergence of the elecrical field, which is set to
zero. We present an alternative theory, which does not involve an approximation and which does
not predict a strong wavelength dependence of the localization length. Finally, we report on some
quantum aspects, showing how a single-photon state can be localized in some of its inner degrees
of freedom and how quantum phenomena can be employed to secure a quantum communication
channel.

I. INTRODUCTION

Transverse localization (TL) is found in media in which
the refractive index is randomly modulated only orthog-
onally to the direction of propagation. In these parax-
ial systems, Anderson localization (AL) sustains non-
diffracting beams: confined light tubes showing many
potential applications including, fiber optics, quantum
communication, and endoscopic imaging. In this re-
view we will summarize recent advances in disordered
optical fibers, in which confinement is obtained thanks
to localization, discussing the advantages with respect
to standard fibers. First we will report about the lat-
est experimental results on Transverse Anderson Local-
ization: the migration of localized states due to non-
linearity, self-focussing, wavefront shaping in the local-
ized regime, and the single-mode transport in disordered
paraxial structures. This last result is particularly impor-
tant as it bridges the physics of Anderson Localization
to the single-mode properties of optical fibers.

Then we will show how the traditional description of
Anderson localization, which was based on the analogy
to electrons in a random potential, turned out to be in
error and led to the prediction of a localization length
depending strongly on the wavelength of the light, which
was not observed. We also report on the alternative
correct theory, which relies on an analogy to acous-
tical waves in the presence of random elastic moduli.
Regarding quantum aspects, we will report on how a

single-photon state localized in some of its inner degrees
of freedom could be an effective resource in quantum
communication and cryptography, increasing both the
amount of information loaded per single particle and
the security and performance of protocols based on
localized photon quanta. Finally, we will review the
so-called random quantum walks in which the dynamics
of a single particle moving on a lattice conditionally
to the state of an ancillary degree of freedom, display
localization under certain conditions. A further aspect
of AL of quantum particles is the behavior of the multi-
particle interference and of the particle statistics in
quantum walks. In the first proof-of-principle photonic
experiments AL has been observed in the two-photon
wavefunction. In this scenario, it could be possible
to simulate even the fermionic statistics by proper
manipulation of two-photon entangled states generated
by single-photon sources.

A. Modeling transverse localization: the beginning

In the last decades, the idea that Anderson localization
could be applied to electromagnetic waves[1, 2] has drawn
the attention of the scientific community, stimulating ex-
periments and conjectures. The excitement was further
propelled by the following observation of the coherent
backscattering cone (the so called weak localization)[3–
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5]. Several experiments claimed strong localization of
light in buck media [6–8], but these results are still to-
day strongly debated [9–12]. First Abdullaev in 1980[13]
and then De Raedt in 1989 [14] proposed an alterna-
tive form of localization for light: the transverse localiza-
tion. These authors described an optical system transla-
tionally invariant along the propagation direction of the
waves, together with a refractive index varying randomly
in the directions rectangular to it (transverse disorder).
As usual in diffraction theory on can reduce the appropri-
ate Helmholtz equation to a paraxial one [15, 16], which
will be outlined in the following [14]:

We start from the Helmholtz equation for the scalar
field φ(r), which represents one of the components of the
electric field E(r, t)

∇2φ(r) +
ω2

c2
n2(x, y)φ(r) = 0 (1)

where ω is 2π times the frequency, c is the vacuum light
velocity, λ is the wavelength and r = [x, y, z]. In the
case of spatial longitudinal invariant system, the func-
tion n(x, y) is the (transversely varying) refractive index.
Due to the translation invariance in the z direction the
wavefunction can be represented as

φ(r) = a(r) exp (−ik0z) (2)

where a(r) is the envelope in z direction and describes the
localization effects in (x, y) direction. k0 = n0ω/c is the
wavenumber in the medium. n0 is the average refractive
index in the disordered medium (disordered fiber). Eq.
(1) becomes
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By introducing a transverse Laplace operator ∇2

⊥ =
∂2
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∂y2 and making the paraxial approximation [16]∣∣∣∣∂2a(r)
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Eq. (3) becomes

2ik0
∂

∂z
a(x, y, z) =

(
∇2
⊥ + U(x, y)

)
a(x, y, z). (5)

where the potential is defined in terms of the spatially
fluctuating refractive index:

U(x, y) = k2
0

[
n(x, y)2 − n2

0

n2
0

]
≈ 2k2

0

∆n(x, y)

n0
, (6)

with ∆n(x, y) = n(x, y) − n0. Equation (5) is formally
equivalent to the Schrödinger equation driving electron
localization[17]. Here the z component mimics the time

dependence in the Schrödinger equation and the index
fluctuations mimic the random potential. In their semi-
nal paper deRaedt et al. solved this equation numerically
and obtained evidence for transverse Anderson localiza-
tion for an index contrast of ∆n = 0.25 and 0.5.

II. EXPERIMENTS ON TRANSVERSE
LOCALIZATION

The first papers on transverse localization where fo-
cused on theoretical modeling and numerical simulations.
The experimental realization of the effect, required more
than a decade from the appearance of the paper of De
Raedt et al. [14], because it required several technologi-
cal advances on the fabrication side. The difficulty relies
in the realization of the translationally invariant disorder
in the z direction, which is particularly challenging at op-
tical wavelengths, where it is needed to realize “paraxial
defects”, i.e. invariance of the defect structures along the
symmetry axis for sufficient length and size. The first
successful approach was the“writing method” based on
the application of the photo-refractive effect, which eas-
ily enables to produce z-invariant defect structures, em-
ploying Gaussian beams. On a second stage the TL has
been realized employing fiber-drawing technology, which
enabled to produce longer structures, larger refractive
index contrasts, and finally to produce application-ready
transverse-localized fibers. In the last stage, TL femto-
second direct laser writing was applied, which enabled
the direct control of the defect positioning in order to
investigate effects related to the disorder design. In the
following we will describe all this.

A. Early experiments

The first experimental observation of TL (and actually
one of the most unequivocal experimental manifestation
of light localization) has been reported by Schwartz and
coworkers [18] employing photo-refractive media. The
authors employed the optical induction technique, [19]
to transform the intensity distribution of an array of
parallel laser beams into a refractive-index distribution
thanks to the nonlinear response of the glassy material.
The distribution of the beam intensity is controlled with
an interference mask thus enabling the experimentalist
to design the disorder configuration. The approach of
Schwartz and coworkers induces a small refractive index
contrast (∆n ∼ 10−4) and a large disorder grain size (∼
10 µ m) thus the expected mean free path ` (the spatial
length over which light propagation direction memory is
lost) is could be rather large. However, because the lo-
calization length, according to the scaling theory [20, 21]
is proportional to ek⊥`, they argue, that they deal with
a very small perpendicular wavenumber k⊥. The latter
is the projection of the wavevector onto the x − y plane
k⊥ = k0 sin θ, with θ being the incidence angle, see the
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sketch in Fig. 1).
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FIG. 1: Sketch of transverse localization Sketch of the
scattering structure and illumination for the realization of the
TL. Light, in the form of a plane wave defined by the wavevec-
tor k, is impinging on the sample, with an azimuthal angle θ.
The projection of the wavevetor on the x-y plane (parallel to
the fiber facet) k⊥ and the projection of the wavevector on
the propagation direction z (kz )are reported, together with

the spectral parameter
√

(E) = k⊥ (see chapter 3). The dis-
ordered system is typically consisting of a matrix of refractive
index n containing “inclusions” with a different refractive in-
dex n1. To work as “paraxial defects” the defect structures
with index n1 should be precisely parallel to z.

The big advantage of the optical induction is the possi-
bility to completely rearrange the refractive index distri-
bution, with a simple and fast rewriting procedure. The
possibility to perform experiments with several realiza-
tions of the disordered n(x, y) pattern enables to retrieve
averaged-over-disorder quantities and this is an impor-
tant aspect for verifying the presence of light localization.
In particular the authors of [22] demonstrated a depen-
dence of the localization length on the degree of disorder,
thus demonstrating TL.

B. Optical fibers

In 2012, Arash Mafi and coworkers[23], demonstrated
TL in a optical fiber, composed of polymer materials.
They used a novel kind of fiber named disordered binary
fibers (DBF), based on the random mixing of tens of
thousands of polymer fibers of two types: poly-methyl-
methacrylate (PMMA) and polystyrene (PS). The fibers
were put together randomly and then thinned by apply-
ing a fiber-drawing tower.

By this procedure homogenous fibers were realized
with a realization of transverse disorder in the refrac-
tive index. The binary fiber approach provides several
advantages: i) the disordered refractive index distribu-
tion is permanent, ii) the refractive index mismatch be-
tween the two materials (∆n ∼ 0.1) is orders of magni-
tude higher than in the case of the photorefractive struc-
tures iii) the optical fibers are a mature technology ready
for applications based on localization. Mafi and cowork-
ers also fabricated glass optical fibers hosting transverse
disorder and demonstrated TL therein [23]. The glass
platform is extremely favourable for applications, pro-
viding very high refractive index contrast together with
increased stability and lower absorption.

FIG. 2: Probing the wavelength dependence of the av-
erage localization length
A) Experimental setup: The probe beam is generated either
by a tunable laser (tunability range 0.690 µm and 1.04 µm) or
at a fixed wavelength (532 nm) laser. The back-reflected light
is then visualized by the camera CCD1 through the beam-
splitter (BS) to focus the beam at the fiber entrance. The
piezo devices control the laser injection location. The trans-
mitted light is collected by the objective OBJ2 and imaged on
camera CCD2 with a magnification of ×50. Panel B reports
the average localization length ξ versus wavelength λ for both
numerically simulated and experimental data. Experimental
data (open circles) are from [26] while numerical data, based
on the approximate, traditional potential-type (PT) approach
of Eq. (5) (full triangles and dashed line) are from [27]. The
full line represents the prediction of our new, modulus-type
approach (MT), which is exact [26].

C. Image Transport

In-fiber implementation of the Anderson localization,
enables the propagation of localized beams with the
transverse size comparable to that of cores of commer-
cial single mode optical fibers. Thus a single disordered
fiber with sufficient transverse extension can act as a
coherent fiber bundle [24]. In [25] Mafi and coworkers
demonstrated image transport through disordered opti-
cal fibers up to 5 cm. The transported image quality
is comparable to or slightly better than the one obtain-
able with commercially available multicore image fibres,
with disorder reducing the pixelation effect present in
periodic structures and improved contrast. On the other
hand, the imaging resolution is limited by the quality
of the cleaving and polishing of the fiber tip, while the
transport distance is limited by the optical attenuation
and the residual longitudinal disorder resulting form the
imperfect drawing process. In this sense a glass based
disordered fiber, with an higher filling fraction and much
lower losses has the potential to further improve endo-
scopic disordered fibers.
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D. Experimental test of the traditional theory of
Anderson localization

The traditional theoretical description of Anderson lo-
calization of light, and, in particular, transverse Ander-
son localization [14, 23, 27] predicts a pronounced depen-
dence of the localization length on the light wavelength.
This is implied by the dependence of the potential U(x, y)
in Eq. (5) on k0 = 2π/λ

2ik0
∂

∂z
a(x, y, z) =

(
∇2
⊥+k2

0

[
n(x, y)2 − n2

0

n2
0

]
︸ ︷︷ ︸

U(x,y)

)
a(x, y, z).

(5)
We call the traditional approach according to Eq. (5)

the potential-type approach (PT). The authors of [26] in-
vestigated this effect experimentally (see a sketch of the
setup in Fig. 2A ) in order to verify the validity of the
current theory of Anderson localization of light. The ex-
perimental setup is shown in Fig. 2. Panel 2B reports the
the localization length ξ versus the incident-laser wave-
length: no dependence on the wavelength is retrieved in
the range 0.55 µ m ≤ λ ≤ 1 µ m. This is in contrast
to a simulation of Karbase et al. [27] of the same spec-
imens, using Eq. (5), showing a strong dependence on
the wavelength λ = 2π/k0, see the dashed line in Fig.
2. The reason for this discrepancy with the theoretical
predictions will be fully explained in the following sec-
tion. Here, we just sketch the essence of the findings of
the authors of [26]:

(i) In deriving the wave equation (5) it has been tacidly
assumed that the divergence of the electric field
would be zero. In the presence of a spatially vary-
ing index of refraction the divergence is, however,
nonzero and is given by

∇⊥ ·E = − 1

n2(x, y)
E · ∇⊥n2(x, y) 6= 0 . (7)

Approximately neglecting this term leads to the
strong dependence of the localization length on k0,
and, hence, on the laser wavelength (dashed line in
Fig. 2B) [14, 23, 27], at variance with the experi-
mental findings (Fig. 2B).

(ii) An alternative wave equation has been derived by
the authors of Ref. [26], in which the electric mod-
ulus 1/n2(x, y) enters (“modulus-type”, MT), and
which involves no approximation (except the parax-
ial one):

2ik0
∂

∂z
b(x, y, z) = −∇⊥ ×

1

n2(x, y)
∇⊥ × b(x, y, z) . (8)

Here, b(x, y, z) = e−ik0zB(x, y, z) and B is the
magnetic field. This wave equation does not predict
any wavelength dependence of the average localiza-
tion length (full line in Fig. 2B), in agreement with
the experimental data.
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FIG. 3: Localized states and nonlinearity Panel A re-
ports the spectrum (blue thick line) retrieved at the output
of a disordered fiber (the collection area is 1 µm). The red
thin line represents the source spectrum. Panel B reports the
shape of the most intense mode (at ' 801 nm), for five values
of the input power. Panel C Shows localization length versus
input intensity. All data are from [28].

E. Nonlinearity in disordered optical fibers

There is a relevant debate about the fact that nonlin-
earity [29, 30] may enhance disorder induced localization.
The interplay between disorder and a nonlinear response
may strongly modify the process of disordered induced
wave trapping in TL. In particular in the case of nonlo-
cality, while localization tends to reduce the inter-mode
interactions, a nonlinear perturbation, extending beyond
the region of the localized state, could eventually produce
some kind of action at a distance. The first experimental
evidence of non-localitiy acting together with Anderson
localization in an optical fiber, has been shown in [28].
In that paper, the disordered fiber has been probed with
a broadband laser beam, showing a distribution of sharp
peaks in the transmittance, as expected from the “res-
onant” behavior of the disorder induced localized states
(in Fig. 3a we report the spectrum transmitted from the
fiber (blue) compared to the probe spectrum (red)). The
first evidence is that the spatial shape of the localized
states is strongly affected by energy probe beam power.
This effect is reported in panel. 3b,c where the local-
ized state shape is reported as a function of the input
power. The mode is seen to shrink when power is aug-
mented. The presence of sharp peaks in the spectrum for
all the power values confirms, that the nonlinear action
conserves the coherence of probe light.

This self-focussing results from the peculiar interaction
between disorder and thermal nonlinearity. In general,
the refractive index of a nonlinear optical material, varies
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with the optical intensity I as n = n0 + ∆n(x, y) + n2I,
where ∆n(x, y) is the refractive index fluctuation due to
disorder and n2 represent the coefficient of the nonlin-
ear perturbation. A positive n2 coefficient results in a
converging wave front that can potentially surpass the
diffraction limit. Conversely, a negative value of n2 pro-
duces a de-focussing nonlinearity, thus the expansion
of the beam. In plastic binary fibers, one expects the
slow thermal nonlinearity to yield a negative n2 thus de-
focussing. However experimental measurements report
instead a focussing nonlinerarity. This unexpected effect
is explained as follows [31]: If the refractive index reduc-
tion is more pronounced in one of the two constituent
materials of the binary fiber, the refractive index mis-
match may increase. Thus the overall refractive index
reduction is compensated by a stronger index constrast,
resulting in a smaller mean free path. This argument is
not affected if we switch from the PT to the MT descrip-
tion, because according to both theories the mean-free
path is inversely proportional to the index contrast, re-
sulting effectively in a decrease of the localization length,
as shown in Fig. 3.

This effect makes a local and optical tunability of the
localization length possible, enabling to drive the position
of the localized states in a form of localization-mediated
beam steering. The steering effect is reported in Fig. 4.
Panel 4A, shows light reflected by the fiber input: the
probe beam (green spot on the left) and the pump beam
(red spot on the right). Panels 4B-D show the shape of
the probe beam at the output as a function of the pump
beam power.Here it is possible to note how much the
probe beam is attracted towards the pump one. Panel
4E shows the distance of the probe beam center as a
function of the input power.

Nonlocality obviously works also when more than two
modes are involved. The behaviour of a group of localized
modes is visualized in panel 4F,G. Here we show (data
from [28]) the mode density (number of localized modes
per square µm) along the x and y axis at the output of a
fiber. The mode density has been characterized for vari-
ous values of the input power. The modes indeed appear
to be attracted one another and then after a “collision”
they start to diverge.

F. Localized states and “single modes”

The Anderson localization (AL) scenario typically
comprises a disordered system supporting states which
are strongly localized at different locations in space and
at different energies [32]. These disorder induced reso-
nances, have thus a poor or negligible spatial and spec-
tral overlap so that transverse energy transport is sub-
stantially slowed down.

While the majority of the studies on AL are focused
on the measurement of transport-related quantities (such
as diffusion or conductance [6–8, 21]), it is also interest-
ing to study the properties of disorder-generated local-
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FIG. 4: Light steering in the localization regime. Panel
A shows the input of the DBF, showing the probe beam (green
on the left) and the pump beam (red on the right) . Panels
B-D report the probe beam (pump light has been removed
from the detector with a spectral filter) for several values of
pump power. Panel E shows the distance between probe and
pump beam versus the pump power. Panels F-G, report the
modes density along the X axis and Y axis (respectively) and
for several pump powers. Data from [28].
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FIG. 5: Probing single mode nature of localized states
The sketch reports a scheme of the experimental setup. Leg-
end: CW laser - continuous wave laser; M - Mirror; BS -
beam-splitter; OBJ - objetcive; DBF - disordered binary fiber.
Panel A reports the transmittance map in a 10 µm side field
of view. Data from [33].

ized states. These light structures could be employed for
energy storage[30, 34] or super efficient lasing [35, 36].
Indeed localized states act exactly like a microresonator,
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with the difference that the resonance is sustained by a
disordered structure instead of a regular one. In photon-
ics this kind of ”lonely” structures are extensively em-
ployed in several fields: the most successful applications
are in the field of fiber optics and laser resonators where
they are named single-mode resonators or single-mode
fibers. The principle of operation for both applications
is very similar: they are resonant structures designed to
host a single solution (typically the fundamental one) of
the wave equation without (or with very small) losses.

In the case of disordered optical fibers one may ask, to
which extent a localized state operates as a single mode
hosted in the core of single-mode fibers. This issue has
been extensively studied in [33].

In contrast to multi-mode fibers, disordered binary
fibres (DBF) show peculiar transmittance maps. The
transmittance map is the total (integrated over the whole
fiber tip output) intensity measured as a function of the
injection location, and measured with the setup shown
in Fig. 5. Light from a CW laser is tightly focused into
a spot of 0.7 µm diameter at the DBF input. The fiber
input tip is sustained by a motorized actuator which en-
ables to scan the injection location (r = [x, y]) along
the input plane. The total transmittance T (r) is thus
obtained by summing the whole intensity measured on
the output plane (R = [X,Y ]) by Camera 2. A typical
transmittance map is reported in panel 5A. It is pos-
sible to note that high transmittance locations (green
spots) are appearing rather sparsely and surrounded by
a sea of barely transmitting locations. These “hotspots”
are the locations at which the input (which has a size
much smaller than the the localization length), couples
efficiently to a transmission channel corresponding to a
transversely localized state. The fact that the transmit-
tance map is sparse should be thus a consequence of the
fact that the coupling condition are very “strict” (reso-
nance bandwidth is very small) and thus coupling hap-
pens only at specific locations.

Now it is interesting to further investigate the nature
of these transmittance hotspots. The most accessible fea-
ture is the intensity profile measured at the fiber output:
this is reported at Fig. 6 for four different input loca-
tions. The input locations are identified by small colored
dots labeled (ai bi,ci, di) in Fig. 5A. The intensity pro-
files in panels B and C of Fig. 6B correspond to injec-
tion locations in the same hotspot and they produce two
very similar output intensity profiles. On the other hand,
two very close input locations lying in a barely transmit-
ting area (panels C and D of Fig. 6) produce two very
different output intensity profiles. The intensity profile
corresponding to an high efficient transmission channel
is thus a fingerprint of the channel. In the same way the
Gaussian profile going out from a single mode fiber is
an indistinguishable signature for efficient coupling of a
laser beam to the fundamental mode of the fiber’s core.

To verify this picture, one should observe where the
mode’s fingerprint is found while scanning the input of
the fiber. To perform this measurement systematically,

A B C D2 m 2

 

m 4

 

m 4

 

m

FIG. 6: Mode Fingerprints Each Panel reports the spatial
profile of the intensity found for the correspondent location
in Fig. 5: i.e. panel A shows the fingerprint for location (a),
B for location (b) ecc. Data from [33].

the authors engineered a specialized observable that is
the degree of similarity Q(r1, r2)

Q(r1, r2) =

∫
I(R, r1)I(R, r2)dR , (9)

normalized such that Q(r, r) = 1. The fingerprint of
a transmission channel is the output intensity profile re-
trieved at the location of higher transmittance. So for
the transmission channel located at ai produces a Q-map
Q(ra, r2) =

∫
I(R, ra)I(R, r2)dR, where ra corresponds

to a location of higher intensity of the mode ai. By com-
puting Q(ra, r2) for all r2 in the area of view, we retrieve
the Q-map reported in Fig. 7A. The white/bluish area
(where Q ' 1) corresponds to the dwelling area of the
mode: the set of input locations from which the mode
can activated. The dwelling area is very sharp, meaning
that when the mode is activated, no other modes (which
would modify the fingerprint and immediately lower the
Q) are activated.

A B C

FIG. 7: Q-maps Panels A, B and C show Q-maps for modes
(a) (e) and (c) respectively. Data from [33].

A similar situation is found in Fig. 7B for the mode
in ei. The two modes are only barely overlapping: en-
ergy is not flowing from one localized state to the other.
The dark area in both maps corresponds to locations in
which no intensity is transferred to the localized state.
Note that the small displacements of the input inside the
dwelling area do not cause any modification in the mode
fingerprint. Multi-mode light structures would give rise
to a pronounced flickering of the image due to the differ-
ence in phase delay of the different modes. The absence
of such flickering is a relevant proof of the single-mode
nature of the light structures supported by the DBFs.

The fact, that the dwelling areas of different modes
are barely overlapping, is consistent with the picture in
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which localized states are orthonormal. A definitive con-
firmation of orthonormality requires to measure all the
relevant observables : dwelling area, fingerprint, spectral
parameter and polarization. Such a challenging experi-
ment (requiring the full characterization of thousands of
modes) has not yet been carried on to our knowledge.

On the other hand Fig. 7C, related to mode (ci), pro-
vides a Q-map almost entirely empty: in absence of a
transmission channel, retrieved light is not coupled to a
localized state. In this case the fiber behaves in way simi-
lar to a (very leaky), large-core multi-mode fiber where a
small translation of the input produces a complete change
of the output due to interference (thus an immediate de-
cay of the Q value).

Regarding polarization, Ref. [25], reports one of the
first studies about the impact of polarization: in the
supplementary Fig. 3 the authors show that image re-
construction is nearly unaffected by the input polariza-
tion. In [33], the supplementary Fig. 2 demonstrates the
“polarization maintaining” nature of the localized states.
To our knowledge there are no experimental studies for
the polarization behaviour in the nonlinear case, however
we have no evidence suggesting that the picture changes.

We summarize:

(i) high transmission channels in a fiber are sparse;

(ii) they are separated by a barely transmitting “sea” ;

(iii) independently on how (and where) light is coupled
to a fiber, each transmission channel retains its fin-
gerprint (output profile );

(iv) modes are excited in alternative fashion (i.e the
same input location activates only a transmission
channel at time).

In other words: localized states of a disordered binary
fiber behave exactly like the single modes of conventional
single mode fibers showing the same property: namely
the “resilience to the launch conditions”.

G. Designed disorder in Glass fibers

Disorder binary fibers (DBF) are an unique architec-
ture, [37]: a fiber without cores (thus similar to a mult-
mode fiber) , capable to host localized/single mode so-
lutions. However, the high absorbance of the plastic
component materials, together with fabrication-induced
scattering losses, degrades consistently their transmit-
tance efficiency, which remains very limited especially if
compared with the properties of silica fibers capable to
transmit light for kilometer with few losses. It is thus
very promising to obtain transverse on disordered glassy
fibers. The first observation of transverse Anderson lo-
calization in a glass optical fiber has been obtained by
Mafi and coworkers [38]. The glassy disordered fiber has
been obtained, starting form a “porous satin quartz” rod
of 8 mm in diameter and 850 mm in length from which

a single 150 m long fiber (diameter 250 µm) has been
obtained. However, in this system the non-homogeneous
distribution of disorder (lower air hole density in the cen-
tral region of the fiber), produces localized states only
at the borders of the fiber. This uneven distribution of
disorder forbids a complete optical exploitation of the
waveguide section. Moreover, the positions of the defects
(the air bubbles) is random (it results from the natural
occurrence of pores in the rod) and cannot be tuned by
the experimentalist at the fabrication stage.

On the other hand the concept of designed disorder
[39] is becoming an intense field of research with applica-
tions ranging from the fabrication of waveguides, polar-
izers to light harvesting [40–42]. In fact, in some cases,
disordered structures, even if fully deterministic, can be
more favourable for specific tasks than periodic ones. For
example, disordered arrays of defects can be employed
to produce a structure displaying different propagation
regimes, (full photonic bandgap, Anderson localization
or free diffusion) depending on the wavelength employed
[43].
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FIG. 8: Localization length in Direct laser written dis-
order Localization length ξ versus degree of disorder χ, mea-
sured in a D Glassy substrate in which paraxial defects have
been realized with FDLW. Data from [44].

In order to implant “designed disorder” into glassy op-
tical fibers, the authors of [44] employed the femtosec-
ond direct laser writing (FDLW) technique. FDLW [45]
exists since the early nineties, and enables nanometric
resolution in surface ablation. In in transparent materi-
als bulk micro machining can be achieved through non-
linear (two- or three-photon) absorption, thus enabling
the fabrication of photonic or microfluidic devices. The
strong confinement of the nonlinear absorption volume,
together with positioning performed by piezo-actuators
with nanometric resolution, enables the fabrication of
three-dimensional and complex structures. The modi-
fications by nonlinear absorption yield a local refractive-
index change (at low power) or even void formation (at
high power). Importantly the changes produces are per-
manent, thus the low power approach enables to pro-
duces durable wave guides. The group of A. Szameit
and coworkers reported several experiments on waveg-
uide arrays in which disorder is introduced in the inter-
waveguide coupling factors. This approach enabled to
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investigate Anderson localization [46–49], defect local-
ization [50], and also topological insulation [51]. This
wave-guide based approach, indeed, enables to access a
plethora of intriguing physical phenomena, however it re-
quires the individual fabrication of each of the transmis-
sion channels. In this sense DBF support localization in
a different manner: they can be, indeed, seen as a contin-
uous meta-material, potentially hosting localized states
at any location, which could support the resonance con-
dition. The most evident consequence of this difference
is that localized states translate gradually their position
when wavelength is changed in DBF, while they can be
hosted only at the waveguides location in waveguides-
arrays.

In order to transfer the advantage of DBF to glasses
Gianfrate and coworkers [44], employed FDLW in a non-
traditional way. In particular they employed an objec-
tive with high numerical aperture ( NA=0.65) to gen-
erate tubes with very small diameter and with refrac-
tive index larger than the surrounding medium. These
paraxial structures play the role of a transverse scatterer,
because their reduced transverse dimension does not en-
able to support propagating modes: they act as paraxial
defects (see sketch in Fig. 1). This new generation of
optical fibers based on paraxial defects have been stud-
ied in [44], where the authors show, how the localiza-
tion strength depends on the degree disorder properties.
The authors demonstrate that the confinement proper-
ties depend on the degree of disorder 0 < χ < 1: a
parameter tuned at the fabrication stage. The parax-
ial defects are fabricated at the transverse coordinates
[XMx

, YMy
] = [δ(Mx +χθMx

), δ(My +χθMy
)], where Mx

and My are integer numbers between 0 and S, where δ
is the lattice size and θ is a uniform random number be-
tween [-0.5 and 0.5]. When χ is 0, the paraxial defects are
located in a square lattice with cell side δ and S2 defects
(square with side δS). For χ > 0 each defect is displaced
ba a random amount δχθMx along X and δχθMy along
y, generating a square lattice with an increased degree of
randomness.

Fig. 8 reports the measured localization length ξ as a
function of χ. It is possible to note that the localization
length decreases up to 0.6 and then starts to increase
again. While the decrease is naturally expected as a nat-
ural consequence of increasing disorder, the increasing
behaviour above χ = 0.6 results from the appearance
of overlapping paraxial defects which are effectively de-
creasing the defect density.

The realization of localization induced by direct laser-
written defects is the fist step towards a new generation
of glass-based optical fibers characterized by low absorp-
tion and greater stability with respect to their plastic
counterpart. The ability of tuning the defect position
will open the possibility to test the concepts of designed
disorder directly in optical fibers, thus paving the way
towards unprecedented applications.

III. THEORY OF ANDERSON LOCALIZATION
OF LIGHT

A. Historical overview

Since the appearance of Anderson’s seminal 1958 ar-
ticle [17] the interest of the condensed-matter commu-
nity in elenctron and wave localization has not decreased
[32, 52]. That Anderson localization is an interference
phenomenon, i.e due to the wave nature of electrons, be-
came only clear in a second seminal paper by the “gang
of four” Abrahams, Anderson, Licciardello and Ramakr-
ishnan [20], in which they combined perturbation the-
ory with a scaling procedure (to be described below)
to show that the disorder-induced interference leads al-
ways to localization in two and one dimension. That
one-dimensional disordered electronic systems feature al-
ways localized states had already been shown by Mott
and Twose in 1961 [53].

The rather ad-hoc scaling argument of the gang of four
has been given two complementary field-theoretic fun-
daments: the self-consistent localization theory of Voll-
hardt and Wölfle [54–56] and the generalized nonlinear
sigma model [57, 58], which goes back to a paper by
Wegner [59]. Wegner realized that the nonlinear sigma
model for planar ferromagnetism exhibits the same scal-
ing behaviour as the scaling theory of Anderson localiza-
tion. Shortly after the self-consistent localization the-
ory of Vollhardt and Wölfle [54–56] appeared, it was
noted by Economou and Soukulis [60] that the result-
ing self-consistent equation for finding the localization
length was mathematically analogous to the problem of
finding (or not finding) a bound state for single elec-
trons within a potential well (“potential-well analogy”).
The potential-well-analogy method was later formulated
more rigorously by Soukoulis et al. [61] and Zdetsis et
al. [62]. In all three analytic approaches, (i) the scal-
ing/nonlinear sigma model theory (ii) the self-consistent
theory and (iii) the potential-well analogy, one proceeds
in two steps for calculating the localization characteris-
tics, namely the phase diagram, the conductance in the
delocalized regime and the localization length in the lo-
calized regime:

(i) Calculating a “unrenormalized” (or “reference”)
conductance g0 from the disorder statistics of the
spatially fluctuating potential

(ii) Applying the

- scaling equations (scaling theory/nonlinear
sigma model)

- self-consistency relation (self-consistent local-
ization theory)

- potential-well relation

in order to obtain from g0 the mobility edges and
the localization length or conductivity.
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It is interesting to note that, as the potential-well anal-
ogy is not based on the assumption of weak disorder (i.e.
the assumption that the relative variance of the poten-
tial fluctuations be small), one can apply the standard
effective-medium theory for strong disorder, namely the
coherent-potential approximation (CPA) for calculating
g0 [62]. Complementary numerical methods for solving
the Anderson localization problem are the Green’s func-
tion method [63, 64] and the transfer matrix method
[65]. In both methods the one-parameter scaling idea is
used to extract the bulk localization features by finite-
size scaling. These methods do not suffer from some
shortcomings of the analytical approaches. (The analytic
approaches predict e.g. a critical exponent of ν = 1.0,
whereas the true one, obtained by the numerical work is
ν = 1.57 [63, 66])

The standard (Anderson) model for electron localiza-
tion is given by the following Hamiltonian on a simple
hypercubic lattice [17] with lattice constant a.

H =
∑
i

|i > εi < i|+ t
∑
i6=j

|i >< j| (10)

where the indices i, j denote lattice sites and the double
sum is over next nearest neighbors only. εi =< i|V (r)|i >
is the diagonal element of an external potential V (r),
which varies randomly in space. < r|i > are Wannier ba-
sis states. Usually the local potentials εi are assumed to
be independent random variables, which are distributed
according to a distribution density P (ε), which can be
a Gaussion or a box-shaped function [67]. The overlap
(“hopping”) matrix element t is assumed to be constant.
Near the bottom (or top) of the band one can write down
a continuum Hamiltonian,

H = − ~2

2m
∇2 + V (r) (11)

with ta2 = 1/2m. Here a constant 6t has been added
(substracted) at the bottom (top) of the band. This leads
to the Schrödinger equation

Eψ(r) = Hψ(r) =

(
− ~2

2m
∇2 + V (r)

)
ψ(r) (12)

In the continuum description ([58]) one considers V (r) as
a Gaussian random variable with zero mean and correla-
tion function < V (r)V (r′) >= γδ(r− r′), where γ is the
variance times a d-dimensional volume.

As there is no difference from the mathematical stand-
point between a time-Fourier transformed classical wave
equation (Helmholtz equation) and the Schrödinger equa-
tion (12) for the electrons, (identifying 2mE/~2 with
−ω2, where ω is the angular frequency) it was soon
suggested that acoustical [68] and electromagnetic (EM)
waves [69, 70] should also exhibit Anderson localiza-
tion. These theoretical approaches were based on the
nonlinear-sigma-model formalism. A multiple-scattering
approach for localization of (schematically scalar) acous-
tical waves was published by Kirkpatrick 1985 [71].

Considering acoustical waves in a disordered medium
the disorder may come from (i) spatial density fluctua-
tions or (ii) spatial fluctuations of elastic moduli. John
et al. [68] assumed density fluctuations, the approach of
Kirkpatrick (see Eqs. (6a) - (6c) of [71]) is equivalent
to considering fluctuating elastic moduli. If one assumes
both density and modulus fluctuations, the wave equa-
tion for the schematically scalar acoustical displacement
field φ(r, t) takes the form

ρ(r)
∂2

∂t2
φ(r, t) = ∇K(r)∇φ(r, t) (13)

or in frequency space

−ρ(r)ω2φ(r, t) = ∇K(r)∇φ(r, t) (14)

If the density ρ does not fluctuate, Eq. (28) constitutes
an ordinary eigenvalue problem, which can be solved by
discretization, followed by diagonalization. In the case
of density fluctuations, one can separate the fluctuations
from the mean ρ(r) = ρ0 + ∆ρ(r):

−ρ0ω
2φ(r, t) =

(
ω2∆ρ(r) +K∇2

)
φ(r, t) (15)

Now the term ω2∆ρ(r) looks like a frequency-dependent
potential. But from the mathematical standpoint it is
strange that in an eigenvalue problem the potential de-
pends on the eigenvalue. Certainly it would be more
sound to divide the whole equation by ρ(r) to obtain
an effective modulus K(r)/ρ(r). However, in their ap-
proach to acoustical localization John et al. [68] kept
the effective frequency-dependent potential, because then
they could take over the established electronic theory of
Anderson localization, in particular the nonlinear-sigma-
model theory of McKane and Stone [58]. In his seminal
article on the localization of light [72] the author pursued
the same strategy: He wrote down a wave equation for
the electrical field E(r, ω), where the ω2 term was multi-
plied with the spatially varying permittivity ε(r). In this
derivation he tacitly assumed that the divergence of E
would be zero. We pointed already out, that in the pres-
ence of a disorder-induced spatially varying permittivity
this is not the case. We shall discuss the consequences of
this in the sections after introducing the scaling concept
of localization theory.

For later reference let us call a stochastic wave equa-
tion with fluctuating coefficient of ω2 a “potential-type”
(PT) equation and, if the elastic modulus fluctuates, a
“modulus-type” (MT) stochastic equation.

Pinski et al. [66, 73] used the transfer matrix method
to solve the discretized stochastic acoustic wave equa-
tion (28) for the density of states and the localization
properties, comparing the MT case with the PT case.
While they find that the critical properties of both mod-
els are within the universality class of the electronic An-
derson problem [74], the phase diagrams of the two mod-
els are rather different. The analogue of the PT model
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is the Anderson model of Eqs. (10) and (12), whereas
the quantum analog of the MT model is an electron sys-
tem with spatially fluctuating hopping amplitude or ef-
fective mass (“off-diagonal disorder”) [75], which also has
a phase diagram different from the Anderson model [75].
So one can state that the PT and MT stochastic wave
equations describe two physically different situations of
wave disorder. In the case of electromagnetic case, how-
ever, they are supposed to describe the same, namely EM
waves in a medium with spatially fluctuating permittiv-
ity ε(r) = n2(r). The solution of this paradox is, as we
shall demonstrate below, that the PT description is an
approximation (neglecting the ∇ · E term), whereas the
MT description is exact.

B. Wave interference and the scaling theory of
Anderson localization

If a wave is experiencing disorder like electrons in an
impure metal, the waves are repeatedly scattered. This
multiple scattering process can be interpreted as a ran-
dom walk, featuring a diffusion constant D. In fact, one
can derive a diffusion equation for the wave (diffusion
approximation [76, 77]). The diffusion approximation is
equivalent with the relaxation time approximation [78],
leading to the Drude law for the conductivity.

The diffusion approximation assumes that after each
scattering event the phase memory is lost. However, if
one follows the scattering amplitudes with phases klij ,
(where lij is the distance between two adjacent scatter-
ing centers,) in a frozen medium, the phase memory is
in principle not lost. This has dramatic consequences for
recurrent partial paths, i.e. paths with closed loops: The
phase of the recurrent path is exactly equal to that going
in the reverse direction (see Fig. 9). This leads to de-
structive interference and therefore to a decrease of the
diffusivity and, as we shall see, for d = 2 to a vanishing
of the diffusivity.

For describing the interference mechanism Abrahams
et al. [20] have proposed an ingenious scaling scenario.
They consider the dependence of a dimensionless conduc-
tance g on the sample size L in d dimensions and make
the Ansatz

g(L) ∝ Lβ ⇔ β =
d ln g

d lnL
(16)

For β > 0 g scales towards infinity with increasing L,
for β < 0 g scales towards zero. In the metallic regime
(g →∞) the conductance should depend on the size L of
a sample as g(L) ∝ σLd−2, where σ is the conductivity,
so that β(g → ∞) = d − 2 (see Fig. 10). On the other
hand, for localization (g → 0) one expects g(L) ∝ e−L/ξ,
where ξ is the localization length. This transforms to
β(g → 0) ∝ ln g. Abrahams et al. then assumed a
smooth interpolation between the two limits to exist (see
Fig. 10). By means of perturbation theory they further
estimated the correction due to the interference terms to

1.

2.

FIG. 9: Visualization of two interfering scattering parths, one
going clockwise along the loop, the other anticlockwise.
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FIG. 10: Sketch of the scaling function as anticipated by
Abrahams, Anderson, Licciardello and Ramakrishnan [20].

be negative and proportional to 1/g. Their final result
for the scaling function is

β(g) =
∂ ln g

∂ lnL
= d− 2− c

g
(17)

where c is a dimensionless constant of the order of 1. It
can be verified from Fig. 10 that in 3 dimension the scal-
ing with increasing size L depends on the initial value of
the conductance, i.e. on the conductivity in diffusion ap-
proximation (Drude approximation for electrons). How-
ever, as can be seen from Fig. 10 in 2 and 1 dimension g
scales always towards 0, i.e. for L → ∞ there is always
localization.

The scaling function (17) is the same for the nonlin-
ear sigma model for planar ferromagnetism, as noticed
by Wegner [59]. Later a field-theoretical mapping from
a stochastic Helmholtz equation to a generalized non-
linear sigma model was established and applied to the
electronic Anderson problem [57, 58] as well as the PT
description of the classical-wave problem [1, 68] and the
MT description of acoustical [79] waves and light [26].
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In two dimensions the scaling equation (17) is solved
as

g(L) = −c lnL/L0 + g0 (18)

The localization length is given by the value L takes
for g1 ≈ 1. The reference conductance g0 is the diffusion-
approximation conductance

g0 = k` , (19)

where k is the wave number and ` the mean free path.
For the reference length traditionally the mean-free path
has been taken as well. In our description, instead, we
shall take for L0 the correlation length Lc of the disorder
fluctuations (see below)

L0 =
1

qc
=
Lc
2π

(20)

From Eq. (18) one obtains the well-known formula [80]
for two dimension:

ξ(E) =
1

qc
eg0(E)/c (21)

C. Wave equation for electromatnetic waves in a
disordered environment

As indicated above, almost the entire literature on An-
derson localization (AL) of light is based on the potential-
type wave equation, i.e. a wave equation in which the
spatially fluctuating permittivity ε(r) appears as a coef-
ficient of the double-time derivative of the wave function
(electric field). In a recent article [26] some of the present
authors have shown that this wave equation is in error
and leads to a fictitious wavelength dependence of the lo-
calization length in transverse localization, which is not
observed in the experiments. We now review the deriva-
tion of the traditional wave equation, show, which error
was made and present the derivation of the correct wave
equation.

Maxwell’s equations in a medium with spatially vary-
ing permittivity ε(r) are

∇ ·B(r, t) = 0

∇ ·D(r, t) = 0

D(r, t) = ε(r)E(r, t)

∇×B(r, t) =
1

c2
∂

∂t
D(r, t)

∇×E(r, t) = − ∂

∂t
B(r, t) (22)

For deriving a wave equation for the electromagnetic
fields one can either solve for the electrical field E(r, t)
or for the magnetic field B(r, t).

1. Traditional, potential-type (PT) approach

The traditional procedure (potential-type approach,
PT) was to solve for E(r, t):

ε(r)

c20

∂2

∂t2
E(r, t) = −∇×∇×E(r, t)

= ∇2E−∇
(
∇ ·E(r, t)

)
≈ ∇2E , (23)

where, in the last step ∇ · E = 0 was assumed. In
the frequency regime we obtain the following stochastic
Helmholtz equation

−ω2 ε(r)

c20
E(r, ω) ≈ ∇2E , (24)

which, separating the fluctuations of the permittivity as
ε(r) = 〈ε〉+ ∆ε(r), can be rewritten as

−ω2 〈ε〉
c20

E(r, ω) ≈
(
∇2 + ω2 ∆ε(r)

c20︸ ︷︷ ︸
V(ω)

)
E (25)

This equation is mathematically equivalent to a station-
ary Schrödinger equation for an electron in a frequency-
dependent random potential V(ω). This equivalence
made it possible to transfer the complete electronic the-
ory of AL [21, 54] to classical electromagnetic waves
[72, 81–83]. We call this approach “potential-type” (PT).

We now want to check the validity of the approxima-
tion made in Eqs. (23) to (25) We have

0 = ∇·D = ∇·
(
ε(r)E(r)

)
= ε(r)∇·E(r) +E(r) ·∇ε(r)

(26)
from which follows [84]

∇ ·E = − 1

ε(r)
E · ∇ε(r) 6= 0 (27)

One can estimate the error made in (23) by inserting
for E a wave with wavelength λ. If the scale, on which
the permittivity is varying, is large with respect to λ
(eikonal limit), the term on the right-hand side of (27)
is negligible. However, if this condition is fulfilled, one
deals with very weak disorder. In this case one has in
three dimension delocalization, and in two dimension
a very large localization length, exceeding macroscopic
sample dimensions, which would make the observation
of AL impossible. So, for stronger disorder, where one
might have a chance for observing AL, the scale of the
permittivity fluctuations must be of order λ. In this
case the divergence of E is not negligible. This renders
the approximation made in the PT wave equation (13)
invalid.
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2. New approach: modulus-type (MT) description

If one solves the Maxwell equations (22) for B one
obtains

∂2

∂t2
B(r, t) = −∇× c20

ε(r)
∇×B(r, t) (28)

Eq. (28) leads to the following stochastic Helmholtz
equation

ω2B(r, ω) = ∇×M(r)×∇B(r, ω) , (29)

where we have defined the spatially fluctuating dielectric
modulus as M(r) = c20/ε(r).

Eq. (29) is mathematically equivalent to the Helmholtz
equation for an elastic medium with zero bulk modulus
and a spatially fluctuating shear modulus M(r). This
equation is exact and is called the modulus-type (MT)
approach1. A theory for a medium with finite (constant)
bulk modulus K and a spatially fluctuating shear mod-
ulus has been worked out [79, 85, 86] by some of the
present authors and applied for explaining the anoma-
lous vibrational properties of glasses, in particular the
enhancement of the vibrational density of states with re-
spect to the Debye law (“boson peak”). Our present
theory of Anderson localization of light relies on the anal-
ogy to this case. Essentially one needs only to take the
K → 0 limit for this theory and obtain a theory for light
diffusion and localization in disordered optical systems.

In order to describe transverse Anderson localization
we first map this problem to a two-dimensional problem.
We then use the paraxial approximation to map the z
dependence of the wave profiles to the time dependence
in an effective Schrödinger equation. For estimating the
diameter of the large-z profile, the localization length
ξ we apply the scaling theory of Anderson localization
[20, 21], which is equivalent to the renormalization-group
approach to the generalized nonlinear sigma model [57–
59]. For the calculation of the z dependence of the local-
ization length we then use the self-consistent localization
theory of Vollhardt and Wölfle [54–56, 83].

D. Description of optical fibers with transverse
disorder

We now consider an optical fiber with transverse dis-
order, i.e. the permittivity exhibits spatial fluctuations
in x and y direction, but not in z direction.

Because our system is translation invariant with re-
spect to the z direction we may take a Fourier transform

1 Because of the relation (27) there is no analogous equation for
E(r, ω). The corresponding equation, which involves the local
gradients of M(r), is much more complicated.

with respect to z: B(x, y, kz, ω) =
∫
dzeikzzB(x, y, z, ω).

We then obtain an effective two-dimensional Helmholtz
equation(

[k2
0 − k2

z ]︸ ︷︷ ︸
E=k2

⊥

−∇⊥ ×
M(x, y)

〈M〉
× ∇⊥

)
B(x, y, kz,E) = 0

(30)

Here k0 = ω/
√
〈M〉 = 2π/λ is the wavenumber of the

input laser beam, λ is its wavelength, and θ is the an-
gle between the direction of the incident beam direc-
tion and the optical axis (azimuthal angle), see Fig. 1.
E = k2

⊥ = k2
0 − k2

z = k2
0 sin2 θ is called the spectral pa-

rameter. It replaces the spectral parameter ω2 of a true
two-dimensional system.

For θ � 1 we can make the approximation E =
(k0 + kz)(k0 − kz) ≈ −2k0(kz − k0) ≡ −2k0∆kz, which
is called the paraxial approximation [16]. The wavenum-
ber ∆kz refers to the Fourier component of the envelope
b(x, y, z) = B(x, y, z)eik0z, which describes the beats of
the magnetic field vector B(x, y, z) in z direction. In the
paraxial limit b(x, y, z) obeys the paraxial equation(

2ik0
∂

∂z
+∇⊥ ×

M(x, y)

〈M〉
× ∇⊥

)
b(x, y, z) = 0 . (31)

Introducing a “time” τ = z/2k0 (which has the dimension
of a squared length) this equation acquires the form of a
Schrödinger equation of an electron in a medium with a
randomly varying effective mass:(

∂

∂τ
+∇⊥ ×

M(x, y)

〈M〉
× ∇⊥

)
b(x, y, τ) = 0 . (32)

As stated above, such a model is related with a stochas-
tic tight-binding model with a spatially varying hopping
amplitude (“off-diagonal disorder”) [75].

Let us now compare the MT equation 31 with Eq. (5),(
2ik0

∂a(r)

∂z
−∇2

⊥−k2
0

[
n(x, y)2 − n2

0

n2
0

]
︸ ︷︷ ︸

U(x,y)

)
a(x, y)) = 0 (5)

By comparing (31) with (5) we can estimate the influence
of the wavelength λ = 2π/k0 on the localization proper-
ties: In the exact MT equation (31) the wavenumber k0

enters only as a prefactor of the z derivative. Therefore,
in the steady-state regime z → ∞ k0 does not enter at
all. This is, however, completely different for the PT
case described by Eq. (5): Here k0 is the prefactor of the
fluctuating-disorder term, which governs the mean-free
path and hence the localization length.

How come, that the predictions of two wave equations
which are supposed to describe the same physical situ-
ation, namely, the wave propagation (or localization) of
samples with transverse disorder differ in such a drastic
way? The difference can be traced back to the fact that
in deriving (5) the term ∇ ·E has been dropped. There-
fore the additional wavelength dependence implied by the
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PT equation (5) must be an artifact of this approxima-
tion. We shall come back to the comparison between the
PT and MT predictions when we display explicit results
obtained in the two approaches.

E. Mean-field theory for wave propagation in a
turbid medium

1. Rayleigh scattering and disorder

The most important aspect of Anderson localization
is the disordered environment. In the case of electro-
magnetic wave the disorder may appear as randomly dis-
tributed scatterers or a spatially fluctuating permittivity
ε(r) = n2(r).

Lord Rayleigh considered in his seminal papers on the
blue color of the sky [87, 88] point-like scatterers, which
act like induced Hertzian dipoles. Jackson points out in
his textbook [89] that considering fluctuating permittiv-
ity one obtains as well the famous ω4 law for the scatter-
ing cross-section, which is inversely proportional to the
mean-free path. It is known nowadays that this law be-
comes ωd+1 in d dimensions [90, 91].

Because in our effective two-dimensional system the
wave spectral parameter ω2 is replaced by E = k2

⊥ for
small E we must have by the two-dimensional Rayleigh
law

1

`(E)
∝ k3
⊥ = E3/2 (33)

We shall demonstrate in subsection 3.7 that the PT ap-
proach violates this requirement.

For weak disorder2, i.e. 〈∆M)2〉 � 〈M〉2, the detailed
distribution of the moduli (Gaussian or otherwise) is not
important, because – as we shall see – the only param-
eters which enter into the mean-free path are the mean
〈M〉, the variance 〈∆M2〉 and the correlation length Lc
of the fluctuating inverse permittivity (modulus). Here
∆M(ρ) = M(ρ) − 〈M〉 are the fluctuations about the
mean. Here and in the following ρ signifies the two-
dimensional spatial vector.

The correlation length of the spatially fluctuating mod-
ulus is an important parameter, because it defines the
characteristic length scale of these fluctuations. It is de-
fined by the length scale of the spatial decay of their
correlations:

L2
c =

1

〈∆M2〉

∫
d2ρC(ρ) (34)

2 The theory may be generalized to include strong disorder using
the coherent-potential approximation [92]. This theory includes
percolative aspects, which may be relevant for TL fibers made of
glass.

with the correlation function

C(ρ) = 〈∆M(ρ+ ρ0)∆M(ρ0)〉 (35)

2. Simplified scalar MT model and Born approximation

In this introductory subsection we consider a simplified
MT Helmholtz equation for a schematic scalar wavefunc-
tion b(ρ:

E +∇⊥ ·
(

1− ∆M(ρ)

〈M〉

)
· ∇⊥

)
b(ρ,E) = 0 (36)

The corresponding Green’s function obeys[
s+∇⊥ ·

(
1− ∆M(ρ)

〈M〉

)
· ∇⊥

)
G(ρ,ρ′, s) = −δ(ρ− ρ′) ,

(37)
where s = E + iε is the complex spectral parameter.

It has been shown in Ref. [91] that for sufficient small
spectral parameter one can use the Born Approximation
with respect to the fluctuations ∆M of the (in this case
elastic) modulus. In order to apply the Born approxima-
tion, the Fourier-transformed averaged Green’s function
is represented in terms of a complex self-energy function
Σ(E):

G(q, s) =

∫
d2{ρ− ρ′}eiq[ρ−ρ′]〈G(ρ,ρ′, s)

〉
=

1

−s+ q2
[
1− Σ(s)

] (38)

which, to lowest, quadratical, order in ∆M is given by

Σ(s) =
1

(2π)2

1

〈M〉2

∫
d2qq2C(q)G0(q, s) (39)

with the unperturbed Green’s function

G0(q, s) =
1

−s+ q2
. (40)

We now represent the correlation function schematically
by introducing an upper wavenumber cutoff qc ∝ L−1

c :

C(q) = C0
1

q2
c

〈(∆M)2〉θ(qc − q) , (41)

where C0 is a dimensionless constant, and θ(x) is the
Heaviside step function. From this we get, using the fact
that the Green’s function does only depend on q = |q|,

Σ(s) = C0
1

q2
c

〈(∆M)2〉
〈M〉2

1

2π

∫ qc

0

dqq3G0(q, s) (42)

We fix C0 by requiring that the q sum∑
q

≡ C0
1

q2
c

1

2π

∫ qc

0

qdq
!
= 1 , (43)
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i.e. C0 = 4π. We finally get for the self energy

Σ(s) = γ
∑
q

q2G0(q) (44)

with the “disorder parameter” γ = 〈(∆M)2〉/〈M〉2. The
inverse mean-free path is given by the imaginary part of
Σ, multiplied with k⊥ (see the next subsection):

1

`(E)
= k⊥Σ′′(E) (45)

The integral in (42) or (44) is elementary and gives
k2
⊥π/q

2
c for k⊥ ≤ qc, so that we obtain from the Born

approximation the Rayleigh law (33)

1

`(E)
= γπk3

⊥/q
2
c k⊥ ≤ qc , (46)

which, as said above, holds in the limit E = k2
⊥ → 0

3. Self-consistent Born approximation (SCBA) for the
modulus-type approach

For higher values of the spectral parameter the Born
approximation is insufficient, and we nead a non-
perturbative approach. Using a handwaving argument,
stating, that it is insconsistent to work with two differ-
ent Green’s functions, one may replace G0(q, s) in the
Born approximation for Σ(s) by the full Green’s func-
tion G(q, s). This turns Eq. (44) into a nonlinear, self-
consistent equation for Σ(s). This is the self-consistent
Born approximation (SCBA):

Σ(s) = γ
∑
q

q2G(q, s) = γ
∑
q

q2

−s+ q2[1− Σ(s)]
(47)

The SCBA may be obtained more rigorously by field-
theoretical techniques [57, 58, 68, 79], in which it appears
as a saddle-point of an effective field theory.

For our detailed calculations3 we return to the full vec-
tor Helmholtz equation (30). We take advantage of the
fact that the equation of motion for an elastic medium
with spatially fluctuating shear modulus µ(r) is of the
form[
ρmω

2 +∇ ·
(
λ+ 2µ(r)

)
∇ · −∇× µ(r)∇×

]
u(r, ω) = 0

(48)
where u is the displacement vector, ρm the mass density
and λ is the longitudinal Lamé modulus. If one discards
the longitudinal term one arrives at the MT equation
(30). Therefore one can take over the entire theory [79]

3 The reader not interesting in these details may continue with the
next subsection.

derived for the classical sound waves without the longitu-
dinal excitations, working in two instead in three dimen-
sions. Within this theory the influence of transverse dis-
order is accounted for by an effective-medium treatment
(self-consistent Born approximation, SCBA), derived as
saddle-point approximation within the nonlinear sigma
model field theory[79]. In such a treatment the spatial
fluctuations of ε̃ are transformed into a dependence on
the complex spectral parameter s = E + i0 according to

G(k, s) ≡ 〈G(k, s)〉 =
1

−s+ k2[1− Σ(s)]

=
1

1− Σ(s)

(
1

−k2
Σ + k2

)
(49)

Here G(k, s) is the Fourier and Laplace transform of one
of the two configurationally averaged Greens functions
of Eq. (30) (which are equal to each other), and we now
represent the Green’s function in the following way

G(q, s) =

∫
d{ρ− ρ′}eiq[ρ−ρ′]〈G(ρ,ρ′, s)

〉
=

1

−s+ q2
[
1− Σ(s)

] =
1

1− Σ(s)

1

q2 − k2
Σ(s)

≈ 1

1− Σ′(0)

1

q2 − k2
Σ(s)

(50)

where we have introduced an E dependent complex wave
number kΣ(s) = k′Σ(E) + ik′′Σ(E), which obeys

k2
Σ(s) =

s

1− Σ(s)
(51)

The SCBA self-consistent equation for Σ(s) is

Σ(s) = γ
∑
q

q2G(q, s) = γ
∑
q

q2

−s+ q2
(
1− Σ(s)

)
=

γ

1− Σ(s)

(
1 + sG(s)

)
(52)

with the local Green’s function

G(s) =
∑
q

G(q, s) =
1

1− Σ′

∑
q

1

−kΣ(s)2 + q2

=
1

1− Σ′
1

q2
c

[
ln(q2

c − k2
Σ)− ln(−k2

Σ)

]
. (53)

From the local Green’s function we obtain the spectral
density as

ρ(E) = Im

{
1

π
G(s)

}
=

1

π

∑
q

G′′(q,E)

=
1

q2
c (1− Σ′)

θ(q2
c (1− Σ′)− E) (54)

For E� q2
c we have

Σ′(E) ≈ Σ′(0) =
γ

1− Σ′(0)
(55)
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which can be solved to give

Σ(0) =
1

2

(
1−

√
1− 4γ

)
γ�1
≈ γ (56)

Making a variable change v = q2 and neglecting the imag-
inary part of k2

Σ in the denominator, we obtain for the
imaginary part of the self energy

Im

{
Σ(s)

[
1− Σ(s)

]}
= Σ′′(E)

[
1− 2Σ′(E)

]
= γIm

{
1

q2
c

∫
dv

v

−k′2Σ + v

}
= γ

π

q2
c

k′σ
2
(E) , (57)

from which follows

Σ′′(E) = γE
π

q2
c

1

1− 2Σ′(E)

1

1− Σ′(E)

γ�1
≈ γE

π

q2
c

(58)

We now want to relate Σ′′(E) to the mean-free path of the
scattered waves. We may Fourier-transform the Green’s
function (37) into ρ space to obtain

G(ρ, s) = − 1

4(1− Σ′)
H

(1)
0

(
kΣ(s)ρ

)
ρ�k−1

Σ−→ − 1

4(1− Σ′

√
2

πkΣ(s)ρ
eikΣ(s)ρ (59)

Here H
(1)
0 (z) is the Hankel function of first kind [93]. For

large ρ the intensity is then given by∣∣G(ρ, s)
∣∣2 =

1

8πkΣ(s)ρ
e−ρ/`(E) (60)

with the mean-free path given by [26]

1

`(E)
= 2k′′(E) = k′Σ(E)

Σ′′(E)

1− Σ′(E)
∝ E3/2 (61)

This generalizes the Born-approximation result (46),
which is re-obtained for small E and/or small γ.

F. Self-consistent Born approximationfor the PT
approach

The SCBA for the PT approach, due to John et al [68],
adapted to the transverse-disorder case reads [26]

ΣPT (s) = γk2
0

∑
q

GPT (q, s) (62)

with the Green’s function

GPT (q, s) =
1

−s− k2
0ΣPT (s) + q2

≡ 1

−kΣ,PT (s)2 + q2

(63)
As in the MT case we have for the mean-free path

1

`(E)
= 2k′′Σ,PT (E) . (64)

1. Diffusion of the wave intensity

The multiple scattering of waves in a turbid medium
can be well described in terms of a random walk along
the possible paths among the scattering centers [76]. The
scattered intensity may be shown to obey a diffusion
equation. Our object of interest is therefore the inten-
sity propagator

P (q, p,E) =
1

(2π)2

∫
d2k

〈
G(k+1

2q,s++1
2ω)G(k−1

2q,s−−
1
2ω)

〉
=

∫ ∞
−∞

dρ

∫ ∞
0

dτe−pτe−iρqP (ρ, τ,E) (65)

with p ≡ −iω + ε, ε → +0. The second line defines
P (q, p, E) as the spatial Fourier transform and Laplace
transform (with respect to τ) of the intensity propagator
P (ρ, τ,E) in the ρ = (x, y) plane. For deriving the diffu-
sion description it is assumed that after each scattering
event the memory of the phase of the wave function is
lost. P (q, p,E) then obeys a diffusion equation with a E
dependent modal “diffusivity”4 D(p,E):(

∂

∂τ
−∇2

ρD0(E)

)
P (ρ, τ,E) = δ(ρ)δ(τ)

⇔

P (q, p,E) =
1

p+ q2D0(E)
(66)

As a matter of fact, whithin the saddle-point approx-
imation (SCBA) one is able to calculate the mean-field
diffusion coefficient D0(E), which corresponds to the dif-
fusion approximation. This diffusivity is the analogue to
the electronic diffusivity D0 = σ0/ρF , where σ0 is the
Drude conductivity and ρF the density of states at the
Fermi level. D0 is obtained by considering the Gaussian
fluctuations of the field variableQ(ρ, s) aroundQsaddle(s)
[26, 57, 58, 68, 79] and is given by

D0(E) =
`(E)k′Σ(E)

q2
cρ(E)

(67)

This diffusivity may be related to the dimensionless ref-
erence conductivity g0 by the Einstein relation [26]

g0(E) = q2
cρ(E)D0(E) = `(E)kΣ(E) =

D0

1− Σ′(0)

=
1− Σ′(E)

Σ′′(E)

γ�1
≈ q2

c

π

1

γE
(68)

We see that g0 and D0 in our model are equal to each
other to within a factor of order unity. In two dimension
the conductivity is also equal to the conductance. This

4 It is important to note that the “diffusivity” D(p,E) is dimen-
sionless, because the “frequency” p = −iω+ ε has the dimension
of an inverse squared length.
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FIG. 11: Reference conductance, which is proportional to the
logarithm of the localization length g0(E) ∝ ln ξ(E) as a func-

tion of the spectral parameter E/q2c =
[
k0
qc

]2
sin(θ)2. Full

(black) line: MT calculation, which gives the same result for
all values of k0. Broken lines: PT calculation for wavelengths
λ = 2π/k0 = 1 µm (red) 0.75 µm (green) 0.6 µm (blue) 0.5 µm
(orange). The correlation wavenumber has been determined
from our samples by image processing to have the value kc
= 8 µm−1 [26]. The arrow indicates the maximum of the
distribution of localization lengths in the MT case.

quantity is relevant to the scaling approach of Anderson
localization, which will be explained in the beginning of
the next section. For E → 0 the conductance g diverges
due to the Rayleigh law [68].

Using the self-consistent localization theory [54–56, 83]
the authors of Ref. [94] have derived an expression for
the mean-free path of the intensity:

R2(τ,E) =

∫
d2ρρ2P (ρ, τ,E) = ξ2(E)

(
1− e−τ/τξ(E)

)
(69)

with the cross-over time

τξ(E) = ξ2(E)/D0(E) (70)

So, for “times” τ = z/2k0 smaller than τξ the inten-
sity diffuses regularly according to R2(τ,E) = τD0(E),
whereas for τ � τξ(E) it saturates in the steady-state
limit z →∞ at R2(∞,E) = ξ2(E).

We remind ourselves that ξ(E) also depends on
D0(E) ∝ g0(E) via

ξ(E) =
1

qc
eg0(E)/c (14)

G. Results for the localization length

We have solved both for the MT and the PT case
the SCBA equations (52 and (62), (63), resp. for four

different values k0 = 2π/λ, where λ is the laser’s wave-
length inside the medium. From the Results for the com-
plex wavenumber kΣ(s)we evaluated the reference con-
ductance g0 = k′(E)`(E) = k′(E)/2k′′(E), which, in turn
is proportional to the logarithm of the E dependent lo-
calization length.

We observe the following features:

• In the MT case all four curves fall on top of each
other (because k0 enters only into the definition of
E but not elsewhere).

• In the PT case one obtains four different curves.

• Furthermore, in the PT case the curves enter into
the negative E regime, which is unphysical and
violates the stability law for bosonic excitations
[95, 96].

How can one estimate the average localization length
from this calculation?

The distribution of the localization length is deter-
mined by the function ξ(E) by

P (ξ)
∑
α

∝ ∂E

∂ξ

∣∣∣∣
α

, (60)

where Eα(ξ)

∣∣∣∣
α=1,2

are the two branches of the inverse

function E(ξ) of ξ(E) in the MT case. In the PT case
there is only one branch. In the MT case there is a broad
E region, where ξ(E) ≈ ξmin, indicated by the arrow in
Fig. 11. Therefore P (ξ) has a delta-like peak near ξmin.
On the other hand, in the PT case there is a broad range
of values for ξ, which, furthermore, varies strongly with
k0. So, the average value of ξ will vary correspondingly
with k0, as demonstrated by the numerical calculations
by Karbasi et al. [27], shown in Fig. 2.

In view that in our measurement we did not find a
dependence on k0 and that the SCBA of John et al. for
the PT approach [68, 72] leads to unphysical results,
we suggest that one should rather abandon the PT
approach and use the MT one.

H. Transverse-localized modes and wavelength
dependence

We stated in the beginning that we experimentally ver-
ified [33] that the Anderson-localized wavefunctions are
single modes, i.e. they are single eigenmodes correspond-

ing to a certain eigenvalue Ei = k
(i)
⊥ according to the

characteristic equation

EiBi(x, y, z) = −∇⊥
M(x, y)

〈M〉
∇⊥Bi(x, y, z) (61)

The intensity Ii(x, y, z) = B2
i steady-state, large z regime

is localized around certain spots ri in the (x, y) plane
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(see e.g. Fig. 5) and become zero on the length scale
given by ξ(Ei). As can be seen from Fig. 5 the x, y
dependence of the wave intensities are rather irregular.
Only on the average we find an exponential decay of the
intensity away from ri.

Let us consider now in more detail, in which cases one
may obtain a wavelength dependence of the localization
length. In our experiment, reported in Ref. [26] we
had a rather large aperture of ∼ 50◦. As shown by te
authors, this covers the whole ξ(E) spectrum shown in
Fig. 11 and leads to a ξ distribution peaked at ξmin,
which is k0 independent. On the other hand, if one
would work with a narrow-aperture laser, eventually
tilted by a certain angle θ with respect to the optical
axis, one could “pick” certain single modes. Because
k⊥ = k0 sin(θ) has k0 as prefactor, certainly the mode
one may pick up by this procedure will be a different
one if k0 is changed. This opens an interesting method
for further investigation the localized single modes.

I. Discussion

In this section we have presented a comprehensive the-
ory of transverse Anderson localization of light. We
started to derive the appropriate stochastic Helmholtz
equation for electromagnetic waves with spatially fluctu-
ating permittivity. We have shown, that the potential-
type approach, which is analogous to the Schrödinger
equation for an electron in a random potential with the
potential depending on the spectral parameter E, relies
on an approximation, which is only applicable to very
weak disorder, and, for transverse disorder leads to a
wavelength dependence of the localization length. Such
a depencence is not observed. In the newly introduced
modulus-type approach, which is exact, such a depen-
dence is not predicted, in agreement to our experiments.

Whithin the modulus-type approach the localization
length, i.e. the radius of the transmitted modes, diverges
as the spectral parameter (which is proportional to the
square of the azimuthal angle between the direction of
the incident radiation and the optical angle) vanishes.
This must be so, because a ray in the direction of the
optical axis does not experience transverse disorder. The
potential-type approach, however, implies a finite mean-
free path at zero spectral parameter, and the predicted
spectrum penetrates into the negative range of E, render-
ing the predicted specrum unstable.

At the end of this section we would like to comment on
the possibility of observing localization of light in three-
dimensional systems. As mentioned in the introduction,
despite of intensive efforts, this has not been observed
until now. We emphasized that the modulus-type theory
is analogous to sound waves in solids with spatially fluc-
tuating shear modulus. There it is known that localized
states exist at the upper band edge, which in solids is the
Debye frequency. In turbid media the analogue of the up-

per band edge is the inverse of the correlation length of
the disorder fluctuations. So if it would be possible to
prepare materials with spatial fluctuations of the dielec-
tric modulus, which have a correlation length of the order
of the light wavelength, we expect chances for observing
3-dimensional Anderson localization.

IV. NON-CLASSICAL ANDERSON
LOCALIZATION OF LIGHT

According to the seminal studies by Anderson regard-
ing single-particle evolution in lattices, the disorder in the
system leads to localization of the wave-function. As we
have illustrated in the first sections, such a phenomenon
is well explained by quantum mechanics in the case of
electrons and by classical electrodynamics in the case of
light in the classical limit, i.e. no quantum effects in-
volved. In particular, localization is the result of con-
structive and destructive interference among the multi-
ple paths of the particle. Being an explicit example of
the wave-like behaviour of quantum particles, the ob-
servation of AL in single-photon states does not display
any substantial difference with respect to the experiments
carried out with classical light. However, single-photons
are one of the most promising candidates for quantum
information processing in the context of computation,
simulation, and cryptography [97]. In this framework,
AL has been extensively investigated in photonic quan-
tum walks [98–101]. The latter are versatile platforms for
several tasks [102, 103], including simulation of quantum
transport effects such as the AL. Furthermore, localized
single-photons have been used as a resource to realize
quantum cryptography protocols [104, 105]. The investi-
gation of AL at the single-particle level reveals distinctive
features when particle-particle interference is taken into
accounts [106, 107]. This occurs when more than one par-
ticle evolves in the disordered lattice. In this case, other
quantum properties of the system, such as particle indis-
tinguishability and statistics, play a crucial role in the
spatial distribution of the multi-photon wave-function.

This section regarding quantum AL is organized as
follows. First, we introduce the quantum walks model
and present single-photon experiments in the context
of AL. We further provide practical applications of
localized single-photon states in quantum cryptography
protocols. Second, we illustrate two-photon quantum
walks experiments and the effect of particle statistics in
the localization.

A. Single-photon localization

1. Quantum walks

The concept of quantum walks (QW) was first formu-
lated as a generalization of classical random walks (RW)
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[108]. In the discrete-time evolution, the walk is per-
formed by a quantum particle, which lives in an Hilbert
space of d levels corresponding to the position in the lat-
tice. In the classical random walk the walkers go for-
ward or backward according to the result of a coin toss.
In the quantum case, the coin toss is a unitary opera-
tor that manipulates an additional two-dimensional de-
gree of freedom embedded in the walker. Then the state
of a quantum walker is described by the eigenstates of
the position operator w = {|d〉} and by the coin basis
c = {| ↑〉, | ↓〉}. The evolution is regulated by two op-

erators, the coin Ĉ that performs rotations in the coin
subspace and the shift Ŝ. The latter moves the position
of the walkers conditionally to the coin state c according
to the following expression:

Ŝ =
∑
d

|d+ 1〉〈d| ⊗ | ↑〉〈↑ |+ |d− 1〉〈d| ⊗ | ↓〉〈↓ | (62)

The evolution operator in the discrete-time scenario is
the combination of the coin and shift action, namely
Un = (Ŝ · (Ĉ ⊗ Îw))n, where n is the number of sin-

gle time-step evolution and Îw is the identity operator
in the walker’s position space. It is possible to retrieve
the evolution operator through the Hamiltonian H of
the system describing a particle evolving in a lattice as
U(t) = e−iHt. In this scenario it is straightforward to
translate the above description to the continuous-time
case. The operator H expresses the interactions among
the lattice sites like in an adjacency matrix. The result-
ing QW evolution U(t) is entirely identified by the H
matrix without the need of defining a coin operator as in
the discrete-time case. The main feature of the QW with
respect to a RW with an unbiased coin is the distribu-
tion of the walker for t→∞. Such distribution depends
by the initial state of the particle and the walker tends
to spread towards the far ends of the lattice. This is in
contrast to the typical diffusive behaviours of a RW. This
discrepancy is due to the superposition principle in quan-
tum mechanics that gives rise to the interference effects
typical of waves. The formulation of QWs is very general
and feasible for different applications and experimental
implementations in the quantum information and quan-
tum computation fields [102, 109, 110]. In particular,
the formulation of QWs is very suitable for realization in
photonic platforms [111]. In the various experiments of
photonic QWs, the dynamic of the walker has been en-
coded in the degree of freedoms of single photon states,
such as the polarization for the coin subspace and, for the
walker’s position, the optical path in bulk [112, 113] and
integrated interferometer [114–119], the time arrival to
the detector [120], the modes supported by a multi-mode
fiber [121], the angular [122–124] and the transverse mo-
mentum [125].

The QWs evolution operator can be modified for differ-
ent tasks. For examples, the QWs paradigm has been ex-
ploited to observe topological-protected states [112, 126],
to simulate system with non-trivial topology [123, 125]
and to engineer high-dimensional quantum states [124].

For what concerns AL in discrete-time QWs, single-
photon localization has been investigated by introduc-
ing site-dependent disorder in the QW evolution. Such
condition is achieved implementing site-dependent coin
operators. One example is the coin in the form

Ĉd =
1√
2

(
eiφ
↑
d 0

0 eiφ
↓
d

)
·
(

1 1
1 −1

)
, (63)

where random extracted phase-shifts φ
↑(↓)
d operates lo-

cally on the site d thus breaking the transnational sym-
metry of the systems. In Ref. [98] the authors present a
discrete-time QWs encoded in the time arrival and polar-
ization of single-photon states. The apparatus comprises
two loops of different lengths. At each step the photons
generated by a single-photon source choose the shortest
or the longest path according to the polarization state
that represents the coin space. The position of the par-
ticle is encrypted in time. The coin operators in the ex-
pression (63) were manipulated to reproduce (i) the bal-

listic spread of the quantum walker by fixing φ
↑(↓)
d = 0,

(ii) Anderson localization (AL) with random extracted
phase-shift and (iii) the diffusion regime that resembles
the behaviour of a classical random walker. This last
condition is the result of a dephasing between the two
polarizations in (63) larger than the coherence time of
the single-photon packets, that destroys the interference
among the paths. This experiment was one of the first
proof of AL at the single-photon level. Another example
in this direction is Ref. [99]. Here the discrete-time QW
was realized through an integrated optical circuit com-
posed by a network of beam-splitters and phase-shifts
[127, 128]. Single-photon localization was observed in
the output modes of the optical circuit.

Further examples of single-photon localization regards
continuous-time QWs. They are typically realized ex-
ploiting continuous coupling among waveguides arranged
in a lattice in photonic chips. In this scenario the time co-
ordinate is again replaced by the distance z covered dur-
ing the propagation in the waveguides. The single-photon
wave-function is given by the red Schrdinger equation
[129]:

−i∂ψd
∂z

= cd,dψd + cd,d−1ψd−1 + cd+1,dψd+1, (64)

where ψd is the single-photon amplitude at the site d and
the coefficients cij are the couplings among the modes of
the lattice that are expressed in the Hamiltonian H. The
length of the device and the coupling coefficients can be
engineered to observe AL, as shown in the single-photon
experiments in Refs. [100, 101].

Concerning all mentioned quantum experiments it
is worth noting that the localized single-photon distri-
bution has the same properties as the distribution of
localized modes of classical light described in section 2-3.
The interest in quantum localization is not restricted
only to the pure observation of localized states. In the
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following section we illustrate an application of localized
single-photon states in quantum cryptography.

B. Quantum cryptography through localized
single-photon states

Quantum computing could undermine the security of
some of the current cryptographic protocols. An example
is given by the RSA protocol security of which is based on
the difficulty for a classical computer to find prime fac-
tors of large integers, while a quantum computer solves
the same problem in polynomial time [130]. This moti-
vates the need for a different approach to come up with
a more secure cryptographic procedure. Quantum cryp-
tography is the field of quantum information that has the
aim to formulate secure protocols based on the rules of
quantum mechanics. In the quantum protocol BB84, two
agents, Alice and Bob, exchange a stream of qubits, i.e.
quantum states that live in a two-dimensional Hilbert
space. Alice randomly chooses to prepare the state ac-
cording to two possible bases {| ↑〉, | ↓〉} and {|+〉, |−〉},
where |±〉 = 1√

2
(| ↑〉 ± | ↓〉). Bob receives the signal and

decides randomly in which basis he measures the qubits.
He extracts a stream of bits corresponding to 0 when
he measures ↑ (+) and to 1 when he measures ↓ (−).
Then, Alice and Bob’s streams of bits cannot correspond
to each other when Bob measures in a basis different
from the Alice’s choice. The two agents compare part
of their bit strings and, according to the resulting bit er-
ror rate, they can detect an eventual eavesdropper attack
and extract a secure key [131]. Variants of this protocols
exploits entangled states or high-dimensional states in-
stead of qubits. The latter are a generalization of qubits
and describe a particle living in a d-dimensional space.
The so called qudits provide advantages in the amount of
the information storage in the state send to the receiver,
and security [132].

Single-photon localized states are examples of qudits,
where the d-levels correspond to the positions assumed
by the photons. In Ref. [104] the authors implement a
BB84-inspired protocol using localized states generated
by a disordered optical fiber. The experimental setup is
similar to the one showed in Fig. 12. Alice modulates
the single photons obtained by an attenuated laser with
a spatial light modulator. In this way she can choose to
send states that localize after propagation in the fiber in
either momentum or position at the fiber’s output tip.
Bob chooses the basis of the measurement by placing
or removing a lens before the single-photon detector.
This implementation of the BB84 protocol exploits the
quantum duality between the real space and the Fourier
space of the lens: a state localized in the first space is
indeterminate in the other one and vice-versa. The au-
thors prove the feasibility of the protocol using localized
single-photon wave-functions even in the experimental
conditions. A recent work [105] exploits a similar setup
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FIG. 12: Experimental apparatus for quantum cryptography
using single-photon localized states. Alice encodes her qudits
by preparing single-photon states via a spatial light modula-
tor. She chooses between two basis, namely (K) the eigen-
states of the multimode fiber that localize after the propa-
gation, and (X) the states that spread after the fiber. Bob
measures in the K basis or in the X basis inserting one or two
lens before the detection stage. After the comparison between
the basis choices by Alice and Bob, they can extract a secure
key.

for performing a slight different cryptografic protocol. In
this experiment the information about the basis chosen
by Alice is not shared publicly after the communication
between the agents. Alice codifies her message and the
basis in two different photons that are sent at different
random time. At the end of the protocol Alice and Bob
compare the measurements about some random pair of
photons, and then they are able to extract a secure key.
This protocol offers advantages in terms of sensitivity
to noise and resilience to a “photon number splitting”
eavesdropper attack.

C. Multi-photon localization

Single-photon localized states do not add any further
insight into AL with respect to experiments based on
wave interference. Nevertheless, the proper description
of quantum light is within the framework of second quan-
tization. This representation is necessary for describing
many-particle evolution. The electromagnetic field can
be expressed by the boson annihilation â and creation
operators â†, i.e. the operators that destroy or create
exactly one photon in a given mode [133]. This descrip-
tion reflects the particle statistics and, consequently, ex-
plains the quantum interference effects due to the indis-
tinguishability of the particles. This change in the de-
scription consists basically in expressing the same state in
terms of occupation numbers of the field modes. The sys-
tem is then individuated by the evolution operator acting
to the creation and annihilation operators. In the case
of QWs, that, as we have seen in the previous section,
corresponds to a linear transformation among modes of
a given degree of freedom, the single creation operators
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representing one photon in the mode i will be

b̂†i =
∑
j

Uij â
†
j (65)

where Uij are the element of the QW evolution opera-
tor in the occupation number representation. One of the
most famous examples of two-photon interference, the

Hong-Ou Mandel (HOM) experiment [134] is explained
by the latter formulation. Here two indistinguishable
photons entering in a beam-splitter from different ports
come out always together in the same output port. This
phenomenon is a first example of the role of particle in-
distinguishability in the evolution of multi-photon states.

a b c d

e f g h

Fig. 13: Two-photon quantum localization. a-d Correlation functions G(x1, x2) of a two-photon wave function
in a one-dimensional Anderson lattice. The four scenarios report the distributions for different input states in an
intermediate time evolution, where the two photons have the same chance to be localized or to spread balistically.
a) photons are prepared in a separable state in which they occupy two adjacent sites. b) Entangled state in the
polarization degree of freedom (H: horizontal polarization, V : vertical polarization) that is anti-symmetric with
respect to the exchange of the particle’s paths. Such state mimics the fermion statistics. Indeed, according to the
Pauli exclusion principle, the probability to detect the two photons in the same site is zero. c-d) Entangled states in
the occupation number of two sites. The distribution changes depending by the sign in the superposition. e-f) The
function g(∆) calculated in the localization area, i.e x1, x2 ∈ [−4, 4] and x1 − x2 = ∆ for the four initial states.

Two-photon interference has been investigated in the
regime of AL. The main result that emerges from these
studies is that the way in which the system approaches
localization strongly depends on its initial state. In Fig.
13 we report numerical simulations illustrating the two-
photon state localization investigated in the theoretical
[106, 107, 135] and the experimental works [99–101] car-
ried out in this topic. The first row (Fig. 13 a-d) re-
port the two-photon distribution G(x1, x2) defined as the
probability to detect one photon in the position x1 and
the other in x2, averaged over different disorder config-
urations. For example, in the case two identical pho-
tons injected in the QW in positions 0 and 1 in the state

|ψin〉 = â†0â
†
1|0〉, the function G(x1, x2) has the following

expression

G(x1, x2) = 〈〈|〈0|âx1 âx2 |ψ〉|2〉〉 = 〈〈|Ux1,0Ux2,1+Ux2,0Ux1,1|2〉〉,
(66)

where 〈〈·〉〉 is the average over the disorder, the bra
〈0|âx1 âx2 is the projection on the state with the photons

in the positions x1 and x2 respectively and |ψ〉 the
output state of the QW. The last term is the result of
the application of eq. (65) to the creation operators
in the initial state |ψin〉 and of the bosonic operators

commutation rule [ai, a
†
j ] = δij (the last terms expressing

the probability through the matrix U of Eq. (65)). The
distributions reported in the figure illustrate the state
of the system after a discrete-time QW of 30 time
steps. In the simulations we have extracted uniformly

the phases φ
↑(↓)
d of eq. (63) around 0 in an interval of

length π/2 (an intermediate time evolution.) In such
condition the single-photon wave function still preserves
the ballistic spread typical in the QW, while it is starting
to localize. In the second row (Fig. 13 e-h) we show
the function g(∆) =

∑
x1−x2=∆G(x1, x2) in the region

of localization. All the quantities are normalized to
the maximum and averaged among 1000 configurations
of disorder. Figs. 13 a-b and 13 e-f compare the two
functions G and g for the evolution of the initial states
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â†0â
†
1|0〉 and 1√

2
(â†0,H â

†
1,V − â†1,H â

†
0,V )|0〉. These states

correspond to two photons created in the site 0 and
1 with different symmetries respect to the exchanging
operations between the two particles. The first one
reproduces the evolution of two non-interacting bosons.
Here, we observe the typical tendency of bosons to
assume the same states just mentioned in the description
of the HOM experiment, i.e to find the two photons in
the same position with high probability. In contrast,
the second state is anti-symmetric under exchanging of
the two particles and presents the opposite behaviour.
The probability to find the photons in the same site is
zero. These states simulate de facto fermion statistics
and the Pauli exclusion principle. To reproduce an anti-
symmetric state it is necessary to exploit an additional
degree of freedom, in this case the polarization. The
boson and fermion statistics in AL has been observed ex-
perimentally for the first time in Ref. [99] by exploiting
polarization entangled states and an integrated photonic
chip. Here a single-photon source based on parametric
down conversion from a nonlinear crystal generates
a pair of entangled states in polarization such as the
state investigated in Fig. 13 b and f. The state evolves
in a discrete QW platform, realized in an integrated
device that comprises a network of beam-splitter and
phase-shifts (see section 4.1). The coin operators in the
form of eq. (63) are sampled properly to observe the AL.
The second type of states investigated in the literature
are illustrated in Fig 13 c-d and g-h. These states
are entangled in the occupation number of the sites 0
and 1. The output distribution depends on the sign

in the superpositions of the contributions â†20 and â†21 ,
that create two photons in the respective modes. Such
entangled states in the context of AL were investigated
for the first time in [100] and then in [101]. The pair
of entangled photons is generated via parametric down
conversion. These photons are strongly correlated in
the momentum space. Such correlations are transferred
among the position of the QW’s lattice by means of a
lens system. In this way the photons are coupled in the
waveguides of the integrated device implementing the
QWs. The two experiments with such entangled states
have been performed exploiting continuous-time QW
by random couplings among the waveguides arranged
in a lattice (see section 4.1). In particular, in the most
recent experiment (Ref. [101]) the authors report the
results averaged over different configurations of random
couplings thus representing one of the most exhaustive
experiment on two-photon Anderson localization.

D. Discussion

In this section we have illustrated Anderson localiza-
tion (AL) in the context of quantum light, presenting the
most relevant results for what concerns the experimental
realizations and applications. We have first formulated

AL in the context quantum walks (QW). We have then
described the use of localized states in quantum cryptog-
raphy. In the end we have illustrated the problem of lo-
calization in quantum optics by considering multi-photon
states. Up to now the investigation of multi-photon AL
localization was confined to the two-photon case. The
reasons are various. It is still debated in the literature,
whether the results reported in the quantum experiments
can be reproduced by classical light, i.e by wave interfer-
ence. For instance, in Ref. [135] it was shown that some
features of the distribution reported in Fig. 13 could
be observed with a laser propagating in a circuit engi-
neered with an appropriate disorder. Other concerns re-
gard the intrinsic difficulty to simulate the evolution of
non-interacting bosons such as photons scattered by a
random network [136]. This prevents finding an analyti-
cal solution for the systems with a large number of pho-
tons. All these considerations explain why the present
investigations about quantum AL were basically carried
out from a phenomenological perspective. This motivates
further studies to provide a more rigorous framework for
quantum AL.

V. APPLICATIONS AND PERSPECTIVES

The story of the understanding of transverse localiza-
tion of light in the last four decades has been one of slow
but constant advances. With respect to the first formu-
lations (which reported just numerical evidences,[13, 14])
now it is possible to observe and tailor localization on at
least four different platforms: photorefractive crystals,
plastic binary fibers, disordered glassy fibers, and laser
written glass waveguides. Each of this platform has its
specific features and advantages in terms of applications.

(i) Photorefractive crystals [137], proposed in 2007,
enable relatively rapid reshaping of disorder to-
gether with nonlinear response, thus a new genera-
tion of switches or routers based on disorder guiding
can be envisioned. The hindrance of this approach
is the small refractive index mismatch and large
disorder grain size. For obtaining micron sized lo-
calized states, further effort would be needed in im-
proving the nonlinearity engineering.

(ii) Polymeric binary fibers have been proposed in 2012
and refined successively [37]. The fabrication tech-
nique for these items is extremely cheap, straight-
forward (if one has access to a fiber drawing tower),
and enables to realize kilometer long fibers start-
ing from a centimeter sized preform. In binary
fibers the refractive index mismatch is 0.1 (employ-
ing PMMA and Polystyrene as plastic components
of the preform), and the disorder can be obtained
easily with a grain size of the order of a micron.
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The big advantage of this approach is that the mi-
crometric sized defects need not to be individually
fabricated: it is the transverse thinning, which oc-
curs by the fiber drawing process, that produces
this fine-scale disorder. Thus binary fibers sup-
port strong localization in the visible range. Binary
fibers have been thus extremely successful in terms
of potential applications. It has been demonstrated
that they can support non-linearity and switching
, image transport, wave front shaping, controlled
focussing, quantum communication and key distri-
bution, through to image transport. The big draw-
back of this approach resides in the large losses of
the disordered binary fibers, which are currently
between 50 100 dB/m. These losses are exceed-
ing the ones expected for the intrinsic scattering
and absorption of the plastic material. This low
performance is probably due to the assembly and
drawing stage (carried on in a non-clean environ-
ment), which could introduce microscopic dust in
the preform. Due to these lossess all the exper-
iments have been carried on longitudinally small
pieces of binary fibers (few tens of centimeters).

(iii) Glass based binary fibers have been fabricated since
2014 from a porous glass . A rod with initial di-
ameter of 8 mm produces air-holes with diameter
varying between 0.2 and 5 µm. This approach
promises all the advantages of glass (lower losses
and enhanced stability) together with easy fabrica-
tion. This potential has already been demonstrated
in recent results including new applications such as

localization based random lasing [36]. The only
drawback of this approach is related to the non-
homogeinity of the disorder. Indeed air holes tend
to be located at the outer boundaryof the fibers
due to the fabrication process and, thus eventually
turning localized states into leaky modes.

(iv) Employing fiber drawing (both in the glassy or plas-
tic versions) it is impossible to get a direct control
on the position of the defects. This drawback has
been circumvented in 2020, employing a direct laser
writing approach. Direct laser writing is still prone
to high losses due to inefficient coupling and small
refractive index contrast. Nevertheless, by tuning
individually the paraxial defect positions, it is pos-
sible to test how extensive localization properties
depend on specific configurations. Thus the idea
of infestigating direct laser written fibers is to use
thus them as test-bench to find out how different
localization properties are produced by varying the
disorder configurations. Configurations with opti-
mal performance could then be translated to the
more efficient fabrication approaches.

If the technological progress on these platforms con-
tinues just at the same rate as in the last years, we can
envision that one (or perhaps more than one) of these
platforms will find its way to the application and indus-
trialization in the next few years.
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[92] S. Köhler, G. Ruocco, and W. Schirmacher, Phys. Rev.

B 88, 064203 (2013).
[93] M. Abramowitz and I. A. Stegun, Handbook of math-

ematical functions with formulas, graphs, and mathe-
matical tables, vol. 55 (US Government printing office,
1964).

[94] W. Schirmacher, M. Leonetti, and G. Ruocco, Journal
of Optics 19, 045602 (2017).

[95] V. Gurarie and J. T. Chalker, Phys. Rev. B 68, 134207
(2003).

[96] V. Lück, H.-J. Sommer, and M. R. Zirnbauer, J. Math.
Phys. 47, 103304 (2006).

[97] F. Flamini, N. Spagnolo, and F. Sciarrino, Reports on
Progress in Physics 82, 016001 (2018), URL https://

doi.org/10.1088/1361-6633/aad5b2.
[98] A. Schreiber, K. N. Cassemiro, V. Potoček, A. Gábris,
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N. Ismail, K. Wörhoff, et al., Science 329, 1500 (2010),
ISSN 1095-9203, URL http://www.ncbi.nlm.nih.gov/

pubmed/20847264.
[116] L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni,

A. Crespi, R. Ramponi, and R. Osellame, Phys. Rev.
Lett. 108, 010502 (2012), ISSN 1079-7114, URL http:

//dx.doi.org/10.1103/physrevlett.108.010502.
[117] K. Poulios, R. Keil, D. Fry, J. D. A. Meinecke, J. C. F.

Matthews, A. Politi, M. Lobino, M. Gräfe, M. Hein-
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