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We have generalised the standard lattice Coherent-Potential-Approximation (CPA)/Effective-
Medium-Approximation (EMA) scheme to include the case of energy dependent hopping. This
case is complicated by the fact that, due to the detailed-balance condition, the hopping rates wij

are non-symmetric, i. e. wij 6� wji. Results for the frequency dependent diffusion coefficient are
compared with Monte-Carlo simulations for a uniform and bimodal site energy distribution.

Introduction The effective-medium approximation (EMA) is a simple and powerful
method for describing hopping dynamics in disordered systems [1]. The lattice version [2],
also called coherent-potential approximation, compares quite well with numerical simula-
tions and takes into account the percolative aspects of hopping transport [1,3] in a quali-
tative manner. Most of the EMA versions proposed so far deal with the case of symmetric
hopping rates. This excludes hopping in a disordered energy landscape, in which, due to
the detailed-balance condition, the hopping rates are asymmetric, i.e. wij 6� wji. For the
case of electron hopping in semiconductors a version of the EMA for asymmetric hop-
ping rates has been formulated some time ago [5] (for more recent developments, see
also [6]). Less attention has been paid to the case of classical hopping processes, and we
will focus on this situation in the present article following an approach discussed in detail
elsewhere [4]. After summarizing the derivation of the self-consistency equation for the
effective hopping rate, we test the EMA scheme by comparing results for the frequency
dependent diffusion coefficient with data obtained from Monte-Carlo simulations.

Effective Medium Approximation
Self consistency equation We consider one particle that can perfom jumps among
nearest neighbor sites of a hypercubic lattice in d dimensions with lattice spacing a � 1.
To each lattice site i there is assigned a random energy Ei drawn from a distribution
w�E�. The jump rates wij � w�Ei;Ej�Dij (where Dij � 1, if site i and j are nearest neigh-
bors and 0 otherwise) are supposed to fulfil the detailed balance condition. The master
equation for the probability gij�t� to find the particle on site j at time t, when it started
on site i reads

dgij�t�
dt
�P

k
�wikgkj�t� ÿ wkigij�t�� ; �1�

which is supplemented by the initial condition gij�t � 0� � dij.
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After introducing symmetrised jump rates, vij � v�Ei;Ej�Dij � vji with
v�Ei;Ej� � w�Ei;Ej� exp �ÿbEj� � v�Ej;Ei�, and after rescaling the Green function
hij�t� � exp �bEi� gij�t�, we obtain from (1) (zEi � z exp �ÿbEi�)

zEi Hij�z� ÿ dij �
P
k
vik

�
Hkj�z� ÿHij�z�

�
; �2�

where we have denoted the Laplace transform of hij�t� by Hij�z�. Analogous to the
usual EMA [2], we now introduce an ordered effective medium for each class of ran-
dom walks constrained to the same energy E. In this medium the effects of the random
transition rates vij are approximated by a frequency dependent hopping rate G�z;E�.
The corresponding master equation is

zE Fij�z� ÿ dij �
P
k

G�z;E� �Fkj�z� ÿ Fij�z�
�
; �3�

where Fij�z;E� � �2p�ÿd � p
ÿp ddk�zE � G�z;E� c�k��ÿ1 exp �i k � �Rj ÿRk�� is the Green

function of the effective medium associated with the energy E;
c�k� � 2�dÿPd

m�1 cos km�, and Rj denotes the position of site j.
The effective jump rate G�z;E� is determined by the basic idea of the EMA: For one

bond in the effective medium the quantity G�z;E� is substituted by a rate v�E;E0� of
the disordered system. Requiring that Fij�z;E� does not change on the average, yields
the equation [2]

G�z;E� ÿ v�E;E0�
dG�z;E� ÿ �G�z;E� ÿ v�E;E0�� �1ÿ z eÿbEF00�z;E��
� �

E0
� 0 ; �4�

where h. . .iE0 �
�

dE0w�E0� . . . denotes an average over the distribution w�E0� of site
energies E0.

Frequency dependent diffusion coefficient The frequency dependent diffusion coeffi-
cient (dynamic diffusivity) in the EMA can be expressed as [4]

DEMA�z;E� � z2eÿbE

2dZ

P
j

eÿbEj
P

i
Fij�z;E� �Ri ÿRj�2

� z2eÿbE

2d
�ÿr2

k�k�0F̂k�z;E� � ebE G�z;E� : �5�

Averaging over E yields

DEMA�z� � he
ÿbE DEMA�z;E�iE
heÿbEiE

� hG�z;E�iEheÿbEiE
: �6�

We included the Boltzmann factor with respect to E into the averaging for the follow-
ing reason: When all possible diffusion paths (for a given time t ' 2p=w � ÿ2p=Im z)
are classified into different sets according to their final site energy E, then a particular
member (path) of a set will occur in the true system with a probability proportional to
exp �ÿbE�. Equation (6) is our final result for the frequency-dependent diffusion coeffi-
cient in the EMA.

For w!1 we obtain G�z;E� � v�E;E0� and thus the correct high-frequency limit
(mean jump rate) DEMA�w!1� � eÿbE0w�E;E0�
 �

E0;E=heÿbEiE. As already known from
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the EMA for symmetric rates, it turns out that the low-frequency limit D�w! 0� result-
ing from the EMA is too large in comparison with the true value. If we consider the
long-time diffusion coefficient Dl to be derived from theories more appropriate for long
times (in d � 1 there exists an exact expression [7], and in d > 1 one may at least
calculate the activation energy by a critical percolation path analysis [3]), we can in-
clude the correct low-frequency limit into the EMA by rescaling the temperature of the
EMA. To this end, we choose a temperature bÿ1

EMA so that the difference between the
high-frequency and low-frequency limits in the EMA solution equals the corresponding
difference in the real system for the true temperature bÿ1. This method will be referred
to as ``temperature rescaled EMAº.

Results In order to test the EMA, we compare the frequency dependent diffusion
coefficient D�w� in the EMA with that obtained from Monte-Carlo (MC) simulations.
We choose jump rates w�E;E0� � n0exp �ÿ b

2 �Eÿ E0�� (n0: attempt frequency), and con-
sider (i) a uniform site energy distribution

w�E� � 1=E0; 0 < E � E0 �7�
and (ii) a bimodal distribution

w�E� � p d�E� � �1ÿ p� d�Eÿ E0� �8�
with p � 0:7 and E0 � 1.
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Fig. 1. Real part of the diffusion coefficient as a function of frequency for the uniform energy dis-
tribution and three inverse temperatures b � 1 (*), 2 (&), 3 (~). The solid lines correspond to the
temperature rescaled EMA, in (a) for d � 2 and in (b) for d � 3. The dependence of bEMA on b is
shown in the inset. The dispersion exponents (see text) are n � 0:07; 0:20; 0:33 and
nEMA � 0:07; 0:23; 0:37 in d � 2, and n � 0:05; 0:13; 0:24 and nEMA � 0:05; 0:14; 0:25 in d � 3 for
b � 1; 2; 3, respectively



The results for the real part D0�w� obtained for the uniform energy distribution (7)
are shown in Fig. 1. The symbols correspond to the MC simulations, while the lines
correspond to the temperature rescaled EMA. Part (a) of the figure shows the results
for d � 2, and part (b) the results for d � 3 (redrawn from [4]). The inset shows the
relation between b and bEMA. As can been seen from the figure, the agreement be-
tween simulation and approximation is rather good.

Figure 2 displays D0�w� for the bimodal distribution (8) for b � 2; 4 in (a) for d � 1,
and in (b) for d � 2 and 3. For d > 1, sites with E � 0 percolate (since p is larger than
the percolation threshold) and accordingly there exists a lower bound for D0�w! 0�
when b!1. Since this lower bound is not much different from the high frequency
limit, the dispersion is weak in d > 1. We therefore have used a linear diffusivity scale
in Fig. 2b.

As commonly found in disordered hopping systems, the spectra exhibit a dc pla-
teau at low frequencies w� wlf, show dispersion in an intermediate frequency regime
wlf � w� whf , and become constant again at high frequencies w� whf. The cross-
over frequency whf is almost independent of temperature, while wlf decreases with
increasing b. The dispersive part can be characterised by an effective exponent n,
D0�w� � wn for wlf � w� whf (values for n in Fig. 1 are given in the figure caption).
The crossover frequencies predicted by the EMA compare remarkably well with
those obtained from the MC simulations. Also the exponents n are reproduced to a
good approximation by the EMA (the agreement is particularly good for the uniform
site energy distribution, while for the bimodal distribution the deviations are more
pronounced).
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Fig. 2. Real part of the diffusion coefficient as a function of frequency for the bimodal distribution
and b � 2 (*) and 4 (&), in (a) for d � 1 and in (b) for d � 2; 3. The lines correspond to the
EMA results; in (b) solid lines refer to d � 3 and dashed lines to d � 2
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