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Abstract. We present a self-consistent theory for the dy-
namical one-phonon structure factor in anharmonic crystals.
The theory is the phonon analogue of the mode-coupling the-
ory of liquid dynamics of Götze and his coworkers. Starting
point is the lattice dynamics treatment based on the Mori-
Zwanzig technique as formulated by Götze and Michel. We
apply the theory to the one-dimensional (1d) Lennard-Jones
chain and show that the nonlinear mode-coupling equations
can be readily solved in the time domain. The vertices enter-
ing the equations as input are calculated exactly by a Monte
Carlo technique. We compare our findings with molecular
dynamics (MD) simulations and the results of other theoret-
ical approaches.

PACS: 63.20.-e; 63.20.Ry

I. Introduction

Recent neutron scattering measurements of the dynamical
structure factor of transition metals in their high-temperature
bcc phase [1] stimulated anew the interest in theoretically
understanding the vibrational properties of strongly anhar-
monic crystals. The calculation of the dynamical properties
of anharmonic crystals is a long-standing problem which re-
ceived considerable interest in the sixties and early seventies
[2–5]. In later times crystalline argon became a test case for
anharmonic phonon theories, because molecular-dynamics
simulations of Cowley and Nordberg [6] using the Aziz-
Chen (AC) potential [7] reproduced both the dispersion and
line shapes of the measured one-phonon structure factor [8]
quantitatively. Glyde and Smoes [9] used the (static) self-
consistent harmonic phonon theory (SCH) plus cubic cor-
rections (SCH+C) while Cowley and Horton [10] applied
the renormalized formalism of Horner [5]. By using the AC
potential both groups were able to reproduce the experimen-
tally measured dispersion very well up to the melting point.
However, for the line shape reasonable agreement with the
experiment could not be achieved. Since the AC potential
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cannot be blamed for the disagreement with experiment the
reason must be the inadequate treatment of the self energy.
There have been also attempts to utilize the perturbation-

theoretical scheme for a description of the strongly damped
phonon spectra of the bcc transition metals [11, 12]. In these
attempts an empirical pair potential was used the parame-
ters of which were fitted to obtain correct dispersion curves.
Using second-order perturbation theory for the self energy,
again, the agreement between the calculated and measured
line shape was not satisfactory.
As Cowley and Nordberg [6] point out in connection

with their argon simulation, the previous perturbative calcu-
lations considered only processes, in which the phonon ei-
ther decays into two undamped phonons, or combines with
one existing phonon to produce a third phonon. Therefore
the damping function has only two peaks, one at high fre-
quencies and another at low frequencies. If the phonon has a
frequency in the gap, the damping is very small. Inclusion of
decay processes, in which the phonons decay into more in-
termediate phonons would broaden the energy dependence.
A first attempt to take such processes into account is the
so-called second-order self-consistent phonon theory (SC2)
[13]. But for solid argon this scheme does not seem to have
solutions in the high-temperature regime [14], in contrast to
the self-consistent harmonic theory (SCH) which has a good
convergence behaviour in this limit.
A further test case for anharmonic theories is the one-

dimensional (1d) Lennard-Jones chain with nearest-neigh-
bour interactions. Cuccoli and Tognetti [15] formulated a
theory for the one-phonon structure factor for anharmonic
crystals up to the melting point, using the Mori-Zwanzig
continued-fraction method [16, 17]. They calculated the first
six classical moments exactly and terminated the continued
fraction by a Gaussian memory function. The resulting spec-
tral functions were compared to a classical MD calculation
of the one-phonon structure factor [18].
Freidkin, Horton and Cowley used perturbation theory

[19] for an explicit evaluation of the one phonon structure
factor for the LJ chain with nearest-neighbour (NN) interac-
tion. They derived an analytic expression for the lowest-
order term for the self energy which represents a decay
process into two undamped phonons. Their results agree to
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the MD calculations of Cuccoli et al. [18] only in the low-
temperature limit.
The Mori-Zwanzig technique was also applied to a re-

alistic model of argon by Cowley and Zekaria [20]. There,
the first five even moments were calculated by a classical
Monte Carlo simulation and various methods of terminating
the continued fraction expansion for the spectral function
were tested. Their result is: When a Gaussian model spec-
trum [21] for the memory functions is used, the peak center
is correctly located and the height and width of the peak of
the simulated one-phonon spectrum are reproduced to about
20% accuracy.
The formalism developed by Götze and Michel [4]

gives a connection between the Mori-Zwanzig technique and
the diagrammatic perturbation theory. It turns out that the
second-order memory function is identical to the self en-
ergy of the one-phonon structure factor. As compared to the
perturbative scheme the Mori-Zwanzig formalism has the
advantage that the moment sum rules can be incorporated
exactly into the theory.
In the following we present a self-consistent theory for

the self energy (memory function) of the one-phonon struc-
ture factor. The theory is formulated classically, since we are
primarily interested in the high-temperature regime. How-
ever the generalisation to the quantum case is straightfor-
ward and will be carried out later on.
In the perturbation-theoretical language the theory is ob-

tained by using ”dressed” Green’s functions in the second-
order expression for the self-energy. In the Mori-Zwanzig
formalism this is equivalent to performing a mode-coupling
approximaton for the phonon propagator. This yields a non-
linear equation for the one-phonon propagator. In one dimen-
sion this equation is mathematically identical to the mode-
coupling equation used for describing liquid dynamics [22]
and especially the liquid-glass transition [23, 24]
In section II we express the equation of motion for the

one-phonon propagator in terms of a generalized Bloch-
Langevin-equation for the Kubo relaxation function [25, 4].
As in the mode-coupling theory for the glass transition the
equation is solved numerically most effectively in the time
domain and shows a very good convergence behavior.
The memory kernel with decay into two (damped) pho-

nons is written down classically. We discuss different meth-
ods for calculating the static phonon susceptibility and the
phonon-phonon-coupling constant as a function of tempera-
ture. In section III we apply the theory to the 1d Lennard-
Jones chain. In section IV we compare our mode-coupling
spectral shapes with those obtained by the mentioned simu-
lations [18] and the continued-fraction method [15].

II. Theory

A. The equation of motion for the phonon correlator

We consider a single crystal in which the atoms are assumed
to be distinguistable and obey the equations of motion of
classical mechanics. They are labelled by integer vectors
n = (n1, n2, n3) ; ni = 0,±1,±2, · · · .
The three coordinate directions (1=x,2=y,3=z) are de-

noted by means of the subscripts i, j, k, l,m, n. The dynam-
ical variables of the system are the deviations ϕi(n) of the

nth atom in the ith direction from its equilibrium point X(n)
together with the corresponding momentum operator πi(n).
The standard expressions for ϕi and πi in reciprocal space
are

ϕi(q) =
√

M

N

∑
n

e−iqX(n) ϕi(n) (1)

and

πi(q) =
√

1
M N

∑
n

e−iqX(n) πi(n) , (2)

were q denotes a vector in the first BZ, and we have the
Poisson brackets

{ϕ†i (q), πj(k)} = −δi,jδq.k . (3)

The Hamiltonian H for the ideal anharmonic bravais crystal
is given by

H =
1
2M

∑
qi

πi(q) πi(q) +
∞∑
ν=0

(
1
ν!
)

×
∑

q1i1,···,qν iν
V (q1i1, · · · ,qνiν) ϕi1 (q1) · · ·ϕiν (qν) , (4)

whereM is particle mass. The coupling coefficients are con-
sidered to be given.
We consider the six variables Aα = (ϕi(q), πi(q); i = 1,

2, 3) as the ”slow” variables of the system and denote by
P the projector onto the subspace of these dynamical vari-
ables. The correlator Φαβ(t) is defined as a scalar product
(· · · | · · ·) in the Hilbert spaceH of the dynamical variables
Aα, Aβ , · · ·:
Φαβ(t) = (Aα(t) |Aβ) = (Aα | e−iL t |Aβ)

=
1

kBT
〈 δA∗α(t) δAβ 〉 = 1

kBT
〈A∗α(t)Aβ 〉 , (5)

where ∂tAα(t) = iLAα(t) = −i{H,Aα(t)} is the Liouvil-
lian, and we define Aα(t = 0) = Aα. The last equality in
(5) follows from < ϕi(n) >= 0 and < πi(n) >= 0. The
Laplace transform of the matrix Φ(t) is the resolvent of L
with respect to the ”states” Aα:

Φαβ(q, z) = ∓ i

∫ ∞

−∞
dtΘ(±t) eizt Φαβ(q, t) , �m z

>
<
0

= (Aα | 1
z − L

|Aβ).

Within the projector formalism of Zwanzig and Mori [17] the
resolvent is now expressed in terms of a matrix M (q, z) of
relaxation kernels (memory functions)Mαβ(q, z), the restor-
ing force matrix Ω(q), and the static susceptibility matrix
χ0(q) in the following way:

[z1−Ω(q) +M (q, z)] Φ(q, z) = χ0(q) , (6)

where 1 is the 6 × 6 unit matrix. The matrix χ0(q) can
be calculated by using the Yvon theorem (Aα | L | Aβ) =
−i 〈 {A∗α, Aβ } 〉 :

χ0αβ(q) = (Aα(q)|Aβ(q)) =
(
D̃−1(q) 0
0 1̃

)
αβ

. (7)

1̃ is the 3× 3 unit matrix and D̃(q) is defined by
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D−1ij (q) = ( ϕi(q) | ϕj(q) ) =
1

kBT
〈 ϕ∗i (q) ϕj(q) 〉

= Φϕϕ
ij (q, t = 0). (8)

Since D̃(q) is a hermitian positive matrix it can be written
as

Dij(q) =
3∑

α=1

ei(q, α) ω2(q, α) e∗j (q, α), (9)

where ω(q, α) are the phonon frequencies and ei(q, α) the
polarisation vectors. The restoring force matrix is defined by
Ω = ω (χ0)−1, with ωαβ = (Aα | L | Aβ) and is explicitly
given by

Ω(q) =
(

0 −i1̃
i D̃(q) 0

)
. (10)

Finally, the memory function matrix has the representation

M (q, z) = m(q, z) (χ0)−1 =
(
0 0
0 P̃ (q, z)

)
(11)

with

mαβ(q, z) = (QL Aα(q) | RQ | QL Aβ(q)) (12)

where Q = 1−P projects rectangular to the variables Aα,
and RQ = [z − QLQ ]−1. P̃ (q, z) is the 3× 3 - matrix
Pij(q, z) = (QL πi(q) | RQ | QL πj(q)) . (13)

For the displacement–displacement correlator matrix
Φ̃ϕϕ(q, z) equation (6) now reduces to the 3×3 matrix equa-
tion:

z2 Φ̃ϕϕ(q, z) − z D̃−1(q) − D̃(q) Φ̃ϕϕ(q, z)
+ P̃ (q, z)

(
z Φ̃ϕϕ(q, z) − D̃−1(q)

)
= 0 . (14)

Transforming back into the time regime we obtain the fol-
lowing equation of motion for the phonon correlator:

¨̃Φ
ϕϕ
(q, t) + D̃(q) Φ̃ϕϕ(q, t)

+
∫ t

0
dt

′
P̃ (q, t− t

′
) ˙̃Φ

ϕϕ
(q, t

′
) = 0 (15)

Φ̃ϕϕ(q, t = 0) = D̃−1(q), ˙̃Φ
ϕϕ
(q, t = 0) = 0, (16)

which is a generalized Bloch-Langevin-equation. This equa-
tion allows for an interpretation as a system of oscillators,
coupled by a generalized friction term.

B. The mode coupling approach

Until now only exact rearrangements have been performed.
The nontrivial task is to find explicit expressions for the
static phonon susceptibility D̃(q) and the relaxation kernel
P̃ (q, t). In the previous literature for both quantities pertur-
bation theory has been used. In phonon theories for D̃(q)
the approximate expressions have very often the following
structure [4] :

Dij(q) = D(0)
ij (q) (17)

+
kBT

2
∑
q1,α1

V (qi,−qj,q1k,−q1l)ek(q1, α1)e∗l (q1, α1)
ω2(q1, α1)

−kBT

2
∑
q1,q2
α1α2

∑
i1···i4

V (qi,−q1i1,−q2i2)e∗i1 (q1, α1)e∗i2 (q2, α2)
ω2(q1, α1)

×V (−qj,q1i3,q2i4)ei3 (q1, α1)ei4 (q2, α2)
ω2(q2, α2)

For D(0)
ij (q) there are different renormalisation procedures

like the self–consistent harmonic phonon theory (SCH) [13]
or the Horner approximation [5]. The remaining corrections
on the right-hand side of equation (17) are then calculated
with the frequencies ω(q, α), that correspond to D(0)

ij (q) via
Eq. (9).
The mode–coupling scheme has the advantage that the

static and dynamic aspects are decoupled, so that one can
use, if possible, exact expressions for the static quantities
as input for the approximate calculation of the relaxation
kernel.
Following Götze and Michel [4] we define a renormal-

ized harmonic Hamiltonian in which the bare force constants
are replaced by the correlation function Dij(q):

H0 =
1
2
∑
q,i

π†i (q) πi(q) +
1
2
∑
q,i,j

ϕ†i (q)Dij(q) ϕj(q) (18)

and write the crystal Hamiltonian as H = H0 + H
′
and,

correspondingly, L = L0 + L
′
. We obtain

L0ϕi(q) = i πi(q) L0πi(q) = −i Dij(q) ϕj(q) (19)

L
′
ϕi(q) = 0 L

′
πi(q) = −i ρ(qi) (20)

For the system H0 one finds QL 0πi(q) = 0 and there-
fore Pij(q, t) = 0. The operator L0 describes the mo-
tion of statically renormalized non-interacting phonons, and
L

′
describes the interaction. The operator ρ(q i) obeys

ρ†(q i) = ρ(−q i) and has the explicit form

ρ(q i) =
∞∑
ν=0

(
1
ν!
)

∑
q1i1,···,qν iν

V
′
(qi,q1i1, · · · ,qνiν)

×ϕ†i1 (q1) · · ·ϕ†iν (qν) (21)

with

V
′
(qi,q1i1, · · · ,qνiν) = V (qi,q1i1, · · · ,qνiν)

if ν �= 1, (22)
V

′
(qi,−qj) = V (qi,−qj) − D(qi,−qj ).

In a next step we introduce cumulant products of displace-
ment operators by defining

(ϕi1 (q1) · · · ϕiν (qν))c = ϕi1 (q1) · · · ϕiν (qν) (23)

−
ν∑

qμ1μ1

ϕiμ1
(qμ1 ) 〈 ϕi1 (q1) · · · �ϕiμ1

(qμ1 ) · · · ϕiν (qν) 〉

− 1
2!

ν∑
qμ1 , qμ2
iμ1 ,iμ2

( ϕiμ1
(qμ1 ) ϕiμ2

(qμ2 ) )c 〈 ϕi1 (q1) · · ·

· · · �ϕiμ1
(qμ1 ) · · · �ϕiμ2

(qμ2 ) · · · ϕiν (qν) 〉 + · · ·

where �ϕiμ1
(qμ1 ) means that in the correlation function

ϕiμ1
(qμ1 ) is missing.

An important relation for later calculations is [4]
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〈{( ϕi1 (q1) · · ·ϕiν (qν)
)
c
, πj(k)

}〉 = 0 for ν ≥ 2 .(24)

The phonon self-energy kernels (13) are the Laplace trans-
forms of the fluctuating force correlators

Pij(q, t) = (Fi(q) | exp(−iQLQ t) | Fj(q) ) ,
Fj(q) = QL πj(q) . (25)

The first step in the mode–coupling approximation now con-
sists in projecting the fluctuating force F onto the sub-
space of the displacement-displacement fluctuations. This is
achieved by the projector

P(ϕϕ) =
1
2!

∑
q1q2 q1 �=q2
i1i2i3i4

| (ϕi1 (q1)ϕi2 (q2))c ) ( (ϕi3 (q1)ϕi4 (q2))c |
( (ϕi1 (q1)ϕi2 (q2))c | (ϕi3 (q1)ϕi4 (q2))c )

(26)

leading to

Pij(q) ≈ (Fi(q)P(ϕϕ) | exp(−iQLQ t)|P(ϕϕ)Fj(q)) .(27)

We now perform the second and main step:
Averages of products, evolving in time with generator QLQ
are factorized into products of averages, formed with vari-
ables evolving in time with generator L :

( (ϕi1 (q1)ϕi2 (q2))c | exp(−iQLQ t) | (ϕi3 (q3)ϕi4 (q4))c )

≈ 1
kBT

[ 〈 ϕ∗i1 (q1, t)ϕi3 (q3) 〉 〈 ϕ∗i2 (q2, t)ϕi4 (q4) 〉
+〈 ϕ∗i1 (q1, t)ϕi4 (q4) 〉 〈 ϕ∗i2 (q2, t)ϕi3 (q3) 〉

]
= kBT

[
Φϕϕ
i1i3
(q1, t) Φϕϕ

i2i4
(q2, t) δq1q3 δq2q4

+Φϕϕ
i1i4
(q1, t) Φϕϕ

i2i3
(q2, t) δq1q4 δq2q3

]
.
(28)

For t = 0 this result can be used to calculate:

( (ϕi1 (q1)ϕi2 (q2))c | (ϕi3 (q1)ϕi4 (q2))c )−1 (29)

=
1

kBT
Di1i3 (q1)Di2i4 (q2) for q1 �= q2 .

Now it is necessary to determine (Fi(q) | (ϕi1 (q1)ϕi2 (q2))c ).
There are two terms contributing: the first one is
(L πi(q) |(ϕi1 (q1)ϕi2 (q2))c). This term is zero, which fol-
lows from the Yvon theorem and equation (24). This is
different from what holds in the problem of liquid dy-
namics, where one is interested in the density fluctuations
[23]. In the liquid problem the main part of the vertex
comes from this term. In our case the main contribution
comes from the second term, which can calculated by means
of the projector P , the Yvon theorem and equation (3):
PL πi(q) = i

∑
j ϕj(q)Dji(q). Therefore:

(Fi(q) | (ϕi1 (q1)ϕi2 (q2))c )
= i

∑
j

(
ϕj(q) | (ϕi1 (q1)ϕi2 (q2))c

)
Dji(q)

=
i

kBT

∑
j

〈 ϕ∗j (q) (ϕi1 (q1)ϕi2 (q2))c 〉Dji(q) . (30)

Now it is useful to define a new vertex

V (qi,q1i1,q2i2) = (
1

kBT
)2

∑
j,j1j2

〈ϕj(q)(ϕj1 (q1)ϕj2 (q2))c〉

×Dij(q)Di1j1 (q1)Di2j2 (q2). (31)

For small anharmonicity, which means low temperature, it
is equal to the bare cubic vertex. Summarizing the results of
equations (28), (29) , (30) and (31), inserted into (27), we
have:

Pij(q, t) ≈ kBT

2
∑
q1q2

i1···i4

V (qi,−q1i1,−q2i2) Φi1i3 (q1, t)

×Φi2i4 (q2, t)V (−qj,q1i3,q2i4). (32)

The two contributions arising in equation (28), are equal, so
we get a prefactor of 2 12!

1
2! =

1
2 .

This result is equal to the leading self–energy diagram
in renormalized pertubation theory [3, 5], which produces
a nonvanishing damping. In the previous literature dealing
with phonon damping by anharmonic effects the full prop-
agators in the diagram are replaced by bare ones. To our
opinion, using the dressed propagators Φi1i2 (q, t) is an im-
portant step to properly establish the coupling between one-
and two-phonon modes.
In fact, it has been pointed out by Horner [26] that in

strongly anharmonic crystals the coupling between one- and
two-phonon modes plays a crucial role. It can be visualized
by an interplay between displacements and the width of the
statistical distribution of the atoms. This coupling, which is
established via the vertex function V (q1i1,q2i2,q3i3) does
not only give rise to the dominant contribution to the phonon
damping, but also leads to the appearance of 1–2 phonon
interference terms in the density fluctuation spectrum of the
anharmonic crystal.

III. Application to the Lennard-Jones chain

A. One-dimensional mode-coupling equation

For a first application of the phonon version of the mode-
coupling approximation we choose as a most simple system
the 1d Lennard-Jones (LJ) chain with nearest-neighbour in-
teraction. As mentioned in the introduction this system has
been studied already both by various approximation schemes
[15, 19] as well as by molecular-dynamics calculations [18].
The interaction potential is V (r) = 4ε[(σ/r)12−(σ/r)6] [27].
The equilibrium nearest-neighbour distance is a = [2]1/6σ.
In one dimension the mode-coupling matrix equation (15)
becomes an ordinary equation for φq(t), which is normal-
ized as φq(t) = φq(t = 0)dq(t) = dq(t)/D(q). The 1d mem-
ory function is given in mode-coupling approximation by
equation (32) as

Pq(t) =
kBT

2
∑
q1,q2

|V (q,−q1,−q2)|2 D(q1)−1 D(q2)−1

×dq1 (t) dq2 (t)Δ(q + q1 + q2), (33)

where

V (q, q1, q2) = (
1

kBT
)2 〈 ϕqϕq1ϕq2 〉D(q)D(q1)D(q2) , (34)

and Δ = 1 whenever q + q1 + q2 = G, a reciprocal-lattice
vector. The quantities D(q) and V (q,−q1,−q2), defined by
equation (8) and (31) can be (and has been) calculated by
means of a Monte-Carlo (MC) simulation using the Metropo-
lis algorithm.
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Because only nearest–neighbour interactions are taken
into account the q dependence of the renormalized force
constants is the same as that of the unrenormalized ones.
Therefore the static phonon susceptibility D(q) as well as
the vertex V (q,−q1,−q2) can be written in a similar fash-
ion as the corresponding harmonic quantities (see below or,
for example, [28]) with effective quadratic and cubic force
constants < V 2 >,< V 3 >, resp. :

D(q) = 4 < V 2 > sin2(qa/2), (35)

and

V (q, q1, q2) = (i 2)3 < V 3 > sin(qa/2) sin(q1a/2)
× sin(q2a/2) ei(q+q1+q2)a/2Δ(q + q1 + q2) .(36)

In the following the static susceptibilities D(q) are always
expressed in the form

D(q) = Ω2
q = Ω2

m sin2(qa/2) (37)

with (Ωm)2 = 4 < V 2 >. It turns out that the effective vertex
in front of the propagators in equation (33) is proportional
to D(q) with a q independent proportionality constant

α =
kBT

2
|V (q,−q1,−q2)|2D(q)−1D(q1)−1D(q2)−1

=
1
2
< V 3 >2

< V 2 >3
kBT . (38)

We call α the anharmonic coupling parameter. The mode-
coupling equations for the 1d LJ chain with nearest-neigh-
bour interaction can now be written as

d̈q(t) +Ω2
qdq(t) +

∫ t

0
dt

′
Pq(t− t

′
) ḋq(t

′
) = 0 (39)

dq(t = 0) = 1 , ḋq(t = 0) = 0

Pq(t) = Ω2
qα

∑
q1,q2

dq1 (t)dq2 (t)Δ(q + q1 + q2). (40)

This self consistent pair of equations is essentally the same
as that used in the mode-coupling theory for the description
of the liquid-glass transition in liquid dynamics [23] , where
dq(t) is replaced by the density relaxator.
The experimentally relevant quantity is the normalized

one–phonon structure factor Fq(ω) [29] which is obtained by
Fourier transforming dq(t), i. e. Fq(ω) = − 1

π Im{dq(ω+iε)}
where dq(z) = φq(z)D(q).

B. Discussion of the static input parameters

To make contact to approximation schemes used previously
and to get a feeling of the influence of the static vertices on
the results we used not only the simulated results but also
the expressions obtained in SCH and by the Horner ansatz
[10].
In Fig. 1 we compare the results for < V 3 > of the MC

simulation with those of the approximations as a function
of temperature. The differences are quite significant (note,
however, the suppressed origin of the ordinate).
At kBT = 1.0ε the value of the cubic force constant

using Horner’s method is roughly 60 % of the SCH value
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 / 
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Fig. 1. Third order force constants for different phonon theories vs. tem-
perature. Full line: Monte-Carlo simulation. Dash-dotted line: SCH, dashed
line: Horner approximation
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Fig. 2. The two input parameters for the mode-coupling theory, namely
the frequency Ωm and the anharmonic coupling paramter α, are shown
for different phonon theories vs. temperature. Symbols are as in Fig. 1. In
αSCH/HA only < V 3 > is calculated in SCH or Horner approximation,
whereas for < V 2 > the Monte-Carlo method has always been taken

and ≈ 80 % of the bare vertex. These ratios are similar to
those in calculations for 3d argon at T = 82oK [10]. It is
also remarkable that the Horner < V 3 > does not yield the
harmonic result for T → 01.
The relationship between the ”smeared” force constants and
the phonon frequencies ΩSCH/HA

q is given by:

1 The short-range correlation term approaches zero as T → 0. The usual
cubic contribution is smaller than the corresponding SCH term, because the
effective potentialW (r) [10] is more symmetric than the LJ potential. This
could be a speciality of the one-dimensional system
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Fig. 3. The one phonon structur factor of the Lennard–Jones chain at q =
0.2π/a and a kBT/ε = 0.1, b kBT/ε = 0.3, and c kBT/ε = 0.8. Full
line: mode-coupling calculation withΩm and α calculated by Monte-Carlo;
dashed line: mode-coupling calculation with Ωm and < V 2 > calculated
by Monte-Carlo, but < V 3 > in Horner approximation. Dot–dashed lines:
molecular dynamics results[18]; dotted lines: continued fraction function
approach [15]

(ΩSCH/HA
m )2 = 4 < V 2 >SCH/HA

×
[
1− 1

2
kBT

(< V 3 >SCH/HA)2

(< V 2 >SCH/HA)3

]
. (41)

There is no explicit quartic contribution because the quar-
tic terms are contained in the renormalisation of < V 2 >.
In Fig. 2a we show the input parameter Ωm for the mode-
coupling equations, as a function of temperature. Because
Ω

SCH/HA
m contains high powers of < V 2 > and < V 3 >
the differences of the approximate quantities from the exact
ones are much more drastic. The SCH predicts an instabil-
ity for the LJ chain above T ≈ 0.45. The reason is the
very large value of the cubic force constant which enters the
renormalized frequencies (41) . The phonon frequency of the
Horner theory decreases with temperature, the exact one, as
calculated by Monte Carlo increases with temperature. Since
the second moment of dq(ω) is represented poorly by these
approximate theories we decided to use only the Monte-
Carlo results for Ωq in our self-consistent calculation of the
dynamical one-phonon quantities.
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Fig. 4. Same as in Fig. 3 with parameters q = 0.5π/a and a kBT/ε = 0.1,
b kBT/ε = 0.3, and c kBT/ε = 0.8

In Fig. 2b we compare the approximate coupling con-
stants, which are obtained by using SCH and Horner ap-
proximation for < V 3 >

αSCH/HA =
1
2
kBT

(< V 3 >SCH/HA)2

(< V 2 >)3
, (42)

with the exact one.
Since the SCH coupling is unrealistically large we used

only the Horner approximation and the Monte-Carlo results
for < V 3 > in our mode-coupling calculations.

C. Discussion of the spectra

In Figs. 3 to 5 we show the results for F (ω) as calculated
from (39) and (40) with the exact and the Horner coupling
for various temperatures and q values. We compare these
curves with the one-phonon structure factor obtained by
the MD simulation [18] and the continued-fraction (CF) ap-
proach [15]. For small wavenumber (q = 0.2π/a) we obtain
for all temperatures stronger damping than the CF calcula-
tion. However the peak positions and widths do not agree
with the simulated one. For all values of T and q our results
tend to predict too small phonon peaks. It is interesting to
note that the results with the Horner coupling agree better to
the simulation than those with the exact coupling. This must
be due to a cancellation of the errors made by performing
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Fig. 5. Same as in Fig. 3 with parameters q = 1.0π/a and a kBT/ε = 0.1,
b kBT/ε = 0.3, and c kBT/ε = 0.8

the mode-coupling approximation and the Horner approx-
imation. The mode coupling approximation in the present
form appears to overestimate the role of the anharmonic in-
teraction. This is probably so, because in the present version
the fourth moment sum rule is not obeyed. However, this
can be achieved straightforwardly and will be done by us in
the future. Our final goal is, however, to use the theory for
three–dimensional systems as formulated in Sect. 3.
In conclusion we have presented a self-consistent theory

(mode-coupling theory) for the damping of anharmonic lat-
tice vibrations in solids. In contrast to the previous theories
using perturbation theory our approach can be applied for
strongly anharmonic systems, e. g. solids below their melt-
ing points. Applying our theory to the one-dimensional LJ
chain we find that the mode-coupling theory overestimates
the anharmonic coupling. However the results are in fair
agreement with the results of the MD simulation.
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