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The theory of elasticity with spatially fluctuating elastic constants (heterogeneous-elasticity theory) is reviewed.
It is shown that the vibrational anomalies associatedwith the boson peak can be qualitatively and quantitatively
explained in terms of this theory. Two versions of a mean-field theory for solving the stochastic equation of mo-
tion are presented: the coherent-potential approximation (CPA) and the self-consistent Born approximation
(SCBA). It is shown that the latter is included in the former in the Gaussian and weak-disorder limit. We are
able to discuss and explain cases in which the change of the vibrational spectrum by varying an external param-
eter can be accounted for by changing theDebye frequency (elastic transformation) and cases inwhich this is not
possible. In the latter case a change in the distribution of the elastic moduli has occurred.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

The vibrational properties of glasses in the THz frequency range have
remained an intensively studied and controversially discussed field
of research for more than 50 years [1–5]. The vibrational spectra of
glasses — as revealed by inelastic neutron and X-ray scattering [6,7],
Raman scattering [8], calorimetric experiments [9] and computer simu-
lations [10] deviate strongly from the predictions of Debye's elasticity
theory [11–13] in a frequency range, where it had been supposed to
be still valid. Roughly one order ofmagnitude below theDebye frequen-
cy the vibrational density of states (DOS) g(ω) of almost all glasses (the
exception seems to be amorphous Si [14,15]) exhibits an enhancement
with respect to the Debye g(ω) ∝ ω2 law, which shows up as a maxi-
mum in the “reduced DOS” g(ω)/ω2. This maximum has been called
“boson peak” (BP) for historical reasons, because the only temperature
dependence of the vibrational anomalies in the scattering experiments
comes from the Bose factor n(ω) + 1 = [1 − exp{−ħω/kBT}]−1 if the
spectral function χ″(ω) is temperature independent (harmonic excita-
tions). The relation between the results of Raman, neutron and X-ray
scattering to the DOS will be clarified below.

In inelastic X-ray experiments and simulations it was found recently
that the BP is related to two anomalous features in the Brillouin spec-
trum of glasses: Near the boson-peak frequency the group velocity
∂Ω/∂k (where Ω(k) = is the Brillouin resonance frequency) shows a
pronounced dip and the Brillouin line width [16–19] Γ(k) shows a
strong increase ∝ k4, which has been interpreted as disorder-induced
Rayleigh scattering.

The BP in the DOS is related to a similar feature in the temperature
dependence of the specific heat in the T ≈ 10 K regime [9]. The peak
al., Theory of vibrational anom
of the function C(T)/T3 has also been called BP and can be shown [20]
to be related to a pronounced shoulder in the temperature dependence
of the thermal conductivity κ(T) [21,20]. These boson-peak-related
thermal anomalies have to be distinguished from low-temperature
anomalies of C(T) and κ(T) around and below 1 K. In this temperature
regime in almost all glasses C(T) ∝ Tx and κ(T) ∝ Ty with x ≈ T
and y ≈ 2. This low-temperature behavior can be explained in terms
of bi-stable tunneling defects (two-level systems, TLS [22,23]).

Many suggestions have been published for explaining the boson-
peak-related vibrational anomalies. In the time in which it was realized
that many features of complex solids involved self-similar (fractal)
structures, the anomalies were attributed to a “phonon–fracton cross-
over” [24]. But neither were fractal features of glasses found in scatter-
ing experiment nor a BP in a simulated percolation system with
phonon–fracton crossover [25]. So this model had to be discarded as
candidate for an explanation of the BP.

In many materials (glassy or crystalline) there exist internal low-
frequency vibrational modes, which couple to the center-of-mass acous-
tical vibration. This hybridization leads to a peak in the DOS and also in
the reduced DOS. Somany authors favor models in which glasses are as-
sumed to have quasi-local disorder-induced oscillators similar to themo-
lecular systems [26–28]. These oscillators are assumed to be created by
glass-specific soft bistable potentials, similar to those in the TLS model.
The present authors are of the opinion that the soft-potential model, if
coarse-grained over amesoscopic volume, should lead to spatiallyfluctu-
ating elastic constants, which is the starting point of the present theory.

Quite recently it was claimed that the BP is just due to a (smeared)
van-Hove singularity of a crystal-like transverse sound dispersion
[29–32]. So according to the present status of discussion it is still a mat-
ter of controversy, whether the BP is a disorder-induced phenomenon
or not.
alies in glasses, J. Non-Cryst. Solids (2014), http://dx.doi.org/10.1016/
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We believe that now from experimental and simulational work and
in the light of thepresent theory there is ample evidence that the boson-
peak-related anomalies are indeed produced by the glass-specific struc-
tural quenched disorder. In particular, we shall show below that the
mentioned anomalies can all be qualitatively and inmany cases quanti-
tatively explained in terms of spatially fluctuating elastic constants.

Models involving spatially fluctuating elastic constants and/or force
constants have been put forward already for a while using phenomeno-
logical effective-medium theories [33–36]. The concept of fluctuating
elasticity has also been used in the qualitative explanation of experi-
mental data [37,38]. A fluctuating-force-constant scalar-vibration
model on a cubic lattice was solved both numerically and in coherent-
potential approximation (CPA) by Schirmacher et al. [39]. In this
model calculation a Gaussian distribution of nearest-neighbor force
constantsKwas taken,with a lower cutoff,whichwas allowed to extend
into the negative K regime. It was both shown that the disorder in this
model leads to a BP in the regime of 1/10 of the Debye frequency and
that the CPA and the numerics give almost identical results. It was fur-
thermore shown by an energy-level-statistics analysis that the states
near the BP are delocalized. Localized states were only found near the
Debye frequency. The localized states in the high-frequency regime of
the vibrational spectrum, which lead to an exponential tail in the DOS
[40], have been addressed recently by instanton methods [41]. At
small disorder (fine-tuned by the low-K cutoff) a maximum in the re-
duced DOS due to the van-Hove singularity corresponding to the
simple-cubic dispersion appears at≈half the Debye frequency. Shifting
the cutoff down, i.e. increasing the disorder, leads to a downshift of the
maximum. These results (and other findings, to be discussed below)
were later interpreted [42,29,43,30] in such a way, that the BP would
be just a smeared quasi-crystalline van-Hove singularity due to a flat-
tening of the transverse dispersion. However, it was shown subsequent-
ly that a disorder-induced BP exists in amodel, inwhich the host system
does not have a crystalline dispersion [44]; the calculated DOS agreed to
the simulation results of Rahman et al. [10] for the vibrational spectrum
of a structural Lennard–Jones glass.

Schirmacher et al. [39] showed further that shifting the lower cutoff
of the truncated Gaussian distribution of force constants below a critical
(negative) value led to an instability in both the numerical and CPA re-
sults, which resulted from the presence of toomany negative force con-
stants. From this Schirmacher et al. [39] concluded that the BP is a
precursor of an elastic instability, a conclusion, which is shared by
later theoretical investigations [45–48].

A field-theoretical derivation of a mean-field theory of heteroge-
neous elasticity was published 2006 by Schirmacher [20]. In heteroge-
neous elasticity theory the shear modulus is assumed to fluctuate in
space due to a given probability distribution. Evaluating the average
over the Green's function by the replica trick and performing a saddle-
point approximation for the resulting effective field theory result in an
effective-medium-like approximation for the frequency-dependent
shearmodulus. As in the old effective-medium theories [33,35], the spa-
tial disorder leads to a frequency-dependent elastic modulus, which, by
the dictate of causality must have a real and imaginary part. The imagi-
nary part of the shear modulus leads to disorder-induced sound attenu-
ation, which renders a Debye-like description impossible, once the
imaginary part becomes comparable to the real part of the modulus.
Transformed to a wave language, this statement is equivalent to the
very old findings of Ioffe and Regel [49], which was quoted by Mott
[50] and many other authors [51], that waves in disordered systems
can only exist if the mean-free path is larger than its wavelength. So
we can say that the BP signifies the upper frequency limit of a wave de-
scription and the lower one of a description in terms of “random-matrix
states”. This classification is adequate, because the discretized equation
of motion of heterogeneous elasticity is equivalent to a (sparse)
random-matrix eigenvalue problem. It was established in several publi-
cations that fluctuating elasticity models belong to the Gaussian-
Orthogonal Ensemble of random-matrix models [39,52].
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Recent inelastic scattering experiments [53,54,16,55,56,18] and
molecular-dynamics simulations [57–62,17,63,19,64] gave valuable in-
sights into the nature of the high-frequency and small-scale vibrational
properties of glasses. It emerged that the transverse degrees of freedom
of local elasticity play a key role for producing the anomalies. It became
clear that the dip in the differential sound velocity and the strong in-
crease of the sound attenuation near the boson-peak position are relat-
ed to each other (by the Kramers–Kronig relation) and are further
manifestations of the boson-peak anomalies. In particular, from the re-
cent simulations ofmodel glasses it became clear beyond doubt that the
anomalies are caused by the elastic heterogeneities [19,64].

The present short review is organized as follows: In Section 2 the de-
scription of experimental data in terms of frequency-dependentmoduli
will be given. In Section 3 heterogeneous elasticity and its solution
in coherent-potential approximation (CPA) [65] are presented. It is
shown that it reduces to the earlier solution in self-consistent Born
approximation (SCBA) [20,66] in the weak-disorder limit. The CPA pro-
cedure is based on the concept of coarse-graining the elasticity fluctua-
tions over spatial regions of the size of a correlation length. As these
regions are larger than an interatomic spacing, the high-wavenumber
cutoff, which is inversely proportional to this length, is different to
that used to calculate the density of states. It is shown that by recogniz-
ing this the boson peaks predicted by heterogeneous-elasticity theory
are not restricted to a factor of 2, as stated previously [66], based on
the assumption that the two cutoffs are the same. Section 3 comprises
the discussion ofmodel calculation using the CPAwith a Gaussiandistri-
bution of shear moduli, truncated at the lower end. Changing the pa-
rameters of this distribution leads to a change in the spectrum, which
cannot be described by an elastic transformation, i.e. by just changing
the Debye frequency. In Section 4 some conclusions are drawn.

2. Basic definitions

2.1. Correlation functions and frequency-dependent elastic moduli

The correlation function,which is proportional to the scattering cross-
section of inelastic X-ray and neutron scattering is the one-phonon
dynamical structure factor S(k,ω). It is related to the longitudinal dynam-
ical susceptibility by the fluctuation–dissipation theorem [67]:

S k;ωð Þ ¼ ħ
πm

n ωð Þ þ 1½ �χ″
L k;ωð Þ ω≠0: ð1Þ

Herem is the ratio of themass density ρm and the number densityN/V
of the material. In the classical ħω/kBT → 0 limit we have

S k;ωð Þ ¼ kBT
πmω

χ″
L k;ωð Þ ω≠0: ð2Þ

In a glass the longitudinal dynamical susceptibility χL(k, z) =
χ′L(k, ω) + iχ′′L(k, ω) (z = ω + iϵ, ϵ → +0) can be represented
as [66,19]

χL k; zð Þ ¼ k2

−z2 þ k2v2L zð Þ ¼ k2GL k; zð Þ ð3Þ

where the longitudinal frequency-dependent sound velocity vL(z) is re-
lated to the frequency-dependent longitudinal modulus M(z) by

M zð Þ ¼ ρmvL zð Þ2 ¼ M0 ωð Þ−iM″ ωð Þ: ð4Þ

GL(k, z) is the longitudinal (disorder-averaged) Green's function [68]
corresponding to the longitudinal wave equation (see next section).
The sound attenuation coefficient can be defined as [19]

ΓL ωð Þ ¼ ωM″ ωð Þ=M0 ωð Þ: ð5Þ
alies in glasses, J. Non-Cryst. Solids (2014), http://dx.doi.org/10.1016/
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Taking Eqs. (2), (3) and (5) together and defining the resonance fre-
quencyΩL ωð Þ ¼ vL ωð Þk we obtain

S k;ωð Þ ¼ kBT
mω

k2
1
π

Ω2
LΓL ωð Þ=ω

Ω2
L−ω2

� �2 þ Ω2
LΓL ωð Þ=ω� �2 : ð6Þ

Near resonance ω = ΩL we obtain the “damped-harmonic-oscilla-
tor” (DHO) function, with which many Brillouin-scattering spectra
have been fitted:

S k;ωð Þ ¼ kBT
mω

k2
1
π

ωΓL ωð Þ
Ω2

L−ω2
� �2 þω2ΓL ωð Þ2

¼Γ l→0 kBT
mΩ2

L

k2
1
2

δ ω−ΩLð Þ þ δ ω þΩLð Þ½ �:
ð7Þ

In this context it is important to remark that the inverse linewidth Γ
in a disordered system is not equivalent to a “life time” of an excitation.
In fact, in a disordered harmonic system there is nodamping. Thismeans
that all oscillatory degrees of freedom, if excited, live forever. They can
only die out by an anharmonic mechanism. A finite Γ is just due to the
disorder and describes static scattering. Similar to electrons in impure
metals [69] τ= Γ−1 is proportional to the elastic mean-free path, divid-
ed by the wave velocity, which involves no dissipation.

On the other hand, at frequencies much below the BP there is evi-
dence for an anharmonic origin of sound attenuation [70–73]. In this
case the corresponding inverse sound attenuation frequency is a true
decay time.

The scattering law S(k,ω) is connected via the equation of continuity
to the longitudinal current-correlation function

CL k;ωð Þ ¼ ω2

k2
S k;ωð Þ ¼ kBTω

πm
G″
L k;ωð Þ: ð8Þ

In a similar way, one can define transverse correlation functions
as [61]

CT k;ωð Þ ¼ ω2

k2
ST k;ωð Þ ¼ kBTω

πm
G″
T k;ωð Þ ð9Þ

with the transverse Green's function

GT k; zð Þ ¼ 1
k2

χT k; zð Þ ¼ 1
−z2 þ k2υT zð Þ2 : ð10Þ

The frequency-dependent transverse sound velocity is related to the
frequency-dependent shear modulus by

ρmυT zð Þ2 ¼ G zð Þ ¼ G0 ωð Þ þ iG″ ωð Þ: ð11Þ

G(z) is related to M(z) by

M zð Þ ¼ K zð Þ þ 4
3
G zð Þ ð12Þ

where K(z) is the macroscopic (frequency-dependent) bulk modulus.
One can define a transverse acoustic attenuation coefficient as

ΓT ωð Þ ¼ ωG″ ωð Þ=G0 ωð Þ: ð13Þ

One can relate the longitudinal and the transverse sound attenuation
functions with an elastic, disorder-induced mean free path:

1
ℓL;T ωð Þ ¼

ΓL;T ωð Þ
2υL;T 0ð Þ : ð14Þ

The Ioffe–Regel (IR) limit is reached when this length becomes
equal to the wavelength λL,T = ω/2πυL,T(0), i.e. for ωL,T

IR = πΓL,T(ω).
Please cite this article as:W. Schirmacher, et al., Theory of vibrational anom
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In molecular-like model glasses the transverse IR limit is reached near
the BP [61,17,19], whereas in network glasses, where these frequencies
are nearer to each other, both limits appear to be reached near the BP
[74].

2.2. Wavenumber-independent spectra

Within a generalized Debye model, which is described by the
Green's functions GL,T defined in Eqs. (3) and (10) the vibrational densi-
ty of states (DOS) is given by

g ωð Þ ¼ 2ω
3π

1
N

X
jkjbkD

G″
L k;ωð Þ þ 2G″

T k;ωð Þ
� �

¼ 2ω
3π

3
k3D

Z kD

0
dkk2 G″

L k;ωð Þ þ 2G″
T k;ωð Þ

� � ð15Þ

where kD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6π2N=V3

q
is the Debye cutoff wavenumber, V being the

total volume of the sample and N the total number of atoms or molecu-
lar units.

We now define the local velocity correlation function as

Z ωð Þ ¼ 1
bυ2N

1
N

X
jkjbkD

C″
L k;ωð Þ þ 2C″

T k;ωð Þ
� �

ð16Þ

with bυ2N ¼ 3
2 kBT=m. Inserting Eqs. (9) and (8) into Eq. (16)we find by

comparing with Eq. (15) [10]

g ωð Þ ¼ Z ωð Þ: ð17Þ

For the following it will be useful to define longitudinal and trans-
verse susceptibility integrated up to a certain wavenumber cutoff kξ

χξ
L;T zð Þ ¼ 3

kξ
3

Z kξ

0
dkk2χL;T k; zð Þ ð18Þ

kξ can be related to the correlation length ξ of the spatially fluctuating
density ρ, the elastic constants K, G or the Pockels (light-elastic) cou-
pling constants α by kξ = ν/ξ, where ν is a constant of order unity. For
Raman scattering [75,76] these functions (with ξ referring to the Pockels
constant fluctuations) enter as follows into the observed intensities

IVV ωð Þ ¼ Af 1 n ωð Þ þ 1½ � χξα
L ωð Þ

h i00 þ 4
3
IVH ωð Þ ð19Þ

IVH ωð Þ ¼ A n ωð Þ þ 1½ � f 2
1
30

2 χξα
L ωð Þ

h i00 þ 3 χξα
T ωð Þ

h i00� �
ð20Þ

where A is a proportionality constant and f1,2 are the longitudinal and
transverse mean-square Pockels constant fluctuations. As pointed out
by Martin and Brenig [75] and Schmid and Schirmacher [76] the corre-
lation length ξ in these expressions refers to the correlation functions of
the spatially fluctuating light-vibration (Pockels) constants.

For incoherent neutron scattering the observed intensity is propor-
tional to the density of states:

S k;ωð Þincoh∝ n ωð Þ þ 1½ � g ωð Þ
ω

: ð21Þ

In materials, which scatter predominantly incoherently this is a way
to obtain theDOSdirectly [77]. Similarly is the inelastic nuclear scattering
(INS) a direct way to obtain the DOS of glasses [40].

In many materials, which have been investigated by inelastic neu-
tron scattering, the scattering is coherent, which precludes the usage
of Eq. (21). However, it is known [78,46,79] that in the limit k → ∞ all
coherence is lost, i.e. S(k, ω) → Sincoh(k, ω). This limit is expected to
hold for k values at which the static structure factor S(k) becomes
alies in glasses, J. Non-Cryst. Solids (2014), http://dx.doi.org/10.1016/
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equal to its coherent counterpart S(k)incoh= 1. Typical values for inelas-
tic coherent neutron scattering, however, range around and somewhat
beyond the central peak of S(k). In the incoherent approximation [78,
80–82], the coherent dynamical structure factor is replaced by expres-
sion (21). In order tomake the datamore incoherent (and to gain statis-
tics) it can be useful [78,80–82], to average the data over the k range
accessible by the kinetic window of the neutrons and write

S k;ωð Þh i ¼ 1
k max −k min

Z k max

k min

dkS k;ωð Þ∝ n ωð Þ þ 1½ � gneutron ωð Þ
ω

: ð22Þ

The error made by this approximation has been discussed in detail
by Taraskin and Elliot [81] and by Fabiani et al. [82].

For many years an incoherent approximation like Eq. (21) was as-
sumed to hold approximately also for the Raman intensity [8,83]. After
some time, however, it became clear, that the DOS gRaman(ω) extracted
using Eq. (21) in thiswayhad little in commonwith gneutron(ω), extract-
ed via Eq. (22). So one invented [84,76] a “Raman coupling function”
C(ω) and wrote

IVH ωð Þ∝ n ωð Þ þ 1½ �C ωð Þ g ωð Þ
ω

: ð23Þ

Comparing Eq. (23) with Eq. (20) we get

C ωð Þ ¼ ω
g ωð Þ 2 χξα

L ωð Þ
h i00 þ 3 χξα

T ωð Þ
h i00� �

: ð24Þ

An expression like this has already been given by Viliani et al. [85],
which shows that g(ω) drops out of the formula [86]. The idea of the
workers [84] using C(ω) was, however, the assumption that this func-
tionmight be the same for all glasses, for whichwe cannot find any jus-
tification. For the future we advertise to use the susceptibilities ξξαL;T
instead, which can be directly related to inelastic scattering data.

2.3. Thermal properties

The specific heat can be calculated from the DOS by the usual
formula

C Tð Þ∝∫∞
0
dωg ωð Þ ω=Tð Þ2 eħω=kBT

eħω=kBT−1
� �2 : ð25Þ

In terms of the transportmean-free pathℓtr(ω) the thermal conduc-
tivity is given by

κ Tð Þ∝∫∞
0
dω=tr ωð Þg ωð Þ ω=Tð Þ2 eħω=kBT

eħω=kBT−1
� �2 : ð26Þ

As shown by Schirmacher [20] by an analysis of the Gaussian contri-
butions beyond the SCBA saddle-point (which are important for trans-
port properties [87,88]) the transport mean-free path ℓtr(ω) to be
inserted into Eq. (26) is not the one-particlemean-free pathℓ(ω) calcu-
lated from the sound attenuation, but has to be multiplied with the in-
verse reduced DOS:

ℓtr ωð Þ∝ ω2

g ωð Þℓ ωð Þ ð27Þ

where ℓ(ω) ∝ ℓT(ω) if the disorder scattering is due to the transverse
shear fluctuations.
Please cite this article as:W. Schirmacher, et al., Theory of vibrational anom
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3. Heterogeneous-elasticity theory

3.1. Model

Heterogeneous-elasticity theory is formulated in terms of standard
elasticity theory [89]. The equations of motion for the Cartesian compo-
nents i, j of the displacement vector u(r, t) are given by

ρm
∂2

∂t2
ui r; tð Þ ¼ ∑ j∂ jσ i j r; tð Þ ð28Þ

where ρ is the mass density and σij is the stress tensor, which, for a ho-
mogeneous and isotropic medium is given by

σ i j ¼ λδi j Tr ϵf g þ 2Gϵi j ¼ Kδi j Tr ϵf g þ 2G rð Þϵ̂i j: ð29Þ

Here λ ¼ K þ 2
3G is the longitudinal Lamé modulus, K is the bulk

modulus, and G is the shear modulus. ϵij is the strain tensor

ϵi j ¼
1
2

∂
∂xi

uj þ
∂
∂xj

ui

 !
: ð30Þ

In the second line of Eq. (29) the terms have been rearranged in such
a way that the second summand involves only shear stresses, the first
only dilatational stresses. This is not the case for the first line.

The traceless strain tensor, which appears in the second line is
defined by

ϵ̂i j ¼ ϵi j−
1
3
δi j Tr ϵf g: ð31Þ

We now are generalizing the theory for allowing the elastic con-
stants to fluctuate in space. Of course, there is no reason, why isotropy
should still hold on amesoscopic length scale. In fact, computer simula-
tions [62,63,19,64] show that this is not so. However, to keep the theory
tractable we make the two assumptions: (i) that the breakdown of the
homogeneity is more important than that of the isotropy and (ii) that
the (relative) fluctuations of the shear modulus G are stronger than
those of the bulk modulus. Indirect evidence for correctness of the sec-
ond assumption comes from the fact that themacroscopic bulkmodulus
K, extracted from numerical simulations on model glasses, is not fre-
quency dependent [17,19]. Marruzzo et al. [19] and Mizuno et al. [64]
have shown by directly calculating local elastic moduli from their
simulations, that indeed in these model glasses the relative fluctuations
of K are much smaller than those of G.

We now assume that the shearmodulus in the representation of the
second part of Eq. (29) randomly fluctuates in space: G= G(r). For the
case of the Gaussian disorder we, as before, distinguish between an av-
erage G0 and fluctuations.

3.2. Coherent-potential approximation (CPA)

The coherent-potential approximation (CPA) is a well-established
theory for wave spectra and transport in quenched-disordered systems
[90–97]. It has been generalized recently to apply to diffusion in a het-
erogeneous medium and to heterogeneous-elasticity theory with the
help of replica field-theoretic methods [65]. It was shown that this the-
ory reduces to the earlier version of heterogeneous elasticity theory
based on Gaussian statistics [20,66] in the weak-disorder limit, i.e. in
the limit ΔG/G0 b 1, where ΔG is the root-mean-square deviation of
the fluctuations of G(r). As in the earlier theory the spatial fluctuations
of G are transformed in themacroscopic limit to a disorder-induced fre-
quency dependence of G. In our CPA theory we assume that the micro-
scopic fluctuations of G are averaged over a coarse-graining volume of
diameter ξG, where ξG is the correlation length of the G fluctuations.
This means, that the resulting values of Gi corresponding to the volume
alies in glasses, J. Non-Cryst. Solids (2014), http://dx.doi.org/10.1016/
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Fig. 1. Comparison of results of a soft-sphere molecular-dynamics simulation (symbols)
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the frequency-dependent shear modulus G(ΩT) and the quantity 3=4 M ΩLð Þ−eK� �
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The SCBA parameters are γ− γc = 0.08 and K/G0 = 3.166; fromMarruzzo et al. [19].
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with center ri can be assumed to be statistically uncorrelated. The self-
consistent equations for G(ω) are

0 ¼ Gi−G zð Þ
1þ ev

3 Gi−G zð Þð ÞΛ zð Þ

* +
i

ð32aÞ

G zð Þ ¼ Gi

1þ ev
3 Gi−G zð Þð ÞΛ zð Þ

* +
i

ð32bÞ

Λ zð Þ ¼ 4
3
χξG

L zð Þ þ 2χξG
T zð Þ ð32cÞ

where eν is related to the correlation-length parameter ν by eν ¼ ν3
=2π2.

Eqs. (32a) and (32b) are equivalent.
From the frequency-dependent shear modulus G(z) the DOS is cal-

culated by means of Eq. (15) with

GL k; zð Þ ¼ 1
−z2 þ k2 K þ 4

3G zð Þ½ � ð33aÞ

and

GT k; zð Þ ¼ 1
−z2 þ k2G zð Þ : ð33bÞ

In the following we re-derive the previous SCBA theory [20,66] for
the case of weak disorder, i.e. ΔG b 〈G〉. We define fluctuations δGi =
Gi − 〈G〉 and a self energy δG(z) = G(z) − 〈G〉 ≡ − Σ(z). Then we
have from Eq. (32a)

0 ¼ δGi−δG zð Þ
1þ ev

3 δGi−δG zð Þð ÞΛ zð Þ

* +
i

ð34Þ

which is equivalent to

δG zð Þ ¼ δGi

1þ ev
3 δGi−δG zð Þð ÞΛ zð Þ

* +
i

: ð35Þ

Expanding now the expression 1= 1þ ev
3 δGi−δG zð Þð ÞΛ zð Þ� �

to first
order in δGi − δG(z) and taking into account 〈δGi〉 = 0 we arrive at

X
zð Þ ¼ −δG zð Þ ¼ ev

3
δGið Þ2

D E
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

1
2γG

2
0

Λ zð Þ ð36Þ

which is the self-consistent Born approximation (SCBA) derived by
Schirmacher [20]. The function Λ(z) has to be evaluated with G(z) =
G0 − ∑ (z). Although the average in Eq. (36) can refer still to any dis-
tribution P(E) the fact that only the first cumulant of the elasticity fluc-
tuations has been taken into account is equivalent to assuming a
Gaussian distribution (without cutoff).

4. Results and discussion

It is clear that the CPA has several advantages compared to the SCBA:

– one can treat arbitrary distributions P(G);
– one is not restricted to weak disorder;
– one need not (but can) take negative values of G into account.

As the SCBA is based on unrestricted Gaussian statistics it includes
negative values of G and therefore has a sharp limit of allowed values
of γ. The critical value γc only weakly depends on the parameter K/G0

and has values around γc ≈ 0.2. This value is of the same order of
Please cite this article as:W. Schirmacher, et al., Theory of vibrational anom
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magnitude as obtained by directly determining the fluctuations from
the simulation.

Using the SCBA (with kξG ¼ kD) Marruzzo et al. [19] have calculated
the real and imaginary part of G(z) (taking γ ≈ γc) and compared it to
the corresponding quantities extracted from CL,T(k, ω) data obtained
by a large-scale molecular-dynamics simulation of a soft-sphere glass
with a repulsive-only potentialϕ(r)∝ r−12. As stated before, themacro-
scopic bulk modulus K turned out to be frequency independent, so that
G(z) evaluated from the longitudinal modulus viaG zð Þ ¼ 3

4 M zð Þ−K½ � co-
incideswith the complex shearmodulusG(z), evaluated from the trans-
verse data. We reproduce these data in Fig. 1. The following points are
remarkable:

(i) The SCBA results agree perfectly with the simulation.
(ii) The dip in G′(ω) is near the strong increase of G″(ω).
(iii) The frequency of the dip and the strong increase coincide with

the BP position and the transverse Ioffe–Regel frequency given
by πΓ(ω) = ω.

Let us discuss these three points in detail. (i) is due to the fact that
the relative fluctuations of G are small (as directly probed), so that the
SCBA is valid. (ii) reflects the fact that G′(ω) and G″(ω) are related to
each other by the Kramers–Kronig relation

G ωð Þ0 ¼ P 1
π

Z ∞

−∞
dω

G″ ωð Þ
ω−ω

ð37Þ

whereP indicates a principle part integration. It is well known [98] that
a positive analytical function whose real and imaginary parts obey
Eq. (37), has a kink in the real part, where its imaginary part starts to ac-
quire values of the order of the real part. This fact is very important for
identifying the role of disorder in the BP-related vibrational anomalies.
The dip in the real part of G (and hence in the differential sound veloc-
ity) allows for distinguishing disorder-dominated models for the BP
from models involving only real sound dispersions (see the van-Hove
discussion below). The observation (iii) reinforces the conclusion
given in the remarks on (ii): The Ioffe–Regel limit is just the frequency,
where (by definition) the imaginary part of G(z) becomes of the same
order of magnitude as its real part.
alies in glasses, J. Non-Cryst. Solids (2014), http://dx.doi.org/10.1016/
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We now shall turn our attention to the role of the correlation length
ξ, viz. the distinction between the upper cutoff kξ and kD. In some of our
previous publications on heterogeneous-elasticity theory [20,66,19,65]
have taken the upper cutoff kξ equal to kD. It turned out – under this as-
sumption – that in SCBA and in CPA for Gaussian and other weak disor-
der the boson peaks were limited to enhancements of less than a factor
two. On the other hand, in the version of the SCBA with correlated dis-
order Schirmacher et al. [99,100] found unlimited boson peaks with in-
creasing correlation length— as compared to kD

−1. These findings are in
excellent agreement with numerical calculations using the method of
moments [99,100]. Taking these results into account one can use the
self consistent equations of the SCBA and CPA, inwhich the upper cutoff
kξG (we shall drop the subscript G from now on) is different from the
Debye wavenumber kD, which is used to limit the amount of modes
for calculating the DOS. If this is done the BP is not limited to a factor
of two.

This is demonstrated in Fig. 2, where we plotted the reduced DOS
g(ω)/gD(ω) for different values of kD/kξ.

For the calculations presented in Figs. 2 to 4 we used the CPA
Eqs. (32a)–(32c), (33a) and (33b) together with Eq. (15) with a trun-
cated Gaussian distribution of shear moduli of the form

P Gð Þ ¼ P0 θ G−G minð Þ e− G−G0ð Þ2=2γ ð38Þ

where θ(x) is the Heaviside step function and Gmin is the lower cutoff. In
these calculations we used the renormalized value of G (i.e. the self-
consistently calculated one) for evaluating the Debye frequency ωD

and Debye DOS gD(ω) in terms the longitudinal and transverse sound
velocities ρmυ

2
L ¼ K þ 4

3G, ρmυT
2 = G

ωD ¼ kD
1
3

1
v3L

þ 2
v3T

 !" #−1=3

ð39Þ

gD ωð Þ ¼ 3ω2
=ω3

D: ð40Þ

For the bulkmodulus of the calculationsweused the valueK=3.3G0

and for the cutoff parameter the valueeν ¼ 1, which implies thatkD=kξ ¼ffiffiffi
33

p
ξ=a, where a ¼ ffiffiffiffiffiffiffiffiffiffi

V=N3
p

is the mean intermolecular distance. The dis-
tribution of shearmoduli (Eq. (38)) involves three parameters G0, γ and
Gmin. Because G0 is used to fix the elastic-constant scale there remain
three adjustable parameters to fix the state of elastic disorder of the ma-
terial, namely kD/kξ ~ ξ/a, γ and |Gmin|. The latter (which we used with
negative values or equals zero) specifies the amount of regions with
negative shear modulus (soft regions) in the material. As can be seen
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Fig. 2. Reduced density of states g(ω)/gD(ω) vs. the rescaled frequency (ω/ωD)(kD/kxi) =
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2 = 1 and
Gmin = 0.
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from Figs. 2 to 4 increasing ξ and Gmin enhances the BP and shifts its po-
sition to lower frequencies, whereas increasing γ just leads to an en-
hancement, while keeping the BP position constant. It has been
pointed out in the literature [101–104] that the position of the boson
peak in relation to the Debye frequency correlates with the inverse cor-
relation length of density and elasticity fluctuations.

Let us discuss our findings further in terms of measured vibrational
spectra of materials, in which an external parameter (temperature,
pressure or the amount of polymerization) is changed. If the Debye fre-
quency (depending on the moduli K and G) is changed, this leads to a
modification of the spectrum, which has been called elastic-medium
transformation. This transformation is taken care of, if the DOS is repre-
sented in a normalized way, as is the case in Figs. 2 to 4. A number of
boson-peak data, if normalized in this way, lead to a universal curve,
i.e. all data points fall onto the same curve if replotted, taking the
elastic transformation into account [105,106,56,29,30,107,54]. Other in-
vestigations reveal a deviation from this scaling [108–116]. In terms of
our model calculations this means, if the state of disorder is not
changed, but just the value of themean elastic constants or the density,
this corresponds to elastic-transformation scaling. In the other cases ob-
viously the state of disorder is changed by changing the external
conditions.

A very interesting case in which the elastic transformation scaling
does not hold has been reported recently: the case of prehistoric
amber. Pérez-Castaneda et al. [116] measured the temperature depen-
dence of the specific heat of the hyperaged and rejuvenated material.
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Fig. 4.Reduced density of states g(ω)/gD(ω) vs. the rescaled frequency (ω/ωD) for different
values of thewidth parameter γ. The other parameters areGmin/G0=−0.1 and kD/kξ=2.
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The height of the boson peak, taken from a C(T)/T3 curve is by 22% lower
in the hyperagedmaterial, comparedwith the rejuvenated one. An elas-
tic transformation using the change in the Debye frequency determined
by the authors would only lead to a difference by 7.4%.

This sensitivity of the boson peak to structural changes, which can-
not be described by an elastic transformation is at variancewithmodels,
in which the BP is described exclusively as an elastic transformation of a
crystalline van-Hove singularity [29,30]. The fact that the DOS of some
glasses has a BP, which – if re-scaled with the Debye frequency –

approximately coincideswith the enhancement of the DOS of the corre-
sponding crystals due to the lowest van-Hove singularity does not per-
mit the conclusion that the BP is not a disorder-induced phenomenon.
As discussed in detail by Schirmacher [32], the wavenumber scale at
which the lowest phonon dispersion in crystals deviates from Debye's
linear dispersion is approximately the same as that, where vibrational
excitations in a glass start deviating from plane waves: Both scales sig-
nify the breakdown of the macroscopic continuous symmetries of the
elastic material.
5. Conclusions

We have discussed the theory of heterogeneous elasticity, which is
elasticity theory in the presence of spatially fluctuating elastic moduli.
The case of spatially fluctuating shear moduli has been considered,
but the theory is not restricted to this case. The solutions of the
stochastic equations of motions of this theory in coherent-potential ap-
proximation (CPA) have been given. It has been shown, that in the
small-disorder limit these solutions reduce to the self-consistent Born
approximation (SCBA) used earlier by the present authors. Within
both theories the disorder fluctuations of the shear modulus are trans-
formed into a frequency dependence of themacroscopic shearmodulus
G(z), which – by the dictate of causality – acquires an imaginary part,
which is proportional to the sound attenuation coefficient and to the in-
versemean-free path. If themean-free path becomes comparable to the
wavelength of the vibrational excitations the concept of waves breaks
down, and the excitations are random-matrix-type states. The BP and
the associated anomalies (strong increase of the attenuation, dip in
the real part of G(z)) mark the crossover from wave-like to random-
matrix-like physics.

The SCBA is valid for Gaussian distributions of elastic moduli in the
low-disorder limit and gives very good results for themacroscopic elas-
tic moduli and the BP in comparison with simulations of a soft-sphere
glass model. Using the CPA one is not restricted to Gaussian statistics.
Within the self-consistent CPA equations the cutoff in k space is propor-
tional to the inverse correlation length of the elasticity fluctuations. If
this cutoff is taken smaller than the Debye cutoff kD, rather large
boson peaks larger than a factor of 2 can be obtained, contrary to earlier
calculations, where kD was taken as cutoff in the CPA and SCBA
equations.

In the light of heterogeneous elasticity theorywe have discussed the
various experimental methods for obtaining the vibrational spectrum,
especially the density of states. The only unambiguous methods for
the latter purpose are inelastic neutron scattering in the case of incoher-
ent scattering and inelastic nuclear scattering (INS).

We have demonstrated with the help of model calculations using
theCPA that the failure of describing the vibrational change of amaterial
after varying an external parameter by an elastic transformation can be
explained by changing the state of disorder of thematerial, as described
by the distribution of elastic constants.
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