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Abstract
In the present survey we address the vibrational properties of a disordered 
mass-spring model, in which the spring constants depend exponentially on 
the distance between the mass positions (‘Euclidean-random-matrix model’, 
ERM). Starting from the high-density expansion for this model, introduced by 
Giorgio Parisi and his coworkers, we present a self-consistent approximation 
for the vibrational spectrum (SCERM) derived by two of the authors. By 
a further simplification we arrive at an ERM version of the self-consistent 
Born approximation (ERM-SCBA). The two approximation schemes describe 
correctly the transition to a Debye spectrum at low frequencies. In this regime 
Rayleigh scattering is predicted, which is shown to be a general feature of 
ERM-type models. Technically Rayleigh scattering involves a non-analyticity 
of the self energy, which, for the mathematically equivalent transport model, 
leads to a long-time tail of the velocity autocorrelation function. In the vicinity 
of an instability the theory predicts both the occurence of a boson peak and 
anomalous sound attenuation. Finally, we discuss briefly the low-density 
regime, which is governed by percolation physics.
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1.  Introduction

Random matrices proved to be good mathematical models for spectra of complex systems [1, 
3–8].

A particular class of random matrices occurs in the description of the high-frequency vibra-
tional spectra of amorphous solids and liquids [9–22]. In this context Mézard, Parisi and Zee 
[23] coined the term Euclidean random matrix (ERM) for a geometric model with pairwise 
connections of randomly distributed points in a d-dimensional euclidean space (see below).

In contrast to the vibrational spectra of crystals, which reflect the crystalline long-range 
order, the spectra of amorphous materials exhibit several peculiarities or anomalies, which 
make them very different from their crystalline counterparts [24–28]. These anomalies occur 
in a frequency range (∼1 THz) much below the Debye frequency, where one expects the 
density of states (DOS) to obey the Debye law g(ω) ∝ ω2. One observes instead an enhance-
ment over this law, which, if represented as g(ω)/ω2 appears as a maximum. This peak was 
called ‘boson peak’, because the temperature dependence of the incoherent scattering inten-
sity could be described by that of the Bose function n(ω) + 1 = [1 − e−�ω/kBT ]−1. Because 
incoherent neutron and Raman spectra are proportional to this function times the appropriate 
spectral function [29–31], this means that the spectrum is of harmonic origin. In the same 
frequency range, below the boson peak, the sound attenuation in many materials increases 
with the fourth power of the frequency Γ(ω) ∝ ω4 [32, 33], which indicates scattering from 
frozen-in inhomogeneities (Rayleigh scattering) [20, 34]. Evidence for the boson-peak-related 
anomalies, including the Rayleigh law, has been obtained as well by molecular-dynamics 
simulations [35–39] .

These anomalies can be well explained phenomenologically by means of heterogeneous-
elasticity theory [28, 38, 40, 41], i.e. by means of the equations of motion of elasticity theory 
with spatially fluctuating elastic constants, which are solved by field-theoretical techniques 
[40, 42].

An alternative approach is a microscopic one, i.e. by considering the microscopic equa-
tions of motion of a single-component material in the harmonic approximation

∂2

∂t2 uα
i (t) = −

3∑
β=1

Nnn∑
j=1

tαβij [uβi (t)− uβj (t)] i = 1 . . .N.� (1)

Here N is the number of atoms (or ‘sites’) within the probe volume V = N/ρ, where ρ  is 
the site density. {uα

i (t)} are the Cartesian components of the dispacement vector of an atom 

at location ri, Nnn is the number of nearest neigbours and tαβij  are the elements of the force-
constant matrix, divided by the atoms’ mass m:

tαβij =
1
m

∂2

∂xα∂xβ
φ(rij)� (2)

where rij = |ri − rj| is the distance between atoms i and j  and φ(r) is the pairwise interatomic 

potential in a structurally disordered solid the positions ri take random positions, so that tαβij  
becomes a (sparse) random matrix.

One may now simplify the treatment by ignoring the vector character of the displacements. 
One then arrives at the following scalar coupled-harmonic oscillator equations (ERM equa-
tions) [14–18, 20–22].
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∂2

∂t2 ui(t) = −
∑
j�=i

tij[ui(t)− uj(t)].� (3)

Here the force constants tij are scalar quantities, which are assumed to be functions of the 
separation rij, i.e. tij = t(rij). If they vanish quickly enough for rij → ∞ one may perform the j  
sum in equation (3) over all N  −  1 sites, which are not equal to i. In the present treatment we 
assume t(r) to be a Gaussian

t(r) = τ0e−
1
2 r2/σ2

,� (4)

where σ is the interaction range and τ0 a prefactor.
The scalar ERM model, in fact, has been shown to exhibit both a boson peak [14–17] and 

Rayleigh scattering [20, 21].
Moreover, there exists an interesting mathematical analogy between the scalar model (3) 

and a transport equation [12, 43, 44]: if one replaces the double time derivative in equation (3) 
by a single one, one arrives at an equation of motion, which describes a random walk of a par-
ticle on a mesh with nodes at the sites ri with transition probabilities tij and position probabili-
ties ui. Such a transport occurs with electrons in amorphous solids and in the impurity bands 
of crystalline semiconductors and is called hopping transport [2, 45, 46]. In the steady state 

(∂ui
∂t = 0) one further obtains a mathematical equivalence to a set of Kirchhoff’s equations of 

an electrical network with conductances tij and nodal voltages ui [2, 46, 47].
The purpose of the present work is (i) to give a survey over the results obtained so far for 

the ERM model, and (ii) establish a relationship between the self-consistent approximation 
of the ERM model and the self-consistent Born approximation (SCBA) of heterogeneous-
elasticity theory.

In the next section  we introduce the ERM formalism and summarize the lowest-order 
results for the high-density expansion. In the third section  we motivate the self-consistent 
ERM approximation (SCERM appr.). We show that a simplified version of it (ERM-SCBA) 
becomes mathematically equivalent to the SCBA. In the fourth section we discuss the hydro-
dynamic regime (small frequencies and wavenumbers) and show, using a coarse-graining pro-
cedure that in this regime one has always Debye wave behavior and Rayleigh scattering. We 
end with a discussion of the low-density regime and with conclusions.

2.  ERM theory

2.1.  Formalism

In frequency space the dynamics of the ERM model is described by

sui(s) = −
∑
j�=i

tij
[
ui(s)− uj(s)

]
= −

∑
j

Dijuj(s).� (5)

Here Dij is the dynamical matrix defined by

Dij =

{∑
� ti� i = j

−tij i �= j� (6)

∑
j

Dij = 0 .� (7)
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For the vibrational problem the sum rule (7) is due to momentum conservation (↔ transla-
tional invariance), for the transport problem (7) represents particle number conservation, and 
for the network (7) is due to current conservation.

For vibrational spectra the complex inhomogeneity takes the form s = −ω2 − iε = −λ− iε, 
and ui(s) represents the vibrational elongation. Here ω2 = λ is the eigenvalue of the dynami-
cal matrix D, and ω  the frequency corresponding to the time derivative. For the description 
of hopping transport and diffusion s = −iω + ε, and ui(s) represents the position of a random 
walker.

An important parameter of the ERM model is the density of points ρ = N/V  and its rela-
tion to the interaction range σ, quantified by Γ−1 = ρσ3. In the high-density limit Γ serves as 
a small parameter for perturbation theory [15, 18, 20, 23]. In the opposite limit Γ → ∞ the 
model is dominated by percolation physics [2, 46, 48–51], because—in the transport prob-
lem—the current goes along the path of least resistance.

The quantity of interest is the q dependent averaged Green’s function

G(q, s) =

〈
1
N

∑
�m

eiq(r�−rm)[s + D]−1
�m

〉

=
1
s
+

∞∑
p=1

(−1) p 1
s p+1

1
N

∑
i0...ip

〈
eiqri0 i1 Di0i1 . . . eiqrip−1 ip Disp−1ip

〉

=
1

s + t0 − t(q)− Σ(q, s)
.

�

(8)

The angle brackets denote a configuration average. The particle positions r� are assumed to be 
independently distributed, i.e. the joint probability density factorizes

P(r1, r2, . . . rN) = p(r1) p(r2) · · · · · p(rN)� (9)

with

p(r�) =
1
V

.� (10)

The second line of equation (8) is a high-frequency expansion, which is, due to the increasing 
number of internal summation over the particle positions also a high-density expansion with 
respect to the parameter Γ = [ρσ3]−1. In the third line the Green’s function is represented in 
terms of the Fourier-transformed force constants

t(q) = ρ

∫

V

d3r t(r)eiqr = t0e−
1
2 q2σ2

,� (11)

with t0 = ρ
∫

V d3r t(r) = τ0
(2π)3/2

Γ , and the self-energy function Σ(q, s). The level density is 

obtained from the Green’s function via

ρ(λ) =
1
π
Im

{
G∞(s)

}
� (12)

with G∞(s) = lim
|q|→∞

G(q, s). The usual DOS is obtained from the level density as

g(ω) =
∣∣∂λ/∂ω∣∣ ρ(λ) = 2ωρ(λ).� (13)

In particular, the Debye DOS g(ω) ∝ ω2 for plane waves corresponts to ρ(λ) ∝ λ1/2.
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The self energy can be (and has been [15, 16, 20]) calculated with increasing powers of the 
inverse density ρ .

The lowest-order result is Σ(0)(q, s) = 0, so that in the high-density limit

G(0)(q, s) =
1

s + t0 − t(q)
.� (14)

The function t0 − t(q) ≡ ω2(q) may be interpreted as the square of a high-frequency ‘liquid 
dispersion’ [9], which starts at small q quadratically (acoustic dispersion limit) and saturates 
at t0, which might be interpreted as the square of an Einstein frequency [9].

As shown in [20, 21] and in section 3, for small q the self-energy Σ(q, s) varies as well with 
q2 and exhibits a non-analyticity

Σ(q, s) ∝ q2s3/2.� (15)

The disorder-induced imaginary part of Σ gives rise to a finite width δω of the line, character-
ized by the dispersion ω(q), which, in the limit q → 0 is given by

δω ∝ ωIm{Σ(q, s)} ∝ q2Γ(ω) ,� (16)

where Γ(ω) is the sound attenuation coefficient, the latter varies as Γ ∝ ω4 (Rayleigh scatter-
ing). In all approximate calculations of Σ(q, s) one must make sure that the property (15) is 
retained.

The lowest-order nontrivial contribution to the self energy is [15, 16, 20]

Σ(1)(q, s) =
∑

p

[
t(p − q)− t(p)

]2
G(0)(p, s).� (17)

Here 
∑

p denotes 1
ρ(2π)3

∫
d3p.

The second-order contribution to Σ(q, s) has been explicitly shown [20, 52] to exhibit the 
non-analyticity (15), contrary to claims in [15, 16]. In particular it was shown that this contrib
ution may be grouped into different classes with respect to the appearance of the diagonal or 
off-diagonal elements of the dynamical matrix (6), and that the sum of the self-energy contrib
utions of each class exhibit Rayleigh scattering (15) individually.

3.  Self-consistent ERM approximations

3.1.  SCERM approximation

It has been suggested [15, 16] that one might obtain a suitable self-consistent (i.e. non-per-
turbative) approximation by replacing G0(p, s) in (17) by the full Green’s function G(p, s) 
(‘cactus approximation’). However, as shown by [20], this self-consistent scheme violates the 
Rayleigh-scattering requirement (15). This is so, as shown in [20], because if one makes a 
high-density expansion of the cactus self energy, the second-order term does not coincide with 
one or the sum of several class sums of the exact second-order contributions.

A self-consistent scheme for calculating the self-energy, which preserves this property has 
been proposed [20] by making sure that, if the self-consistent self-energy is expanded in terms 
of the inverse density only entire sums of the different classes of self-energy diagrams are 
retained. This was achieved by introducing auxiliary quantities g(q, s) and σ(q, s).

W Schirmacher et alJ. Phys. A: Math. Theor. 52 (2019) 464002
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Within this self-consistent ERM (SCERM) approximation the self energy is given by5

Σ(q, s) =
∑

p

[
t(q − p)− t( p)

]2
g( p, s).� (18)

The auxiliary quantities σ(q, s) and g(q, s) obey the self-consistent set of equations

g(q, s) =
[
s + t0 − t(q)− σ(q, s)

]−1
� (19)

σ(q, s) =
∑

p

[
t(q − p)− t( p)

][
t(q − p)− t(q)

]
g( p, s).� (20)

For calculating the level density we need the large-wavenumber limit of the Green’s func-
tion and the self energy Σ∞(s), equation (24).

In the |q| → ∞ limit the Green’s function of equation (8) becomes (taking into account 

lim
|q|→∞

t(q) → 0

G∞(s) =
[
s + t0 − Σ∞(s)

]−1
.� (21)

In order to perform the |q| → ∞ limit for the self energy correctly, it is advisable to reform
ulate equation (18), using the identy,

∑
p

h1(q − p)h2(p) =
∑

p

h2(q − p)h1(p)� (22)

as

Σ(q, s) =
∑

p

[
t( p)− t(q − p)

]
t( p)

[
g( p, s) + g(q − p, s)

]
.� (23)

The |q| → ∞ limit is then

Σ∞(s) =
∑

p

t2( p)
[
g( p, s) + g∞(s)

]
.� (24)

These expressions contain the large-wavenumber limit of the auxiliary quantities 
σ∞ = limq→∞ σ(q, s) and g∞ = limq→∞ g(q, s). In order to calculate these quantities we 

take the large wavenumber limit in the self-consistent equations (19) and (20).
Applying again the convolution identity (22) to obtain

σ∞ =
∑

p

t( p)2 g∞� (25)

g∞ =
1

s + t0 − σ∞
=

1
s + t0 −

∑
p t( p)2g∞

� (26)

(25) and (26) lead to a quadratic equation for g∞ with the solution (‘Hubbard Green’s func-
tion’ [53])

5 This relation between Σ(q, s) and the auxiliary quantities g(q, s) and σ(q, s) has been called [20] ‘cactus-1 
approximation’. A more complicated relation (‘cactus-2 approximation’), which contains one more class sum in the 
second-order expansion, [20] shall not be considered here.

W Schirmacher et alJ. Phys. A: Math. Theor. 52 (2019) 464002
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g∞(s) .
= gHE(s) =

2

s + t0 +
√

[s + t0]2 − 4
∑

p t( p)2
.� (27)

Its imaginary part is a half-ellipse (HE), centered around t0 with half width 2
√∑

p t2( p)
Combining now (24) and (25) we have

Σ∞(s) = Σ(1)
∞ (s) + σ∞(s)� (28)

with

Σ(1)
∞ (s) =

∑
p

t( p)2g( p, s).� (29)

Combining this with the expression (21) for G∞(s) we get

G∞(s) = g∞
(
s − Σ(1)

∞ (s)
)
= gHE

(
s − Σ(1)

∞ (s)
)
.� (30)

For the level density we then obtain

ρ(λ) =
1
π
Im

{
gHE

(
s − Σ(1)

∞ (s)
)}

� (31)

with gHE(s) given by (27) and Σ(1)
∞ (s) according to (29).

The self-consistent equations (18)–(20) together with (29) and (31) establish the SCERM 
scheme for calculating the level density.

3.2.  ERM self-consistent Born approximation (ERM-SCBA)

We now further simplify the SCERM equations as follows [22]:
If we consider the self-consistency equations  (19) and (20) we realize that the main  

contributions to the integrals over wavevectors are restricted to |q| < 1/σ. This means that we 
do not make a big error, if we perform an expansion with respect to the parameter |q|σ, i.e. a 
hydrodynamic expansion. For t(q) we can write

t(q) = t0 − q2c2
0� (32)

where

c2
0 = −1

2
∂2

∂q2 t(q)
∣∣∣∣
q=0

=
1
2

t0σ2
� (33)

is the unrenormalized sound velocity. We now define a hydrodynamic self energy

σ1(s) = lim
q→0

1
q2 σ(q, s)� (34)

so that the hydrodynamic version of the auxiliary Green’s function becomes

g(q, s) =
1

s + q2(c2
0 − σ1(s))

.� (35)

By performing a small-p  expansion of the vertices in equations (18) and (20) we obtain the 
following equation for σ1(s) [22]:

W Schirmacher et alJ. Phys. A: Math. Theor. 52 (2019) 464002
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σ1(s) =
7
6

c2
0

∑
p

p2[− t′( p)/p
]
g( p, s).� (36)

Introducing the dimensionless wavenumber p̃ = σp and the dimensionles self energy 
σ̃1(s) = σ1(s)/c2

0 we obtain

σ̃1(s) = γ
1
I0

∫ ∞

0
dp̃p̃4[− t′(p̃)/p̃

] 1
sσ2/c2

0 + p̃2
[
1 − σ̃1(s)

]� (37)

with the normalization constant

I0 =

∫ ∞

0
dp̃p̃2[− t′(p̃)/p̃

]
=

√
π

2� (38)

and the ‘disorder parameter’ 

γ =
7

6π2 I0
t0σ2

c2
0
Γ =

7
6

1
π3/2 Γ.� (39)

The self-consistent equations  (35), (36) and (or, equivalently equation  (37) ) together with 
(29) and (31) establish the ERM-SCBA.

We call this version SCBA, because the ERM-SCBA equations are almost the same as 
those derived from a model of elastic waves with fluctuating local elastic coefficients (hetero-
geneous-elasticity theory, [40, 41]).

In the SCBA of heterogeneous-elasticity theory the disorder parameter γ  is the relative 
variance of the elastic-constant fluctuations ∆G(r) = G(r)− 〈G〉

γ = Vc
〈∆G2〉
〈G〉2 .� (40)

Here Vc  is the coarse-graining volume used to calculate the fluctuating elastic coefficients 
from a more microscopic description [38]. The relative variance of the force constants t(r) can 
be calculated exactly [22] with the result

〈∆t2〉
〈t〉2 =

1
〈t〉2

[
〈t2〉 − 〈t〉2] = 1

2π3/2 Γ.� (41)

So the density parameter Γ can be identified with the disorder parameter γ  of heterogeneous-
elasticity theory. The lower the density in the ERM model the stronger is the disorder.

3.3.  General features of the ERM model at high densities

In figure 1 we compare the level density obtained by a numerical simulation of the ERM vibra-
tional model with Gaussian force constants [22] with the results of SCERM and ERM-SCBA. 
In figure 2 we compare the spectrum calculated in ERM-SCBA with the numerically calcu-
lated one for several densities. The spectrum at high densities (Γ comparable to or smaller 
than 1) is dominated by an Einstein-like peak situated at λ = t0, which is given by an average 
over all force constants (proportional to the first spectral moment [22]). Its width is essentially 
given by the variance of the force constants (proportional to the second spectral moment [22]). 
A completely incoherent average over the local vibrations à la Einstein, however, would give 
an exponentially decreasing level density at small eigenvalues. Instead, we have a cross-over 
to a Debye λ1/2 law as evidenced in the inset of figure 2. This means that the mass-spring 
model, represented by the vibrational version of the ERM model, allows for the propagation of 

W Schirmacher et alJ. Phys. A: Math. Theor. 52 (2019) 464002



9

waves: in the frequency regime, where the level density shows the λ1/2 behaviour, the eigen-
functions of the dynamical matrix are approximately plane waves. As the system is certainly 
disordered, therefore, one expects that the scattering of these waves obeys Rayleigh’s ω4 law.

By a diagrammatic analysis it was shown in [20] to second order in the inverse density 
that the ERM model, in fact, has this feature, which corresponds to a non-analytic depend
ence of the self energy’s imaginary part as Σ′′(λ) ∝ λ3/2. By a coarse-graining procedure 
they showed that the Rayleigh scattering is a general propertiy of models of the type (5) with 
sufficient short-range correlations/interactions (see next section). Later, by a field-theoretic 
procedure Grigera et al [21] showed to all orders that the ERM model has this property.

0 10 20
λ

0

0.05

0.1

0.15

ρ(
λ)

Figure 1.  Comparison between the numerically calculated level density (N  =  800) 
for Γ = 1 (violet connected symbols) with the result of the self-consistent ERM 
approximation (SCERM), equations  (18)–(20), (29) and (31), [20] (blue dash-dots), 
and that of the ERM-SCBA (29), (31), (35) and (36), (red dashes).

0

λ/t0

0

1

2

3

4

5

6

t 0ρ(
λ)

10
-2

10
-1

10
0

λ/t0

10
-4

10
-3

10
-2

10
-1

10
0

10
1

t 0ρ(
λ)

λ1/2

Figure 2.  Comparison between the numerically calculated level density (N  =  200, 
connected symbols) with the results of ERM-SCBA (red lines) for Γ = 0.3 (red 
dashes), 0.65 (orange dash-dots), 1.5 (green dash-doubledots) and 3.5 (blue full lines). 
Inset: ERM-SCBA data in double-logarithmic representation. The dotted line indicates 
a λ1/2 dependence.
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3.4.  Instability and the boson peak

It is well known that the eigenvalues of a dynamical matrix of the form (6) with non-negative 
entries tij are all non-negative, which may be easily proved using Gershgorin’s theorem [55].

However, if we reduce the density below 1/Γ∗ ≈ 1/2.37 the ERM-SCBA predicts a trans
ition towards an unstable spectrum with values of λ smaller than 0. While this is obviously an 
artefact of the SCBA approximation, such an instability can happen for models in which some 
of the force constants take negative values [13, 17–19, 40, 56]. The instability of the SCBA 
may be rationalized as follows: using a model with fluctuating elastic constants the SCBA 
may be derived within a replica-field theoretical framework by a saddle-point approximation, 
in which the inverse of the disorder parameter γ  serves as a large parameter. Within this deri-
vation it is assumed that the fluctuations have a Gaussian distribution with width γ . From this 
assumption it is clear that beyond a critical γ∗ an instability occurs, because too many negative 
elastic constants are present. In a vector description it is the shear elasticity, which—via very 
small and negative local values—causes the instability [38, 40, 56].

Within the ERM model the instability can be made real by explicitly introducing partly 
negative force constants tij [13, 17]. As a precursor of the instability a deviation of the level 
density from the Debye g(λ) ∝ λ1/2 (or g(ω) ∝ ω2) law is obtained, as depicted in figure 3. 
Such a deviation, called ‘boson peak’, has been observed experimentally in glasses and other 
disordered materials and has been subject to an intense dispute6.

It is clear that near a harmonic instability the anharmonic interaction becomes important, 
which has been shown by Tomaras et al [57] to contribute a term Γ(ω) ∝ ω2 to the sound atten-
uation. If the anharmonic term is included, the combined anharmonic and unstable configura-
tion produce a critical spectrum g(ω) ∝ ω3/2  as well as a critical attenuation Γ(ω) ∝ ω3/2 
[18, 56, 58]. Such a behavior of the sound attenuation has, indeed, been observed in the GHz 
range in a network glass [59].

4.  Coarse-graining, Rayleigh scattering and long-time tail of the transport 
velocity correlations

We consider the network transport problem defined in (5). We tile the total volume V  into 
boxes of volume Vc � V . For a given box with volume Vc  the conductance of the network 
inside the box and hence the conductivity and diffusivity can be calculated [2, 46]. We call this 
diffusivity DVc(r) = D0 + δDVc(r), where r is the vector pointing to the center of the box and 
D0 = 〈DVc(r)〉 (disorder average).

In the coarse-grained system we deal with a spatially fluctuating diffusivity obeying the 
following equation of motion for the continuous density n(r, s)

sn(r, s) = ∇DVc(r)∇n(r, s).� (42)

As before for the transport problem s = −iω + ε. For the mathematically equivalent vibra-
tional problem (s = −ω2 − iε) DVc takes the role of a spatially fluctuating elastic modulus, 
or squared sound velocity v2. n(r, s) plays the role of the scalar vibrational amplitude u(r, s).

6 See [28] for many references dealing with the boson peak.
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The Green’s function corresponding to equation (42) obeys the equation of motion
(
s −∇

[
D0 + δDVc(r)

]
∇
)
G(r, r′, s) = δ(r − r′) ,� (43)

from which a recursion formula for the Green’s function in q space

G(q, q′, s) =
1
V

∫
dr

∫
dr′e−iqreiq′r′G(r, r′, s)� (44)

in terms of the unperturbed Green’s function G0(q, s) = [s + D0q2]−1 can be derived [60]. 
Averaging over (44) one arrives at a representation

〈G(q, q′, s)〉 = δq,q′
1

G−1
0 (q, s)− Σ(q, s)� (45)

in terms at a self-energy function, which is obtained to second order in the fluctuations δDVc as

Σ(q, s) =
1

(2π)d

∫
ddpKVc(q − p)(q · p)2G0(p, s)� (46)

where

KVc(q) =
∫

ddreiqr〈δDVc(r0 + r)δDVc(r0)〉� (47)

is the Fourier-transformed correlation function of the diffusivity fluctuations, and d � 2 is the 
dimensionality. For t(r) falling off rapidly enough with distance r KVc(0) is finite, and we can 
write

KVc(q) = σ′fVc(q)� (48)
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Figure 3.  Reduced DOS g(λ)/
√
λ for the inverse densities (from bottom to top) 

Γ = 2.28, 2.32, 2.36, 2.40.
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with fVc(q) = 1 for q < qc = 2π/V1/d
c  and 0 elsewhere. σ′ is the variance of the diffusivity 

(squared sound velocity) per volume. Relation (46) is the Born approximation for the coarse-
grained problem.

In the long-wavelength limit q → 0 we obtain

Σ(q, s) ∝ q2σ′
∫ kc

0
dp

pd+1

s + D0p2 .� (49)

If we define

D(s) = D0 − lim
q→0

1
q2 Σ(q, s) ≡ D0 +∆D(s)� (50)

we obtain for |s| → 0 from equation (49) a contribution to D(s), which is non-analytic in the 
complex variable s, namely

∆D(s) ∝ sd/2 for s → 0.� (51)

For the transport problem it can be shown that the frequency-dependent diffusivity is the 
Laplace transform of the velocity autocorrelation function Z(t) [61]. Therefore (51) implies

Z(t) ∝ t−(d+2)/2 for t → ∞� (52)

which is a longtime tail typical for single-particle transport in a quenched-disordered environ
ment [60, 62, 63].

On the other hand, for the vibrational problem this non-analyticity leads to Rayleigh  
scattering for the sound-attenuation coefficient

Γ(ω) ∝ ω lim
q→0

1
q2 Im{Σ(q, s)} ∝ ωd+1.� (53)

This means that Rayleigh scattering is a general feature of ERM-type models or other models 
with a disordered local elasticity coefficient of type (42). It is remarkable that Rayleigh scat-
tering and the long-time tail have the same mathematical origin, namely the integral (35) over 
the diffusion propagator (free wave propagator). For long-range fluctuations, for which KVc(q) 
diverges in the long-wavelength limit, the Rayleigh law is modified, as has been pointed out 
recently [64].

5.  Remarks on the low-density regime

As indicated in the introduction, the low-density regime Γ � 1 of the ERM-type models is 
governed by percolation physics [2, 46, 48–51]. For models, in which the force constants tij 
vary exponentially with the site separation rij, in the low-density regime the variations of the 
tij cover many orders of magnitude. In an electrical network of conductances tij = t(rij) a con-
nection via a small separation therefore essentially is a short circuit, compared to longer sepa-
rations. Therefore one has devised a ‘percolation construction’ [2, 43, 46] for the calculation 
of the conductance of a low-density network, which proceeds as follows: all conductances 
t(rij) are sorted by their magnitude (or separation). The largest conductances, i.e. larger than a 
certain threshold tthr = t(rthr) (corresponding to those with small site separations rij � rthr) are 
tinned into the network first. Then the threshold is decreased until at t∗ = t(r∗) a path through 
the sample is established, the percolation path. The conductance is then just t*, because all 
other conductances act as shorts in comparison to t*. In comparison with all other paths, which 
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lead through the sample, the percolation path has the largest conductance, i.e. the smallest 
resistance. Therefore the percolation path is the path of smallest resistance through the system. 
The percolation construction is identical to the percolation problem of overlapping spheres: if 
spheres are drawn around the sites with a certain diameter, which are allowed to overlap, then 
the diameter, which leads to percolation, is just equal to r* [2, 46].

Also the dynamics of the network for s �= 0 has been demonstrated to be govened by the 
geometry and statistics of the continuum percolation cluster [43, 48–51].

6.  Conclusions

We have demonstrated that the self-consistent ERM approximation [20] captures the salient 
features of the vibrational anomalies of disordered solids, namely Debye behavior and 
Rayleigh scattering at low frequency and an enhancement over the Debye law at higher fre-
quencies (boson peak). At very high densities the spectrum is dominated by the ‘liquid dis-
persion’ ω(q) =

√
(t0 − tq)  featuring a strong peak at the Einstein frequency t0. This peak 

is broadened at lower densities as the influence of the frozen-in disorder takes over. At a 
critical density—within the self-consistent approximation—the spectrum becomes unstable, 
indicating the border of the validity of the SCERM and ERM-SCB approximations. It has 
been argued that the SCBA of heterogeneous-elasticity theory is based on Gaussian elasticity 
fluctuations, which, for a too broad distribution includes negative force constants. However, 
in real solids negative force constants exist, therefore the instability, which has been termed 
transition to a saddle phase [18] might exist in the trasformation towards the liquid state. The 
boson peak is then the precursor of this transition [13]. For the ERM model this transition 
does not occur.

The general dynamics of the ERM-type models changes smoothly with increasing Γ from 
the Einstein-type spectrum towards a spectrum dominated by the percolation cluster. Detailed 
model calculations by the present authors, covering this whole density range, are under way.

It is worth while to mention the power of the full vector ERM formalism based on equa-
tion (1). The formalism for this equation has been worked out by Ciliberti et al [19]. In spite 
of the mentioned shortcomings of the cactus approximation this work may serve as basis for 
further understanding the mixing of longitudinal and transverse high-frequency modes in liq-
uids and disordered solids [65, 66].
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