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The vibrational anomalies of glasses, in particular the boson peak, are addressed from the stand-
point of heterogeneous elasticity, namely the spatial fluctuations of elastic constants caused by the
structural disorder of the amorphous materials.

In the first part of this review article a mathematical analogy between diffusive motion in a
disordered environment and a scalar simplification of vibrational motion under the same condition
is emploited. We demonstrate that the disorder-induced long-time tails of diffusion correspond
to the Rayleigh scattering law in the vibrational system and that the cross-over from normal to
anomalous diffusion corresponds to the boson peak. The anomalous motion arises as soon as the
disorder-induced self-energy exceeds the frequency-independent diffusivity/elasticity. For this model
a variational scheme is emploited for deriving two mean-field theories of disorder, the self-consistent
Born approximation (SCBA) and coherent-potential approximation (CPA). The former applies if the
fluctuations are weak and Gaussian, the latter applies for stronger and non-Gaussian fluctuations.

In the second part the vectorial theory of heterogenous elasticity is presented and solved in SCBA
and CPA, introduced for the scalar model. Both approaches predict and explain the boson-peak and
the associated anomalies, namely a dip in the acoustic phase velocity and a characteristic strong
increase of the acoustic attenuation below the boson peak. Explicit expressions for the density of
states and the inelastic Raman, neutron and X-ray scattering laws are given. Recent conflicting
ways of explaining the boson-peak anomalies are discussed.

I. INTRODUCTION

The vibrational properties of disordered solids are
quite different from those of crystals [1, 2]. While the
harmonic vibrational spectra of crystals are given by the
dispersion relations obtained from the crystalline sym-
metry groups, those of amorphous solids, in particular
glasses exhibit anomalous, continuous spectra, which are
a matter of debate since 60 years [2–7].
The first evidence of something unusual in the vibra-

tional spectra of glasses came from Raman scattering
[8–13]. In the THz or 100 wavenumber regime one ob-
served a broad maximum, where usually either no inten-
sity or very sharp peaks due to low-lying optical modes
were observed. Because this maximum obeyed the fre-
quency/temperature dependence of the Bose function
n(ω)+1 = [1−exp{−h̄ω/kBT }]−1 (ω/2π is the frequency
and kBT is the Boltzmann constant times the tempera-
ture) one called this maximum “boson peak” [14]. Here
we note that because the Raman scattering intensity is
proportional to n(ω) + 1 times the Raman spectral func-
tion χ′′

R(ω) [13, 15, 16], the latter must be temperature
independent if the entire temperature dependence comes
from the Bose function. This points to a harmonic ori-
gin of the boson peak and questions all interpretations in
terms of anharmonic interactions.
A maximum in the frequency range ∼ 5 meV ∼ 1

THz was observed in inelastic coherent neutron scatter-
ing data of several glasses [17]. This maximum appeared
to be related to an excess of the vibrational density of
states (DOS) g(ω) with respect to Debye’s g(ω) ∝ ω2 law,

which appears as a peak in the reduced DOS g(ω)/ω2.
This was confirmed experimentally by means of inelastic
incoherent neutron [18] and nuclear scattering [19], which
both measures directly the DOS. Further, the boson peak
turned out to be related to a maximum in the “reduced”
specific heat C(T )/T 3 in the 10K regime [18, 20], which is
also called “boson peak”. Right at the boson-peak tem-
perature the thermal conductivity of the same glasses ex-
hibits a characteristic shoulder or dip in its temperature
dependence [21], which turned out to be an “upside-down
boson peak” [22].

These are not the only low-temperature thermal
anomalies of glasses. Below the boson peak, in the ∼ 1K
regime, the specific heat does not show Debye’s T 3 law,
but varies approximately linearly with temperature. The
thermal conductivity varies quadratically in this regime.
These findings have been attributed to the existence of
bistable structural arrangements, which allow for tunnel-
ing between the two positions, giving rise to a tunnel
splitting (two-level systems (TLS), tunneling systems)
[23–27]. If the energy separations of the TLS are as-
sumed to have a broad distribution, the 1K anomalies
can be explained. Independent evidence for the existence
of the TLS comes from ultrasonic and nuclear magnetic
resonance data [28, 29].

Inelastic X-ray scattering contributed more anomalous
features in the boson-peak regime [30]. In particular the
group velocity of longitudinal sound (dispersion of the
Brillouin line position) was found to exhibit a minimum
at the wavenumber corresponding to the boson peak, and
the sound attenuation (width of the Brillouin line) was



2

found to increase strongly with frequency in the boson-
peak regime (Rayleigh scattering) [31–36]. These anoma-
lies were confirmed in computer simulations [37, 38]. We
call all these features the boson-peak related anomalies.

The theoretical interpretation of the boson peak has a
very diverse history and gave rise to several controversies
[3]. In one line of argumentation for explaining the boson-
peak related anomalies the authors tried to find a clas-
sical analogon of the tunneling model, the soft-potential
model [39–41]. The bistable configurations, which can be
described by an anharmonic double-well potential with a
rather shallow barrier between the wells, were assumed to
have a distribution of their characteristic parameters, in
particular the second-order coefficient. It was found that
in general the statistics of the vibrational excitations of
such defect potentials would give rise to a constant den-
sity of eigenvalues g(ω2), which leads to a DOS g(ω) ∝ ω.
On the other hand, so the argument, at lower frequencies
(below a cross-over frequency ωc) the balance between
unstable configurations with negative second-order coef-
ficients and the anharmonic fourth-order ones give rise to
a defect DOS ∝ ω4. Therefore the reduced DOS g(ω)/ω
increases ∝ ω2 below ωc and decreases ∝ ω−1 above ωc.
In between, i.e. near ωc is then the boson peak [39, 42].

Arguments that the boson peak, by its temperature
characteristics, is not an anharmonic phenomenon were
met by the authors of the soft-potential model by noting
that the anharmonic interaction only acts in producing
the soft configurations in the quenching process [43]. In
the quenched state they are supposed to act like local
harmonic oscillators, similar to heavy-mass atoms, cou-
pled to the acoustic harmonic degrees of freedom [44–47].

Another attempt to explain the boson-peak anomaly
was the phonon-fracton model [48–52]. It was postulated
that disordered solids exhibit a certain degree of fractal
structure. A fractal is a self-similar structure [53, 54],
which has a non-integer dimensionality D0, which is
smaller than the embedding dimensionality d. Real frac-
tals like sponges or trees have a smallest and largest scale,
in which the self-similarity holds. The smallest scale is
e.g. the smallest pore diameter of a sponge, the largest
is the correlation length ξ. For scales larger than ξ the
object looks like an ordinary material in which the mass
scales as Ld, where L is the size. For scales smaller than
ξ the mass scales as LD0 . Alexander and Orbach [48]
have shown that the vibrational degrees of freedom scale
with a fractal dimensionality ds < D0 (spectral dimen-
sionality) and that the DOS of such an object obeyes
a Debye law below ωξ = 2πv/ξ, where v is the sound
velocity. Above ωξ the DOS behaves as g(ω) ∝ ωds−1.
They found that in all fractal structures they investigated
ds ≈ 4/3. The specific model employed by the phonon-
fracton supporters was a percolating lattice, i.e. a cu-
bic lattice in which a certain percentage of bonds 1 − p
(carrying neares-neighbor force constants) was missing.
If the bond concentration p is larger than the critical
concentration pc, which determines the connectedness of
the structure a finite correlation length ξ ∝ (p − pc)

ν

exists (ν is the order-parameter exponent [52]). Calcula-
tions using the coherent-potential approximation (CPA)
[55–57] showed that in between the Debye and the frac-
ton regime an enhancement over the Debye g(ω) ∝ ω2

law was present [49, 50]. This was, for the time being,
a satisfactory explanation of the boson peak. However,
numerical simulations of the percolation-phonon-fracton
model [52] showed that the phonon-fracton crossover in
the DOS of this model occurs very smooth without any
excess over the Debye law. Obviously the excess in the
calculations [49, 50] had been an artifact of the CPA.
Another argument against the phonon-fracton model as
candidate for explaining the boson-peak anomalies is that
- apart from aerogels [58, 59] glasses do not show any
self-similary, which should show up (but does not) as
an enhanced small-angle scattering in neutron or X-ray
diffraction data.

In other articles reflecting on the vibrational anomalies
of glasses the boson peak and the anomalous shoulder in
the temperature dependence of the thermal conductiv-
ity were also considered to be related to Anderson lo-
calization of sound [51, 60, 61]. It was observed that
near the boson-peak frequency the mean-free path of the
acoustic excitations is of the order of the sound wave-
length. According to a rule, coined by Ioffe and Regel
in their survey of electronic conduction in semiconduc-
tors [62], the notion of a mean-free path, which implies
a wave, which is occasionally scattered by an inhomo-
geneity, breaks down once the mean-free path becomes
equal to the wavelength (Ioffe-Regel limit). Mott [63]
conjectured that Anderson localization occurs for elec-
trons near the Ioffe-Regel energy. For phonon it was
assumed [61, 64], that the crossover from extended to
Anderson-localized states would take place near the Ioffe-
Regel frequency and that the boson peak would mark the
onset of localized states. In particular it was thought,
that the presence of localized states would cause the dip
in the thermal conductivity [61]. Later, more detailed
theoretical investigations showed, however, that the An-
derson transition in realistic solids does not occur near
the Ioffe-Regel crossover, but in a much higher frequency
range near the Debye frequency [65–71].

Later many researchers were intested in whether the
boson-peak frequency coincides exactly with the Ioffe-
Regel frequency, given by the implicit relation ωIR =
πΓ(ωIR), where Γ(ω) is the sound attenuation coefficient
[72, 73]. Γ(ω) and hence ωIR is, of course, different for
longitudinal and transverse sound waves. It appeared
that in materials governed by hard-sphere-like potentials
the boson-peak coincides with the transverse Ioffe-Regel
frequency [38, 74], whereas in network glasses with the
longitudinal one [75–78].

In 1991 Schirmacher and Wagener [79] exploited the
mathematical analogy between a single-particle random
walk and harmonic phonons [80] using an off-lattice ver-
sion of the CPA. They demonstrated that the cross-over
from a frequency-independent conductivity/diffusivity to
a frequency-dependent one [81, 82] corresponds to the
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onset of the frequency dependence of the complex sound
velocity. The latter was found to lead to a boson peak in
the vibrational DOS.

Because understanding this analogy is essential for
grasping the essence of the BP-related anomalies, we de-
vote a whole section of the present review to this analogy.

However, because the CPA in the case of the percolat-
ing lattice predicted a boson peak [49, 50], which did not
exist in the simulation of the same system [52] a check was
needed, whether the resulting boson-peak enhancement
of the DOS was not an artifact of the CPA like in the
phonon-fracton model. Therefore in Ref. [68] the lattice
version of the CPA [83–85] was compared to a numerical
calculation for a cubic lattice with fluctuating nearest-
neighbor force constants. Both simulation and CPA cal-
culation showed a boson peak, and good agreement be-
tween CPA and the numerical spectrum was found. So
it was demonstrated that effective-medium calculations
are reliable for investigating the influence of disorder on
the harmonic spectrum of a model solid. The breakdown
of the CPA in the case of the phonon-fracton model was
obviously due to the critical fluctuations in this model,
which are not generic for disordered solids.

The boson peak in the model calculations of Ref. [68]
was identified to be caused by very small positive and
negative force constants, and being a precursor of an in-
stability, which happens for stronger disorder [69, 70].

With the help of the numerical calculation in Ref.
[68] it could also decided, whether the vibrational states
near and above the boson peak were localized or ex-
tended. This was achieved by means of the statistics of
the distances between the eigenvalues. Near and above
the boson peak they showed the so-called Gaussian-
ortogonal-ensemble (GOE) statistics of random-matrix
theory [86, 87], which proves that the corresponding
states are delocalized. At high frequencies, near the
upper band edghe a transition to Poissonian statistics
was observed, which is evidence for a delocalization-
localization transition in this regime, in agreement with
earlier estimates [65, 66]. On the other hand, the GOE
statistics is a sign for the so-called level repulsion, show-
ing that each eigenvalue is non-degenerate due to the
absence of symmetries in the disordered system. As the
generic spectrum of random matrices is not a Debye spec-
trum (which is highly degenerate) the boson peak marks
the transition from a Debye to a random-matrix-type
spectrum [6].

The spectra calculated in Ref. [68] for a cubic lattice
with very small disorder exhibited the usual van-Hove
singularities, which appear as a result of the leveling-off of
the crystalline phonon dispersions ω(k) at the Brillouin-
zone boundary [88]. With increasing disorder the data
showed that the sharp van-Hove peak became rounder
and is shifted downwards and gradually transformed to
the low-frequency boson peak. This led Taraskin et
al. [89] to the conclusion that the boson peak is just
a crystal-like van-Hove peak, modified by disorder. This
appeared as a rather unexpected conclusion, because a

van-Hove singularity is a typical signature of a crystalline
structure with long-range order and was not known to
exist in glasses. However, until now, the boson peak ex-
planation as a glassy version of a van-Hove singularity is
still considered to be an alternative to the disorder ex-
planation [90–92]. We further comment on this in section
IV.

Quite recently in an experimental study of a macro-
scopic disordered model glass it was shown that the
disorder-induced maximum of the reduced DOS and that
induced by the van-Hove mechanism are, in fact, two dif-
ferent phenomena [93].

The random-matrix aspect of the disorder-vibration
problem was elaborated further in the literature [94–104],
in particular by means of the euclidean random-matrix
theory [96–103].

As in Ref. [68] a disorder-induced boson peak was
found and shown to be the precursor of an instability
(“phonon-saddle transition” [100]).

A quite different and interesting approach to the
boson-peak anomaly was worked out [105] in the frame-
work of the mode-coupling theory of the glass transi-
tion . This theory of glassy freezing in its original form
[106, 107] describes the idealized glass transition as a
dynamical transition towards a non-ergodic state lead-
ing to a frozen-in additional contribution to the static
longitudinal susceptibility. This, in turn leads to a char-
acteristic hump in the density fluctuation spectrum of
the idealized glass (proportional to the neuton scattering
law S(k, ω)), which was identified with the boson-peak
anomaly found in neutron scattering experiments. Inter-
estingly this theory already predicted the characteristic
dip in the longitudinal group velocity, which was found
later to be associated with the boson peak, as mentioned
above [31, 35, 37, 38].

We feel that an important step in the understand-
ing of the boson peak was achieved by working out
heterogeneous-elasticity theory [22]. In this phenomeno-
logical theory it is assumed that the shear modulus in
ordinary elasticity theory [108] is assumed to exhibit spa-
tial fluctuations. The resulting stochastic equations were
solved by field-theoretical techniques [65, 109], resulting
in a mean-field theory, called self-consistent Born approx-
imation (SCBA). The SCBA is obtained from assuming
a Gaussian distribution of the elasticity fluctuations and
that the relative width of the Gaussian is a small param-
eter (“disorder parameter” γ). Again, if the disorder pa-
rameter becomes larger than a critical one, an instability
occurs, which is due to too many regions with negative
elastic constants.

Shortly before heterogeneous-elasticity theory had
been worked out a series of papers appeared, in which
molecular-dynamics simulations of glasses were investi-
gated for their elastic and vibrational properties [110–
113]. It turned out that, by applying external forces, in-
deed heterogeneous shear deformations are present. The
authors showed that in regions with strong deformations
the shear response is highly non-affine, i.e. the displace-
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ments do not follow the direction of the applied stress. In
the non-affine regions the local shear moduli were found
to be very small and even negative, a finding, which was
observed also in other simulations [38, 114, 115]. This
nicely confirmed the model assumption of heterogeneous-
elasticith theory. In Ref. [38] a direct comparison be-
tween the elasticity fluctuations in a simulated glass and
the theory of Ref. [22] was made and good agreement
was found. We shall comment on this article in more
detail below.

In later simulations it was shown [116, 117] that the re-
gions in the simulated disordered solids, which have pro-
nounced non-affine response, are also regions with strong
inversion-symmetry breaking. The authors introduced
quantitative measures of this inversion-symmetry break-
ing and found a unique correlation with the height of the
boson peak. This was also found in the quoted investi-
gation of a macroscopic model of a disordered solid, in
which soft spots with strong inversion-symmetry break-
ing were shown to contribute predominantly to the boson
peak [93].

An important aspect of the boson peak appeared
when it was shown [118] with the help of heterogeneous-
elasticity theory that the excess DOS ∆g(ω) = g(ω) −
gD(ω) with respect to the Debye DOS gD(ω) is pro-
portional to the sound attenuation in the boson-peak
frequency range. Heterogeneous-elasticity provides an
expression for the disorder-induced sound attenuation
as imaginary part of frequency-dependent elastic coef-
ficients (see section ..). These enter into the spectral
functions, and the DOS enhancement is just produced
by the sound attenuation, which increases rapidly in the
boson-peak frequency regime due to Rayleigh scattering.

The rest of this contribution is organized as fol-
lows: In section II. the mathematical analogy between
diffusion and scalar elasticity is investigated in de-
tail and two mean-field or effective-medium theories,
the self-consistent Born approximation (SCBA) and the
coherent-potential approximation (CPA) for this model
are introduced and solved. A pedagogical derivation,
which is more simple than the original field-theoretical
one, is presented. We show that the boson-peak re-
lated anomalies are the analogon of the crossover from
a frequency-independent diffusivity/conductivity to a
frequency-dependent one.

In section III. the full vectorial heterogeneous elastic-
ity theory is presented and solved in SCBA and CPA.
The salient features of the boson-peak related anomalies
of glasses are discussed with the help of these mean-field
theories. In section IV. we discuss recent conflicting the-
ories of these anomalies.

II. “SCALAR ELASTICITY” AND
DIFFUSION-VIBRATION ANALOGY

A. Diffusion-vibration analogy

A simplified version of heterogeneous elasticity theory,
which proved to be helpful in understanding the spectral
properties of disordered solids [46, 79, 100, 119–121] is
represented by a scalar wave equation with a spatially

fluctuating elastic constant K(r) ≡ ρK̃(r) (ρ is the mass
density)

∂2

∂t2
u(r, t) = ∇K̃(r)∇u(r, t) (1)

The elastic coefficient K̃(r), which is the square of the
local sound velocity, v(r) may be sub-divided into an

average elasticity K̃0 = 〈K̃〉 and deviations ∆K̃(r)

K̃(r) = v2(r) = K̃0 +∆K̃(r) (2)

If we replace the second time derivative in Eq. (1) by
a first one, we arrive at a diffusion equation, which de-
scribes the random walk of a particle, which encounters a
spatially varying diffusivity, e.g. due to a spatially vary-
ing activation energy

∂

∂t
n(r, t) = ∇D(r)∇n(r, t)

= ∇
[
D0 +∆D(r)

]
∇n(r, t) (3)

with D0, again, denoting the avarage diffusivity and
∆D(r) the fluctations. n(r, t) is the probability density
for finding the particle within a volume element around
r at time t. The Green’s function of Eq. (1) in frequency
space obeys the equation

(
− z2 −∇K̃(r)∇

)
G(r, r′)

=

(
− z2 −∇

[
K̃0 +∆K̃(r)

]
∇
)
G(r, r′)

≡ A[z, r, K̃(r)]G(r, r′) = δ(r− r
′) (4)

with z = ω+iǫ, ǫ → +0. The operator A[z, r, K̃(r)] is the
operator-inverse of the Green’s function. On the other
hand the Green’s function corresponding to the hetero-
geneous diffusion equation (3) in frequency space is

s−∇D(r)∇G(r, r′) = δ(r − r
′) (5)

with s = iω + ǫ.
So all calculations done for the scalar vibration prob-

lem (4) can be taken over for the diffusion problem (5)

provided we identify D ↔ K̃, s ↔ −z2, or iω ↔ −ω2.
In the next three subsection we shall demonstrate by

means of different approximation schemes (Born approx,
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Self-consistent Born approx. and coherent-potential ap-
prox.) that the quenched glassy disorder induces a char-
acteristic frequency dependence to the macroscopic dif-
fusivity/elasticity. So these approximation schemes act
as a coarse-graining scheme, which converts spatial fluc-
tuations to frequency dependences.
In this context we may distinguish between three char-

acteristic scales: the microscopic scale, the mesoscopic
scale and the macroscopic one. The microscopic scale
is the molecular one and may be described by micro-
scopic quantum or classical equations of motions. The
mesoscopic scale is a scale of 5 or 6 atomic or molec-
ular diameter. This is the minimal scale at which
one may define local diffusivities or elastic constants
[38, 114, 115, 121, 122], which exhibit spatial fluctua-
tions in structurally disordered materials. The macro-
scopic scale is the experimental one (mm or cm), in
which the macroscopic diffusivities or elastic coefficients
are frequency-dependent.

B. Low frequency limit: Born approximation,
Rayleigh scattering and long-time tails

The solution of Eq. (4) or (5) without fluctuations is
given in k space by (k is the wave vector corresponding
to r− r

′ ≡ r̃)

G0(k, z) =
1

−z2 + K̃0k2
(6)

The disorder-averaged full Green’s function should also
only depend on |r̃| only and therefore may be represented
as [120]

〈G(z)〉k = G(k, z) =
1

−z2 + k2(K̃0 − Σ(z))

≡ 1

−z2 + k2Q(z)
(7)

where Σ(z) = Σ′(ω) + iΣ′′(ω) is the self-energy func-
tion, which describes the influence of the fluctuations

∆K̃(r) or ∆D(r). Here we have defined a frequency-

dependent elasticity Q(z) = K̃0−Σ(z), corresponding to
a frequency-dependent diffusivity D(s) = D0−Σ(s). The
former may be identified with the square of a frequency-
dependent sound velocity v(z), i.e. Q(z) = v(z)2.
To lowest order in the fluctuations one obtains by

straightforward perturbation theory [120] the Born ap-
proximation

Σ(z) = γ
1

V

∑

k

k2G0(k, z) , (8)

where
∑

k
≡ V

(2π)3

∫
d3k, V is the sample volume, and

γ = 〈∆K̃2〉Vc , (9)

i.e. the variance of K̃(r) times a coarse-graining volume
Vc, which serves to calculate the local elastic coefficient
[38, 120, 122].
If one imposes an upper cutoff kmax in the wavenumber

integration, the integral in Eq. (8) can be done exactly.
For small frequencies we obtain

∆Σ(s) = Σ(z)− Σ(0) ∝ s3/2 (10)

For the vibrational problem s3/2 → iω3.
We now show that this leads to Rayleigh’s ω4 scatter-

ing law [123, 124]:
We may be interested in the wave intensity given by

the modulus of Eq. (7)

|G(r̃, z)|2 =

(
1

4πK̃0

)2

e−r̃/ℓ(ω) (11)

with the mean-free path

1

ℓ(ω)
= 2Im

{ ω

v(ω)

}

≈ Σ′′(ω)ω

v30
=

γ

12π

(
ω

v0

)4

(12)

where v0 =

√
K̃0.

Eq. (12) constitutes the Rayleigh scattering law [123,
124]. It holds for harmonic excitations in the presence
of quenched disorder [103, 120], provided the disorder
fluctuations do not exhibit long-range order [120, 125,
126].
Rayleigh scattering in Glasses is usually obscured by

anharmonic sound attenuation, which prevails in the sub-
THz frequency range. It has been observed experimen-
tally in the THz regime in some glasses [31, 35] as well
in computer simulations [37, 38].
In the diffusion problem D(s) is the frequency-

dependent diffusivity, which can be shown [127] to be the
Laplace transform of the velocity autocorrelation func-
tion Z(t) of the moving particle D(s) =

∫∞

0 dte−stZ(t)
We apply the Tauberian theorem [128]

lim
s→0

D(s) ∝ s−ρ ⇔ lim
t→∞

D(t) ∝ tρ−1 (13)

from which we conclude

lim
t→∞

Z(t) ∝ t−5/2 , (14)

a behaviour well known for particles performing a ran-
dom walk in a quenched-disordered environment [129,
130].
On the other hand, by the Nernst-Einstein relation

σ(s) = σ′(ω) + iσ′′(ω) =
ne2

kBT
(15)

the frequency-dependent diffusivity is related to the dy-
namic conductivity, the real part of which, σ′(ω) is the
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alternate-current (AC) conductivity. Therefore, one ex-
pects a non-analytic low-frequency dependence of the AC
conductivity increment σ′(ω)−σ(0) ∝ ω3/2. Indeed, such
a behavior has been observed in amorphous semiconduc-
tors [131]. We come back to this in the subsection on
strong disorder.

C. Weak disorder and the self-consistent Born
approximation (SCBA)

A well-known characteristic of the AC conductivity in
disordered materials is that beyond a characteristic fre-
quency ω∗ it starts to increase with frequency, in many
cases with a characteristic power law σ′(ω) ∝ ωα where α
is smaller than 1 and takes values around 0.8 [81, 82, 132].
For the random walker in the disordered environment

this means that the mean-square distance walked does
not increase linearly with time but sublinearly with ex-
ponent 1 − α. Such a behavior has been termed anoma-
lous diffusion. So the cross-over at ω∗ corresponds to a
transition from anomalous diffusion for times t < 1/ω∗

to normal diffusion for t > 1/ω∗.
As pointed out in Refs. [79, 121] the cross-over at ω∗ -

if transformed from the diffusion to the scalar-vibrational
system - corresponds to the boson peak. In other words:
it correspondss to the begin of the frequency dependence

of K̃(ω) = v(ω2). By the Kramers-Kronig correspon-

dence this implies the onset of an imaginary part of K̃(ω)
which becomes of the order of its real part.
A minimal theory for the boson peak, in fact, can be

obtained by the self-consistent version of the Born ap-
proxmation. It is obtained by replacing the bare Green’s
function in Eq. (8) by the full Green’s function:

Σ(z) = γ
1

V

∑

|k|≤kmax

k2G(k, z) (16)

with G(k, z) given by Eq. (7). For the ultraviolet cut-
off kmax one should take the inverse of the length scale
which is the diameter of the coarse-graining volume Vc

used to define the local elastic constant/local diffusiv-
ity [120]. On the other hand this length scale should
be of the order of the correlation length ξ of the elastic-
ity/diffusivity fluctuations [125]. In this work we treat
these two length scale as being the same. We therefore
call the cutoff kmax = kξ.
While the “derivation” of Eq. (16) is, of course, just

an ad-hoc replacement, a proper derivation is achieved by
field-theoretical techniques [46] in analogy to the deriva-
tion of the nonlinear sigma model for electrons [109, 133–
135], classical sound waves [65, 125] and electromagnetic
waves [136, 137].
A royal road for this derivation is to minimize the fol-

lowing (dimensionless, frequency-dependent) mean-field
free energy or effective action with respect to Σ(z)

Seff [Σ(z)] = Smed[Σ(z)] + SSCBA[Σ(z)] (17)

with

Smed[Σ(z)] = Smed[Q(z)] (18)

= Tr ln

(
A
[
z, r, K̃0 − Σ(z)︸ ︷︷ ︸

Q(z)

])
=

∑

k

ln

(
A
[
z,k, Q(z)

])

and

SSCBA[Σ(z)] =
1

2

V

γ
Σ(z)2 (19)

The first term, Smed[Σ(z)], is the generalized free energy
of the effective medium [138], which is a medium without
disorder, in which the fluctuating force constants in the

operator A[z, r, K̃(r)] are replaced by the homogeneous
(but frequency-dependent) force constant Q(z) = K0 −
Σ(z). The trace can therefore be calculated in k space.
The Fourier transform of A[z, r, Q(z)] is given by

A[z,k, Q(z)] = −z2 + k2Q(z) (20)

This is no more the operator-inverse but just the ordinary
inverse of the mean-field Green’s function

G(k, z) =
1

A[z,k, Q(z)]

=
1

−z2 + k2Q(z)
(21)

The second term, SSCBA[Σ(z)] arises [22, 65] from a
Gaussian configuration average of the full Green’s func-
tion with distribution density

P
[
∆K̃(r)

]
= P0 exp{−

1

2γ

∫
d3r[∆K̃(r)]2} (22)

It is easily verified that the SCBA (16) is obtained by
minimizing Seff of Eq. (18). This corresponds to the
saddle-point approximation of the effective field theory
derived for the appropriate stochastic Helmholtz equa-
tion [22, 65, 109, 119]. The saddle-point approximation
relies on the large prefactor of SSCBA ∝ 1/γ, i.e. the
SCBA has its validity range for

(i) small disorder 〈K2〉/K2
0 ≪ 1;

(ii) Gaussian disorder, Eq. (22).

As in our calculation of the Rayleigh scattering and the
non-analyticity of D(s) the SCBA transforms the micro-
scopic wave equation with fluctuating elastic coefficient

[
− z2 −∇K̃(r)∇

]
u(r, z) (23)

into a macroscopic mean-field wave equation

[
− z2 − K̃(z)∇2

]
u(r, z) (24)

The fluctuations of K̃(r), (represented by the variance)

determine the frequency dependence of K̃(z).
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It is useful to formulate the SCBA, Eq. (16) in dimen-
sionless units (indicated by a hat). We measure velocities

in units of

√
K̃0, lengths in units of kξ, and angular fre-

quencies in units of kξ

√
K̃0. (In the diffusion problem

diffusivities are measured in units of D0 and angular fre-
quencies in units of D0k

2
ξ .) In these units the SCBA, Eq.

(16) takes the form

Σ̂(ẑ) =
Σ(z)

K̃0

= 3γ̂

∫ 1

0

dk̂k̂2
k̂2

−ẑ2 + k̂2[1− Σ̂(ẑ)]
(25)

with the dimensionless “disorder parameter”

γ̂ = γ
ν

K̃2
0

= Vcν
〈(∆K̃)2〉

K̃2
0

(26)

For ẑ = 0 Eq. (25) takes the form

Σ̂(0) =
γ̂

1− Σ̂(0
(27)

This quadratic equation has the solution

Σ̂(0) =
1

2

[
− 1 +

√
1− 4γ̂

]
(28)

We observe that for γ̂ > γ̂c = 1/4 no real solution is
obtained. This indicates an instability, i.e. for γ̂ > γ̂c
the SCBA predicts eigenvalues ω<0. This can be ratio-
nalized by the fact that the SCBA is obtained from as-
suming a Gaussian distribution (22). If the width of this
distribution exceed a critical value, there exist too many
local regions with negative elastic coefficients, which then
leads to the instability. Within this model a strong boson
peak is obtained if the disorder parameter γ̂ approaches
the critical value γ̂c.
If we assume that the Debye cutoff kD = 3

√
6π2N/V

coincides with kξ (N is the number of atoms or molecular
units and V the sample volume), the density of states is
given by

g(ω̂) =
2ω̂

π
3

∫ 1

0

dk̂k̂2Im

{
1

−ẑ2 + k2
[
1− Σ̂(ẑ)

]
}

(29)

In Fig. 1 we have plotted the frequency-dependent
diffusivity (panel a) together with the DOS, divided by
the Debye DOS gDω̂ = 3ω̂2/ω̂3

D (reduced DOS), with

ω̂D =

√
1− Σ̂0, for different values of γ̂ near γ̂c. We see

that the boson peaks indeed coincide with the onset of
the frequency dependence of D(ω).

D. Strong disorder and the coherent-potential
approximation (CPA)

It is clear from Fig. 1 that the frequency dependence of
the diffusivity (and hence of the AC conductivity), pre-
dicted by the SCBA is rather weak, as compared to the
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FIG. 1. Panel a: Frequency-dependent diffusivity, calculated
in SCBA, Eq. (25) with disorder parameters (γ̂ − γ̂c)/γ̂c =
10−1 (blue dashes), 10−2 (orange dash-dots), 10−3 (red line).

Panel b: Reduced density of states g(ω)/gD(ω) for the same
parameters as in panel a and setting kξ = kD.

Vc

FIG. 2. Visualization of the continuum version of the CPA:
Inside a volume Vc of the effective medium with homogeneous
elasticity Q(z) the homogeneous one is replaced by the fluctu-

ating one K̃(r), which gives rise to a perturbation K̃(r)−Q(z).
The CPA postulate is to minimize the influence of this pertur-
bation, i.e. forcing the averaged T matrix of the perturbation
to be equal to zero.

strong frequency dependence of the conductivity in ionic
conducting glasses or amorphous semiconductors [81, 82].
This is so, because the SCBA is restricted to very weak
disorder. In materials with activated ionic or electronic
hopping conduction, on the other hand, the local diffusiv-
ities fluctuate very strongly, because they depend expo-
nentially on local activation energies and local tunneling
distances [139, 140].

A rather successful and reliable mean-field theory for
strong disorder is the coherent-potential approximation
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(CPA). It was widely used for electronic structure cal-
culations of disordered crystals [141–143], and later to
diffusion and vibrational properties of disordered crys-
tals [68, 83–85, 89]. In this lattice version of the CPA
one consider a certain lattice site of the ordered effective
medium, in which the potentials [141–143], the force con-
stants or the diffusivities [68, 83–85, 89] are homogeneous
(“coherent”) but frequency-dependent. At this special
site the effective medium is replaced by the real medium,
causing a “perturbation” of the effective medium. En-
forcing now the averaged T matrix of this perturbation
to vanish gives the self-consistent CPA equation for the
coherent potential.
A version suitable for non-crystalline materials has

been worked out by S. Köhler and the present authors
using field-theoretical techniques. [121]. The resulting
CPA equation may be pedagogically visualized in the
following way, see Fig. 2: in a certain region of the ef-
fective medium the frequency-dependent elasticity Q(z)

is replaced by the fluctuating one K̃(ri), where ri is the
mid-point of the region. The CPA postulate takes the
form

〈
K̃(ri)−Q(z)

1 + Λ(z)[K̃(ri)−Q(z)]

〉
= 0 (30)

The average is over the distribution of the elasticity val-

ues K̃(ri) ≡ K̃i with distribution density P (K̃i). The
latter may be taylored to the statistics of the disordered
material at hand.
Λ(z) generalizes the effective-medium propagator in

the lattice CPA. Both Λ(z) and Q(z) may be obtained
by minimizing the following mean-field action

Seff [Q(z),Λ(z)] = Smed[Q(z)] + SCPA[Q(z),Λ(z)] (31)

where Smed[Q(z)] is given by Eq. (18) and the CPA ac-
tion by

SCPA[Q(z),Λ(z)] =
V

Vc

〈
ln

(
1 + Λ(z)[K̃(ri)−Q(z)]

)〉

(32)
The large parameter of the saddle-point approximation,
which validates the mean-field approximation, is now not
the inverse disorder parameter, as in the case of the
SCBA, but the parameter V/Vc. This is the reason, why
the CPA is not restricted to small disorder. Varying the
action with respect to Λ(z) we obtain the CPA equation
(30), which can be put into the equivalent forms

〈
1

1 + Λ(z)[K̃i −Q(z)]

〉
= 1 (33)

Q(z) =

〈
K̃i

1 + Λ(z)[K̃i −Q(z)]

〉
. (34)
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FIG. 3. Panel a: Full lines: Frequency-dependent diffusivity,
calculated in CPA, Eq. (74), with a flat distribution of ac-
tivation energies, Eq. (41). Symbols: AC conductivity data
of the ionic-conducting glass Sodium Trisilicate, compiled by
Wong and Angell [144]. with disorder parameters γ̃ = 7.92
(↔ T = 1673 K); = 10.41 (↔ T = 1273 K); = 17.53 (↔ T =
756 K); = 29.06 (↔ T = 456 K); (from top to bottom).

Panel b: Reduced density of states g(ω̂)/gD(ω̂) for the equiv-
alent distribution density (42) for the same parameters as in
panel a.

Varying the action with respect to Q(z) gives a relation
for Λ(z):

∑

k

k2

−z2 + k2Q(z)
=

V

Vc
Λ(z)

〈
1

1 + Λ(z)[K̃i −Q(z)]

〉

=
V

Vc
Λ(z) , (35)

where the second line follows from Eq. (33).
It is advantageous to normalize the k integration to 1

Λ(z) =
Vc

V

∑

k

k2

−z2 + k2Q(z)
= pχξ(z) (36)

with

χξ(z) =
3

k3ξ

∫ kξ

0

dkk2
k2

−z2 + k2Q(z)
(37)

and

p =
Vck

3
ξ

6π2
(38)
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p should be smaller than 1, and It has been argued in Ref.
[121] that one may identify p with the continuum perco-
lation concentration pc. One has χξ(z=0) = 1/Q(0).
The CPA equation (34) now takes the form

Q(z) =

〈
K̃i

1 + pχξ(z)[K̃i −Q(z)]

〉
. (39)

As in the case of the SCBA the CPA turns the wave
equation with fluctuating elasticity into a mean-field
wave equation with frequency-dependent elastic coef-
ficient Q(z) or a diffusion equation with frequency-
dependent diffusivity D(s).

Let us now identify K̃i with a spatially fluctating dif-
fusivity Di and assume that the fluctations are caused by
a fluctuating activation energy

Di = D0e
−Ei/kBT (40)

If we now impose a constant distribution density of acti-
vation energies

P (Ei)
1

Ec
θ(Ec − Ei) (41)

i.e. a flat distribution with cutoff Ec. For the diffusivi-
ties Di (or elasticities K̃i) this transforms to a truncated
inverse-power distribution [? ]

P (K̃i) =
1

µ1/µ2

1

K̃i

µ1 ≤ K̃i ≤ µ2 (42)

with µ1 = µ2e
−Ec/kB , and we have

1

〈K̃〉2
〈K̃2〉 − 〈K̃〉2) = 1

2
Ec/kBT ≡ γ̃ (43)

Low temperatures in the diffusion problem obviously
mean strong disorder.
In panel a of Fig. 3 we have plotted AC conductivity

data for the glassy ionic conductor Sodium Trisilicate
[144]. Together with these data we plot the CPA result
with a distribution of activation energies as given in Eq.
(41). In panel b of this figure we have plotted the reduced
DOS of the equivalent vibrational problem with inverse-
power distribution (42). The DOS for the scalar phonon
problem is given by

g(ω) =
2ω

π
Im

{
1

N

∑

|k|≤kD

1

−z2 + k2Q(z)

}
(44)

Apart from the perfect agreement between the conduc-
tivity data and the CPA curves we note that the (rather
strong) boson peak precisely mark the crossover from
frequency-independent to frequency-dependent conduc-
tivity of the diffusion problem. In the vibrational prob-
lem this crossover means a transition from a regime
with Debye waves and Rayleigh scattering to a non-
Debye regime, in which the vibrational excitations are

 log 
10

 ω/ω
0

-3

-2.5

lo
g

1
0
{[σ

(ω
) −

 σ
(0

)]/
ω

}

ω1/2

-1 0 1

FIG. 4. Connected symbols: AC loss function [σ(ω)−σ(0)]/ω,
measured in sputtered amorphous silicon [131] for three dif-
ferent temperatures (T = 51 K, 77 K, 154 K). The scaling
frequency ω0(T ) is proportional to σ(0, T ). Full thick line:
CPA calculation for a constant distribution of activation en-
ergies.

not waves. These excitations have been called “diffusons”
[145], because their intensity obeys a diffusion equation
like light in turbid media [146]. On the other hand, the
vibrational excitations in this regime show the statistical
properties of random matrices [68, 94, 104]. Therefore
the frequency regime above the boson peak may also be
called “random-matrix regime” [6, 7].
Returning to the diffusion problem, we pointed out

that in the frequency range below the crossover (the
frequency-independent regime) the Rayleigh scattering
corresponds to a contribution to the frequency depen-
dent conductivity with ∆σ′(ω) ∝ ω3/2. This may be
experimentally verified by considering the dielectric loss
function

ǫ′′(ω) ∝ 1

ω

[
σ′(ω)− σ(0)

]
(45)

In the frequency-independent regime this function in-
creases with frequency ǫ′′ ∝ ω1/2, whereas in the
frequency-dependent regime it decreases due to the sub-
linear behavior of σ′(ω). The maximum of the loss func-
tion corresponds to the maximum of the reduced DOS in
the vibrational problem (boson peak).
It has been noted in the literature [132] that the AC

conductivity data taken at different temperatures show
universal behavior, if the data are divided by the DC
conductivity σ(0, T ) and the freqency by the crossover
frequency ω0(T ) ∝ σ(0, T ). For the loss function this
means that ǫ′′(ω/ω0) should also be the same for different
temperatures.
In Fig. 4 we show the loss function of sputtered amor-

phous silicon [131] against ω/ω0 for three temperatures,
together with the result of the CPA, which predict the
scaling and the crossover from ǫ′′ ∝ ω1/2 to the decrease
with frequency. We discuss the corresponding scaling of
the vibrational DOS in section III D.
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III. HETEROGENEOUS-ELASTICITY THEORY

A. Model

We now formulate the full heterogeneous-elasticity the-
ory for vector displacements u(r, t) The equation of mo-
tion for an elastic medium with spatially fluctuating
shear modulus G(r)1

[ ∂2

∂t2
−∇ · M̃(r)∇ · +∇× G̃(r)∇×

]
u(r, ω) = 0 (46)

with the reduced shear modulus G̃(r) = G(r)/ρ and the
reduced longitudinal modulus

M̃(r) = M(r)/ρ = K̃ +
4

3
G̃(r) (47)

In this formulation the dilatational (bulk) modulus K =

K̃/ρ is assumed not to exhibit spatial fluctuations, i.e.

the fluctuations of the shear modulus G(r) = G̃(r)/ρ are
assumed to affect the traceless stress and strain tensors
only [7, 121].
Eqs. (46) may be decoupled by introducing longitu-

dinal and transverse displacements uL(r, t) and uT (r, t)
with

∇× uL(r, t) = 0 and ∇ · uT (r, t) = 0 (48)

In the frequency domain we then have

0 =

(
− z2 −∇ · M̃(r)∇ ·

)
uL(r, z)

≡ AL[z, r, G̃(r)]uL(r, z) (49)

0 =

(
− z2 +∇× G̃(r)∇×

)
uT (r, z)

≡ AT [z, r, G̃(r)]uT (r, z) (50)

B. Self-consistent Born approximation

As in the case of the scalar model, the SCBA and the
CPA, (see next subsection) serve to calculate the fre-
quency dependence of the reduced frequency-dependent
shear modulus

Q(z) = G(z)/ρ = Q′(ω)− iQ′′(ω)

= vT (z)
2 = G̃0 − Σ(z) (51)

1 As locally the translational and rotational invariance is broken
one should in principle work with the full fourth-rank Hooke
tensor Cijkl(r) instead of equation (46). The latter is an ap-
proximation to keep the model tractable.

and longitudinal modulus

M̃(z) = M(z)/ρ = K̃ +
4

3
Q(z) = M̃ ′(ω)− iM̃ ′′(ω)

= vL(z)
2 = K̃ +

4

3
[G̃0 − Σ(z)] (52)

which enter into macroscopic mean-field equations of mo-
tion

0 = −z2 − M̃(z)∇2
uL(r, z) ≡ AL[z, r, Q(z)]uL(r, z)

(53)

0 = −z2 −Q(z)∇2
uT (r, z) ≡ AT [z, r, Q(z)]uT (r, z)

(54)
The effective action for deriving the SCBA is

Seff [Σ(z)] = Smed[Σ(z)] + SSCBA[Σ(z)] (55)

Here SSCBA[Σ(z)] is given by Eq. (19) with

γ = Vc

〈
[G̃(r) − G̃0]

2
〉

(56)

The difference from the scalar model is that we now deal
with 3-dimensional vectors. Therefore the trace includes
a sum over the 3 cartesian degrees of freedom. This
means that one has to sum the longitudinal contribu-
tion once and that of the transverse twice. Explicitly
Smed[Σ(z)] takes the form

Smed[Σ(z)] = Tr ln

(
A
[
z,Q(z)

])

=
∑

k

ln

(
AL

[
z,k, G̃0 − Σ(z)

])

+2
∑

k

ln

(
AT

[
z,k, G̃0 − Σ(z)

])
(57)

If we now vary Seff of Eq. (55) with respect to Σ(z), i.e.
∂Seff

∂Σ(z) = 0 we get

Σ(z) = γ
k3ξ
6π2

χξ(z) (58)

with

χξ(z) =
4

3
χξ
L(z) + 2χξ

T (z) (59)

This weighted susceptibility is given in terms of the local
longitudinal and transverse susceptibilities

χξ
L,T (z) =

3

k3ξ

∫ kξ

0

dkk2χL,T (k, z) (60)

with the k dependent susceptibilities

χL,T (k, z) = k2GL,T (k, z) =
k2

−z2 + k2vL,T (z)2
(61)
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GL,T (k, z) are the longitudinal and transverse Green’s
functions2 Eq. (58) together with Eqs. (51), (52),
(59), (60), and (61) establish the self-consistent vector
SCBA equations for calculating the frequency-dependent
reduced shear modulus Q(z), and from this the relevant
measurable quantities:

• Vibrational density of states

g(ω) =
2ω

3π

3

k3D

∫ kD

0

dkk2
(
G′′
L(k, ω) + 2G′′

T (k, ω)

)
(62)

• Specific heat

C(T ) ∝
∫ ∞

0

dωg(ω)(ω/T )2
eh̄ω/kBT

[eh̄ω/kBT − 1]2
(63)

• Longitudinal and transverse sound attenuation
ΓL,T

ΓL(ω) = ωM ′′(ω)/M ′(ω)

ΓT (ω) = ωG′′(ω)/G′(ω) (64)

⇔ vL,T (z)
2 = Re

{
v2L,T

}[
1− iΓL,T/ω

]

• Longitudinal and transverse mean-free paths ℓL,T

1

ℓL,T (ω)
=

ΓL,T (ω)

2vL,T (0)
(65)

• Thermal conductivity [22]

κ(T ) ∝
∫ ∞

0

dωℓT (ω)(ω
4/T 2)

eh̄ω/kBT

[eh̄ω/kBT − 1]2
(66)

• Coherent inelastic neutron and X-ray scattering in-
tensity

S(k, ω) ∝ 1

1− eh̄ω/kBT
︸ ︷︷ ︸
n(ω) + 1

Im
{
χL(k, ω)

}
(67)

• Depolaritzed Raman scattering intensity [7, 147]

IV H(ω) ∝ [n(ω) + 1]Im
{
χkp(ω)

}
(68)

It should be noted that the same susceptibility combina-
tion, namely χξ(ω), which enters into the SCBA equation
(58), appears also in the Raman intensity, Eq. (68), al-
beit with a cutoff kP given by the fluctuations of the
pockels constants and not the elastic constants [7, 147].

2 We use sans serif for the Green’s functions GL,T (k, z) in order to
distinguish them from the shear modulus G.
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FIG. 5. Comparison of results of a soft-sphere molecular-
dynamics simulation (symbols) with the prediction of
heterogeneous-elasticity theory in self-consistent Born ap-
proximation (SCBA). We show the real parts (upper panel)
and imaginary parts (lower panel) of the frequency-dependent

shear modulus G(ΩT ) and the quantitity 3/4(M(ΩL)−K̃) for
three temperatures (5·10−3, 5·10−4, 5·10−5, in Lennard-Jones
units) withK = 30.4. The SCBA parameters are γ−γc = 0.08
and K/G0 = 3.166; from [38].

It should further be noted that the Raman in-
tensity is not given by the Shuker-Gammon formula
IV H(ω) ∝ [n(ω) + 1]g(ω)/ω [13]. If one divides the ex-
pression of Eq. (68) for IV H(ω) by Shuker and Gam-
mon’s expression one obtains the frequency-dependent
coupling constant C(ω), which had been inserted as ad-
ditional factor into the Shuker-Gammon formula in order
to reconcile neutron and Raman-scattering results for the
vibrational DOS [14, 16, 147–150].

C. General features of the disorder-induced
vibrational anomalies: Comparison of the SCBA
version of heterogeneous-elasticity theory with a

simulation

As stated in the introduction, the disorder-induced vi-
brational anomalies of glasses and other disordered solids
feature three phenomena, which are related to each other

(i) The cross-over from Debye- to non-Debye behavior
of the vibrational DOS, leading to a maximum in
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the reduced DOS g(ω)/ω2, the boson peak;

(ii) a pronounced dip in the real part of the elastic
coefficients (and their square-root, the frequency-
dependent velocities) near the boson-peak fre-
quency;

(iii) a strong increase of the sound attenuation below
the boson-peak frequency (Rayleigh scattering),
which enters into the imaginary parts of the elastic
coefficients via Eq. (64).

These three anomalies are displayed in Fig. 5, in which
the results of a molecular-dynamic simulation is com-
pared with the prediction of heterogeneous-elasticity the-
ory, solved in SCBA [38]. In this simulation a binary soft-
sphere potential (i.e. a Kob-Andersen-type [151] binary
Lennard-Jones potential without the attractive part) was
taken for ten million particles. Such a potential mim-
ics a metallic glass. The longitudinal and transverse
frequency-dependent moduli were obtained from deter-
mining the longitudinal and transverse current correla-
tion functions

CL,T (k, ω) =
KBTω

πm
G′′(k, ω) (69)

where m is the paticles’ mass. The simulation was run
for three very different temperatures deep in the glassy
state (see the figure caption). The very large particle
number made it possible to avoid finite-size effect in the
boson-peak frequency range. The data for the complex
longitudinal modulus was converted to Q(z) = G(z)/ρ
via the inverse of Eq. (52)

Q(z) =
3

4
[M̃(z)− K̃] (70)

in order to compare the data with the measured Q(z).
It is seen in the figure that – as the longitudinal and
trasverse data ly on top of each other – the bulk modulus

K̃ indeed does not appreciably depend on frequency and
correspondingly has a negligible imaginary part.
It is the strength of the present theory that it easily

allows to explain how the three anomalies are related to
each other. It was pointed out by Schirmacher et al. 2007
[118] that one can deduce from Eq. (62) and using the
3rd line of (64) a relation between the DOS and Γ(ω):

g(ω)− gD(ω) ∝ Γ(ω) ∝ ωΣ′′(ω) (71)

This means that the disorder-induced frequency depen-
dence of the elastic coefficient, controlled by Σ(ω) is re-
sponsible for the boson peak. This can already under-
stood using lowest-order perturbation theory, which leads
to Rayleigh scattering.
On the other hand, the real parts and the imaginary

parts of the frequency-dependent moduli are related to
those of the response functions χ(z) = χ′(ω) − iχ′′(ω).
These have, due to the causality requirement (the answer

must occur at a time later than the question), a one-to-
one correspondence by the Kramers-Kronig relation [152]

χ′(ω) =
1

π
P

∫ ∞

0

dω̄2 χ′′(ω̄)

ω̄2 − ω3
(72)

This is most easily visualized by looking at the simulated

data of the real and imaginary parts of Q(z) = G̃0−Σ(z),
displayed in panels b and c. Usually the real part of an
analytic function, such as χξ(z), has a maximum near the

bottom of the spectrum [χξ]
′′
(ω) and a minimum near

the top. Now, because not Q(z) but Σ(z) is proportional
to χξ(z) via the SCBA relation (58), Q′(ω) displays a
minimum near the begin of the “disorder spectrum”, or

“random-matrix spectrum” [χξ]
′′
(ω), obviously marked

by the boson peak, displayed in panel a.
In the boson-peak regime and above, the data for very

different temperatures collapse, which proves that the
anomalies must be of harmonic origin. This is not so in
the very low frequency regime, where anharmonic effects
become visible [153, 154].

D. Coherent-Potential Approximation (CPA)

The vector CPA may be derived in the same way as
the vector SCBA from the effective action

Seff [Q(z)] = Smed[Q(z)] + SCPA[Q(z)] (73)

where Smed[Q(z)] is given by Eq. (57) of the vector SCBA
and SCPA[Q(z)] by Eq. (32) of the scalar CPA. The
vector CPA equation takes the same form as the scalar
one:

Q(z) =

〈
G̃i

1 + pχξ(z)[G̃i −Q(z)]

〉
. (74)

but now with fluctuating shear moduli G̃i and the vector
version of χξ(z), Eq. (59).
As in the scalar model the CPA has several advantages

compared to the SCBA:

– one can treat arbitrary distributions P (G);

– one is not restricted to weak disorder;

– one needs not (but can) take negative values of G
into account.

For the calculations presented in Figs. 6 to 8 we used the
CPA equation (74), together with (62) with a truncated
Gaussian distribution of shear moduli of the form

P (G) = P0 θ(G−Gmin) e
−(G−G0)

2/2γ (75)

where θ(x) is the Heaviside step function and Gmin is the
lower cutoff. In these calculations we used the renormal-
ized value of G (i.e. the self-consistently calculated one)
for evaluating the Debye frequency ωD and Debye DOS
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FIG. 6. Reduced density of states g(ω)/gD(ω) vs. the rescaled
frequency (ω/ωD)(kD/kxi) = ω/vDkξ for different values of
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0 = 1, Gmin =
0 .

gD(ω) in terms of the longitudinal and transverse sound
velocities v2L = K + 4

3Q(0), v2T = Q(0)

ωD = kD

[
1

3

(
1

v3L
+

2

v3T

)]−1/3

(76)

gD(ω) = 3ω2/ω3
D (77)

For the bulk modulus of the calculations we used the
value K = 3.3G0 and for the cutoff parameter the value
ν̃ = 1, which implies kD/kξ =

3
√
3ξ/a, where a = 3

√
V/N

is the mean intermolecular distance. The distribution of
shear moduli (75) involves three parameters G0, γ and
Gmin. Because G0 is used to fix the elastic-constant scale
there remain three adjustable parameters to fix the state
of elastic disorder of the material, namely kD/kξ ∼ ξ/a,
γ and Gmin. The latter (which we used with negative
values or equals zero) specify the amount of regions with
negative shear modulus (soft regions) in the material. As
can be seen from Figs. 6 to 8 increasing ξ and |Gmin| en-
hances the BP and shifts its position to lower frequencies,
whereas increasing γ just leads to an enhancement, while
keeping the BP position constant. It has been pointed
out in the literature [155–158] that the position of the
boson peak in relation to the Debye frequency correlates
with the inverse correlation length of density and elastic-
ity fluctuations.
Let us discuss our findings further in terms of mea-

sured vibrational spectra of materials, in which an exter-
nal parameter (temperature, pressure or the amount of
polymerization) is changed. If the Debye frequency (de-
pending on the moduli K and G) is changed, this leads
to a modification of the spectrum, which has been called
elastic-medium transformation. This transformation is
taken care of, if the DOS is represented in a normalized
way, as is the case in Figs. 6 to 6. A number of boson-
peak data, if normalized in this way, lead to a universal
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(ω/ω

D
)
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g

D
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)
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/G
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FIG. 7. Reduced density of states g(ω)/gD(ω) vs. the rescaled
frequency (ω/ωD) for different values of the lower cutoff Gmin

of the Gaussian distribution P (G). The other parameters are
γ = /G2

0 = 1., kD/kξ = 2.

curve, i.e. all data points fall onto the same curve if re-
plotted, taking the elastic transformation into account
[32, 34, 59, 90, 92, 159? ]. Other investigation reveal
a deviation from this scaling [160–168]. In terms of our
model calculations this means, if the state of disorder is
not changed, but just the value of the mean elastic con-
stants or the density, which go into the Debye frequency,
this corresponds to elastic-transformation scaling. In the
other cases obviously the state of disorder is changed by
changing the external conditions.
A very interesting case in which the elastic transfor-

mation scaling does not hold has been reported recently:
the case of prehistoric amber. [168] measured the tem-
perature dependence of the specific heat of the hyperaged
and rejuvenated material. The height of the boson peak,
taken from a C(T )/T 3 curve is by 22 % lower in the
hyperaged material, compared with the rejuvenated one.
An elastic transformation using the change in the Debye
frequency determined by the authors would only lead to
a difference by 7.4 %.

IV. DISCUSSION AND CONCLUSIONS

Reading the text of the present article, one could be
convinced that the boson peak in glasses and the asso-
ciate vibrational anomalies can be satisfactory explained
by the presence of the structural disorder, leading to spa-
tial fluctuations of elastic coefficient, in particular the
shear modulus. However, in the community working ex-
perimentally and theoretically on the vibrational proper-
ties of disordered and complex condensed matter there is
no agreement about this. Whereas many authors agree,
that the boson-peak-anomalies in glasses are due to the
structural disorder, others maintain that this is not so
and that the anomalies may be explained by conven-
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tional crystalline solid-state theory. Crystalline phonon
theory is based on the phonon dispersions [169], reflect-
ing the crystal symmetry group and anharmonic inter-
actions, leading to renormalization and viscous damping
[170–172].

As mentioned in the introduction, Chumakov et al.
[90, 92] argue that the boson peak is “identical” [90] to
a washed-out van-Hove singularity, i.e. just the result of
the bending-over of the lowest (transverse) phonon dis-
persion near the first Brillouin zone. In fact, there is ex-
perimental evidence for crystal-like features in the spec-
trum of glasses and even liquids [173, 174]. These are
caused by the short-range order, which is documented
in the static structure factor S(k) of glasses. The peak
position k0 of S(k) corresponds to the diameter of the
first Brillouin zone of a crystal. Correspondingly, k0/2
corresponds to the radius of the Brillouin zone, where
the phonon dispersions become horizontal and cause van-
Hove singularities in the crystalline DOS.

In their inelastic X-Ray study of polycrystalline α-
Quartz and glassy SiO2, densified to match the crys-
talline density, accompanied with a numerical lattice-
dynamics calculation of the crystalline phonon disper-
sions, Baldi et al. [174] find a crossover of the sound at-
tenuation of the glass from a Rayleigh Γ ∝ ω4 behaviour
to a quadratic one at h̄ωc ∼ 9 meV, where the boson

peak of densified silica has been reported [92]. At the
same frequency the van-Hove singularity of the polycrys-
tal is located. On the other hand, in the polycrystal,
instead of Rayleigh scattering there is a linear behavior.
Above ωc the two attenuation coefficients match.
The interpretation of the authors is that below ωc the

glassy attenuation is due to elastic heterogeneities, above
ωc the spectrum is essentially the same of that of the
polycrystal. These findings are certainly at variance with
the claim that the boson-peak-type scenario leading to
the Γ ∝ ω4 → ω2 crossover would have something to do
with the bending-over of the transverse dispersion of the
crystal. Obviously in this material the boson-peak fre-
quency and the van-Hove-singularity are the same. This
might also be the case for the other examples found by
the authors of refs. [90, 92].
As indicated in the introduction, in the investigation

of a two-dimensional macroscopic model glass the co-
existence of crystal-like dispersions with the boson peak
was observed [93], but the frequencies of the boson peak
and that of the transverse van-Hove singularity are quite
different. The boson peak was shown to show all salient
features which identify its origin arising from the disor-
der. The conclusion is that the boson-peak, namely the
disorder-induced peak in the reduced DOS is not “iden-
tical” with a washed-out van-Hove singularity. In some
glasses their frequencies are just very near to each other.
A recent interpretation of boson-peak related damp-

ing phenomena claims that the boson peak would be a
“universal phenomenon” both in crystals and in glasses
[175].
The “universality” of the boson peak in solids (both

perfectly ordered crystals and glasses), if there is one,
suggested by these authors, may be identified with the
fact that the boson peak is linked with a Ioffe-Regel
type of crossover from ballistic phonon propagation to
a scattering-dominated regime where the exctiation is
quasi-localized. This is where the ”universality” ends,
because the scattering mechanism is clearly different in
glasses and perfectly ordered crystals. In the former
case it is due to (harmonic) disorder, as predicted by
heterogeneous-elasticity theory, whereas in the latter case
of ordered crystals it is due to anharmonicity.
In conclusion, the boson-peak related vibrational

anomalies in glasses can consistently be explained by
the presence of spatial fluctuations of elastic coefficients
(elastic heterogeneity) with the help of the SCBA and
CPA.
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