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Abstract
Recently it has been shown that mode-coupling theory, which accounts for the salient features
of glassy relaxation near the liquid–glass transition, is also capable of describing the collective
excitations of simple liquids away from the glass transition. In order to further improve the
agreement between theory and computer simulations on Lennard-Jones argon we modify MCT
by taking binary collisions into account. This, in fact, improves the agreement. We also show
that multiplying the memory function of the original theory with a reduction factor leads to
similar results.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Understanding the spectral features of the collective excitations
in simple liquids as they can be extracted from inelastic
neutron (and x-ray) scattering is a long-standing issue [1–6].
A liquid is usually called simple if it is formed by single
atoms or molecules and can be described in terms of a pairwise
potential. Typical examples are liquid rare gases and liquid
metals. For a long time it was not clear whether or not
collective, sound-like excitations in simple liquids could be
identified by neutron spectra [7–11]. Comparison between
experiment and molecular-dynamics simulations [8, 12, 13]
became then an important route to gain a deeper insight
into the gradual crossover between linear hydrodynamics
with well-defined sound excitations and the incoherent high-
wavenumber regime. Further insight between the interplay
between collective oscillations and relaxational processes can,
and has been, achieved by analytical theories. Such an
approach is the extension of the kinetic equation concept of
dense gases [5, 14]. In the meantime the widely accepted
theoretical framework for discussing the collective dynamics
of simple liquids is the generalized hydrodynamics approach
based on the projector formalism of Mori and Zwanzig [15].
By the projector technique one can represent the Laplace
transform of the density–density correlation function (which
is the object measured by coherent neutron scattering, see
below) in terms of a continued fraction in which the so-called

memory functions (generalized frequency-dependent friction
coefficients) play the role of residual terms. The more steps
in the continued fraction that are taken into account, the more
moment sum rules are taken into account exactly. As many of
the properties of the excitation spectrum are determined by the
moments, the generalized hydrodynamic approach is superior
to approaches in which the validity of the sum rules must be
verified for any approximation.

In some early descriptions one took the two-step continued
fraction and made an empirical ansatz for the time dependence
of the memory function [2]. Attempts to represent the data
in terms of a single-exponential memory function gave bad
fits. Instead, a fit with a function with two exponentials
with different decay constants (relaxation rates) made a
much better job both for experimental as well as simulation
data [6, 13, 16–19]. Of course, such a procedure is
nothing other than curve fitting (albeit an intelligent way)
and does not comprise a theory, which must provide explicit
expressions for a memory function. Such theories are the
different versions of mode-coupling theory. In the older
versions [20–25] the three-step formalism has been used. The
corresponding memory functions were formulated in terms
of products of density–density, density–current and current–
current correlation functions. The input of this theory was
the interatomic potential and statistical information such as the
radial pair distribution function and higher static correlation
functions. Although it was possible to describe the measured
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and simulated data on liquid rubidium [7, 8] successfully in
terms of this theory, it was not easy to obtain an understanding
of the interplay between the oscillatory and relaxational
motions.

Later a version of mode-coupling theory based on the
two-step continued-fraction scheme (from now on called
MCT) was established in order to describe the liquid-
to-glass transition [26–30]. This theory—it is the only
available microscopic theory of the glass transition—was
highly successful in qualitatively and quantitatively describing
the divergence of the viscosity as well as the fractal frequency
and time dependence of the glassy relaxation. Quite recently
it turned out that MCT is also capable of describing the
collective excitations of simple liquids away from the glass
transition. This holds both for the schematic MCT model [31]
and for the full MCT model [32–34] where the only input into
the theory is the static structure factor (Fourier transform of
the radial pair distribution function). It was shown [32, 33]
that the memory functions calculated in MCT for the liquid
state just exhibit the two-exponential decay postulated in the
evaluations mentioned above. The two time constants describe
two different mechanisms: the first one is governed by a
microscopic short-time process involving the elastic solid-like
collective movements. The second one describes the so-called
cage effect, namely the fact that the surrounding particles
hinder the diffusive motion of a given particle out of the ‘cage’
they are forming. The second time constant describes the
escape rate from this cage and is extremely density-dependent,
whereas the first one is not. This time constant can be identified
with the so-called α relaxation time, which is proportional to
the viscosity and which diverges within the idealized glass-
transition scenario.

A further interesting aspect of the MCT description of
collective excitations of simple liquids is the following: the
short-time behavior of these excitations shows up in the
frequency domain as the characteristic dispersion of sound-like
excitations. This dispersion is almost the same in the liquid
state as in the glassy state. It is governed by the statistical input,
namely the static structure factor. Since the structure factor
of simple liquids can essentially be described in terms of that
of hard spheres, it was shown and explained in terms of MCT
that the excitation spectrum of a number of liquid metals scales
with the length scale and compressibility of an effective hard-
sphere system used to describe their structure factors [32, 33].
MCT was shown to quantitatively describe the dispersion of
these materials without an adjustable parameter. However,
a comparison with a computer simulation of Lennard-Jones
argon [13] turned out not to be in good agreement with the
predictions of MCT [33].

In the present contribution we compare the predictions
of MCT with molecular-dynamics simulations of liquid argon
as described by a Lennard-Jones potential [12, 13] in more
detail. In order to improve the agreement between theory and
the data we incorporate binary collision effects as proposed
by Sjögren [35, 36] and Götze and Sjögren [37]. We show
that the inclusion of these effects improves the agreement. We
also show that such an improvement can be achieved as well
by multiplying the memory function by a phenomenological

correction factor. Such a correction factor has already been
applied by Fabbian et al [38, 39] to account for neglecting
the rotational degrees of freedom in a liquid composed of
non-rotationally symmetric molecules. As the system we
investigate here is a simple liquid, such a prefactor may have
a different reason, presumably the approximations applied by
MCT. As our approach is quite empirical and involves an
adjustable parameter, in contrast to the standard version of
MCT, the target of this work cannot be an improved version
of MCT with more predictive power, but to give some insight,
where the deviations between MCT and a computer simulation
may come from, and how they may be corrected.

2. Formalism

The dynamical structure factor S(k, ω), which is proportional
to the inelastic coherent neutron or inelastic ionic x-ray
scattering cross section, is the Fourier transform of the
intermediate scattering function Fk(t):

S(k, ω) = 1

2π

∫ ∞

−∞
dt Fk(t)e

−iωt . (1)

This intermediate scattering function Fk(t) can be expressed
within the Mori–Zwanzig formalism by a generalized
Langevin equation [4, 5, 15]:

F̈k(t) + �2
0(k)Fk(t) +

∫ t

0
dt ′ Mk(t − t ′)Ḟk(t

′) = 0 (2)

with the isothermal sound dispersion:

�2
0(k) = v2

thk2/S(k) (3)

where vth is the thermal velocity defined by v2
th = kBT/m

and a memory function Mk(t). The initial conditions are
Fk(0) = S(k) and Ḟk(0) = 0.

2.1. Original mode-coupling theory

In the original version of MCT [26, 28, 30, 40] Mk(t) is
approximated in such a way that it can be represented self-
consistently by linear combinations of products of Fq(t) in the
following way:

Mk(t) = Fk[Fq(t)] (4)

Fk[Fq(t)] = nkBT

k2m

∫
d3q

(2π)3

1

2
Fq(t)F|�k−�q|(t)

× [(�k · �q)c(q) + (�k · (�k − �q))c(|�k − �q|)]2 (5)

with the direct correlation function

c(k) = 1

n

(
1 − 1

S(k)

)
(6)

where S(k) is the static structure factor.

2.2. Modified mode-coupling theory

In order to improve the results of MCT we have tried to use
a modified version of MCT. This modified version of MCT
is based on a theory of Sjögren and Götze [35–37], which
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is a generalization of MCT by additionally including binary
collisions. The original MCT equations (4) and (5) can be
obtained within this theory by neglecting all terms which
contain couplings to current correlation functions and binary
collision terms. Keeping the binary collision terms leads to the
new memory function [35]

Mk(t) = MB
k (t) + Fk[Fq(t)] − Fk[FB

q (t)] (7)

with the binary collision term

MB
k (t) =

(
ω2

E + γ l (k) + k2kBT

m
nc (k)

)
e−t2/τ(k)2

(8)

and the Einstein frequency

ω2
E = n

3m

∫
d3r g(r) �∇2u(r) (9)

and

γ l (k) = − n

m

∫
d3r e−i�k�r g(r)

( �k
k

· �∇
)2

u(r). (10)

The third term on the right-hand side of equation (7) has
to be subtracted to avoid taking the binary collisions into
account twice, because they are already included in MB

k (t). To
further simplify the theory we do not use the function FB

q (t)
suggested by Sjögren et al [35], as it contains the self-part of
the intermediate scattering function which would have to be
evaluated self-consistently. Instead we use

FB
k (t) = S(k) exp

(
−k2t2

2

kBT

mS(k)

)
(11)

which fulfills the requirement of having the same short-time
behavior as Fk(t) and decaying to zero for longer times. The
product of the derivative of the pair potential:

∇α∇βu(r) = rαrβ

r 2
u′′(r) +

(
δαβ − rαrβ

r 2

) u′(r)

r
(12)

with g(r) in equations (9) and (10) can be simplified, because
in Lennard-Jones systems g(r) shows a peak, where u′′(r) is
large and u′(r) small so that [2, 23, 41]

g(r)∇α∇βu(r) ∼= rαrβ

r 2

3

4π

m

nr 2
ω2

Eδ (r − r0) (13)

where r0
∼= 1.04σ is the point where r 2g(r)u′′(r) reaches a

maximum and

ω2
E

∼= 4π

3

n

m

∫ ∞

0
dr r 2g(r)u′′(r) (14)

∼= 288
ε

mσ 2
. (15)

Here ε and σ are Lennard-Jones units (see section 3). In this
approximation equation (10) can be simplified as

γ l (k) ∼= −3ω2
0

2kr0 cos (kr0) + (
k2r 2

0 − 2
)

sin (kr0)

(kr0)
3

. (16)

Figure 1. Thick line: static structure factor of a simulation of
Lennard-Jones argon by Levesque et al [13]. Thin line: hard-sphere
PY static structure factor with σeff = 1.026σ and ϕ = 0.48.

The decay time τ (k) entering the collisional term in
equation (8) is assumed to be independent of k and can be
used as a fitting parameter. By trying different values for
this decay time we obtained a good agreement between our
modified MCT calculations and the results of the simulation
by using the following expression for the decay time:

τ (k)−2 = u′′ (r0)

m
∼= 0.83ω2

E. (17)

Another variation of MCT in order to improve the
agreement between theory and computer simulation is obtained
by using a prefactor A �= 1 in the equation for the memory
function:

Mk(t) = AFk[Fq(t)]. (18)

This prefactor can again be used as a fitting parameter. In
our calculations (see below) we obtained good agreement with
the simulations for A = 0.65. This prefactor shifts the glass
transition of hard spheres to a critical packing fraction of
ϕc = 0.566 instead of ϕc = 0.516 [30].

3. Comparison with computer simulations on LJ
argon

The simulation to which MCT shall be applied to is a
simulation of liquid argon [13], which means that the pair
potential between two atoms is of a Lennard-Jones type:

u(r) = 4ε

((σ

r

)12 −
(σ

r

)6
)

. (19)

The temperature used for the simulation was T = 0.723ε/kB

and the density was n = 0.844σ−3, which corresponds to
argon at 86.5 K with a density of 1.418 g cm−3. As input for
the MCT calculation we used the static structure factor from
the simulation by Verlet et al [42] for a system in the same
state, where the numerically determined g(r) is extrapolated
with the help of the Ornstein–Zernike and the Percus–Yevick
relation [5] to larger values of r [42].

This structure factor is compared in figure 1 to the Percus–
Yevick structure factor of hard spheres. As can be seen, the

3



J. Phys.: Condens. Matter 23 (2011) 254211 B Schmid and W Schirmacher

Figure 2. MCT result for S̃(k, ω) ≡ S(k, ω)/S(k) · ω0 (lines)
compared with the result of a computer simulation by Levesque et al
(diamonds) [13]. The solid black line is the result of the standard
version of MCT (equation (4)), The red dashed line is the result of
the modified theory (equation (7)) and the blue dashed–dotted line is
the standard version of MCT with a prefactor (equation (18)) with
A = 0.65.

simulated structure factor is very similar to that of hard spheres
with a packing fraction of ϕ = 0.48 and an effective hard-

Figure 3. MCT result (lines) for the viscosity η̃�(k) as defined in
equation (21) compared with the simulation by Levesque et al [13]
(diamonds). The cross is the value determined experimentally by
Naugle et al [44]. The same color code is used as in figure 2.

sphere diameter of σeff = 1.026σ . With this static structure
factor as input the MCT equations can be solved from which
the dynamic structure factor S(k, ω) can be evaluated. As the
length scale we used the effective hard-sphere diameter σeff and
as the frequency scale the isothermal velocity vT divided by σ :

ω0 = vT

σeff
= vth

σeff
√

S(k = 0)
= 1

σeff

√
kBT

mS(k = 0)
(20)

with S(k = 0) = 1/24.7 [13]. It should be noted that in these
units the isothermal sound velocity is fixed to unity.

In figure 2 we compare the simulational results for the
rescaled dynamic structure factor S̃(k, ω) ≡ S(k, ω)/S(k) ·ω0

(solid black line) with the results given by the different versions
of MCT. It can be seen that all three versions agree well
with the simulations at high frequencies but not at low ones.
Here the modified versions give better agreement than the
unmodified one.

The quantity S̃(k, ω = 0) is proportional3 to the so-called
longitudinal k-dependent viscosity:

η̃�(k) = 1

πnkBT
η�(k) · ω0 = S(k, ω = 0)/S(k)2 · ω0

= S̃(k, ω = 0)/S(k) · ω0. (21)

For k = 0 we have

η�(k = 0) = ηv + 4
3ηs (22)

where ηs is the usual shear viscosity and ηv is the bulk
or volume viscosity. Because of this relation between the
zero frequency limit of the dynamic structure factor and the
generalized viscosity, there is also quite some deviation in
the viscosity between the unmodified MCT result and the
simulation, as can be seen in figure 3.

The quantitative deviation is related to the fact that MCT
underestimates the critical packing fraction at which the glass
transition occurs [30]. So the result of the unmodified

3 This relation holds only if temperature fluctuations are disregarded, as is
done in the present treatment. In the presence of temperature fluctuations
S(k, ω = 0) becomes inversely proportional to k2λ at small k, where λ is
the thermal conductivity, see [43].
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Figure 4. Generalized dispersion �(k) calculated from S(k, ω) via
equation (23) for the three versions of MCT, compared with the
simulational results of Levesque et al [13] (full diamonds) and
Rahman [12] (empty diamonds). The crosses are neutron scattering
results of de Schepper et al [45, 46]. The dotted line is �0(k) as
given in equation (3). The same color code is used as in figure 2.

MCT describes a state which is much closer to the glass
transition. This leads to an overestimation of the viscosity.
This effect is corrected by the two modified versions of MCT,
as demonstrated in figure 3.

In figure 4 we show the generalized sound dispersion
defined by

�2(k) = Max{ω2S(k, ω)} (23)

for the three versions of MCT and compare it with that of the
computer simulation. We also included the results of a different
computer simulation of Lennard-Jones argon by Rahman [12]
in a similar state (T = 76 K, ρ = 1.408 g cm−3) as well as
neutron scattering data [45, 46]. As can be seen the agreement
for the modified versions is better than for the unmodified one,
but the latter already gives quite a good account of the data.
It should be noted that the unmodified MCT describes quite
well the generalized dispersion of a number of liquid metals,
as demonstrated in [32, 33].

4. Conclusions

We have demonstrated that mode-coupling theory, which
very successful describes the liquid-to-glass transition and the
corresponding anomalous relaxation, also gives a satisfactory
description of the collective excitations of a simple liquid.
The agreement between simulation and analytical theory can
be improved either by additionally taking binary collisions
into account or by multiplying the memory function with a
phenomenological prefactor. This has been demonstrated for
the example of liquid argon, described in terms of a Lennard-
Jones potential.
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[23] Bosse J, Götze W and Lücke M 1978 Phys. Rev. A 17 434
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