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Harmonic Vibrational Excitations in Disordered Solids and the “Boson Peak”
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We consider a system of coupled classical harmonic oscillators with spatially fluctuating nearest-
neighbor force constants on a simple cubic lattice. The model is solved both by numerical diagonaliza-
tion and by applying the single-bond coherent potential approximation. The results for the density of
statesg(w) are in excellent agreement with each other. If the system is near the borderline of stability
a low-frequency peak appears in the quantitw)/w? as a precursor of the instability. We argue that
this peak is the analogon of the “boson peak,” observed in structural glasses and other disordered solids.
By means of the level distance statistics we show that the peak is not associated with localized states.
[S0031-9007(98)06516-8]

PACS numbers: 63.50.+x

A ubiquitous and rather intriguing feature in the physicspropriate versions of the effective medium approximation
of glasses is the anomalous behavior of the low-frequencfcoherent-potential approximation (CPA) for lattices with
part of the vibration spectrum and the correspondinglisorder [35] and effective-medium approximation (EMA)
thermal properties [1]. While the origin of the linear low- for amorphous solids [34]] predict for both models an ex-
temperature specific heat is commonly attributed to the excess DOS near the crossover frequency [31,32,34]. Un-
istence of double-well potentials or two-level systems [1],fortunately a direct numerical diagonalization analysis of
there is still considerable debate about the so-called “bathe phonon-fracton model did not show any excess DOS
son peak” [2]. This peak shows up in the density of statesmear the phonon-fracton crossover [33]. Therefore the
(DOS) g(w) as an excess contribution [3—10], comparedpossibility could no more be ruled out that in the case of
to the usual Debye behavipg(w) « w?]. Similar phe- a continuous force constant distribution the excess DOS
nomena also appear in disordered crystals [9,11]. Becauseight also be an artifact of the EMA.
of the development of new experimental techniques allow- In the present Letter we present for the first time
ing one to perform Brillouin scattering measurements incompelling evidence that a strongly disordered three-
the THz range [12—-14], as well as pertinent molecular dydimensional system of coupled harmonic oscillators with
namics simulations [15-21], the question concerning th& continuous force constant distribution exhibits an excess
nature of the modes in the boson peak region has gainddw-frequency DOS (boson peak) as a generic feature.
much additional interest recently. The boson peak alsdhis is achieved by comparing the results of a CPA
seems to persist at elevated temperatures, where its relealculation with those of a numerical diagonalization. We
tion to the liquid-glass transition and the corresponding reshow that the effect is most pronounced if the system
laxation dynamics is a matter of discussion [22—26]. is almost unstable. The boson peak thus appears as a

Several models have been formulated to explain th@recursor of an instability.
physical origin of the boson peak [10,27]. In the soft- Our model consists of a set of coupled scalar harmonic
potential model [28,29] the existence of anharmonic lo-oscillators placed on a simple cubic lattice with lattice
calized potential wells (and double wells) are consideredonstanta = 1. The coupling among the oscillators is
as the reason for the excess DOS. In other approachesodeled by nearest-neighbor force constakits which
only harmonic degrees of freedom have been consideredre treated as independent (quenched) random variables,
i.e., systems of harmonic oscillators, which are coupled bghosen according to a distribution with densRyk;;).
fluctuating force constants. In the phonon-fracton modelhe corresponding Hamiltonian has off-diagonal elements
[30-33] the force constants fluctuate between a finite};; = K;; and diagonal element$H; = —> .., K;;.
(constant) value and zero, constituting a bond percolatioffor a stable system all eigenvaluks= —w; are nega-
problem. In another series of studies continuous distributive (except one of them, which is always zera);
tions of force constants were considered [34]. Both typeslenoting the vibrational eigenfrequencies. In all calcu-
of models exhibit a crossover from propagating to nondations we have chosen a truncated Gaussian distribution
propagating waves at a characteristic frequency. The awvith  P(K) = Poexp(—(K — Ko)?/20}0(K — Kmin)-
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Here#(x) denotes the step functioRy is a normalization 0.15 | ‘ ]
constant, and, and o denote the maximum value and
the width, respectively. In our calculationgK, serves

as frequency scale (i.eKy = 1 in our units). The lower
cutoff of the force constant distribution is denoted by
Kmin. This cutoff is introduced to allow for the study of
strongly disordered systems with a restricted amount of
negative force constants.

For the numerical treatment we considered a cubic box
of sizeL and imposed periodic boundary conditions. The
resulting L*> X L3 Hamiltonian matrix was diagonalized
using theNAG-LAPACK routine DSYEV. The distribution
of eigenvalues exhibits gaps due to finite-size effects.
In order to eliminate these effects we calculated the
integrated density of levelg, (1) = > ; 6(A — A;) for a
given sizeL, smoothed this function and averaged it over
different sizes, ranging fronl. = 10 to L = 14. This
procedure yielded a functiaf(A), the derivative of which
gives the density of levels(A) = dF(A)/dA. From this jine) (i) o = 0.6 and Kmin = —, as well as (i) o = 1
the vibrational DOS follows ag(w) = 2wn(—w?). and different lower cutoffsKmin. The symbols represent the

For an approximate solution of our model we havenumerical diagonalization, the full lines the CPA results. The
used the single-bond CPA [35]. This theory is formulategdgreement is achieved without any adjustable parameters.
in terms of a frequency-dependent force constant (“self
energy”)I'(w), which can be visualized as the inverse offor the elimination of finite-size effects in the numerical
an acoustic dielectric function. The frequency-dependenivork. It is seen that the position and strength of the bo-
complex sound velocity () is given byI'(w) = v(w)>.  son peak is controlled by the degree of disorder, especially
In CPA the quantityl” is determined self-consistently in by the amount of small and negative force constants. As
terms of the local Green’s functiofig(z) = kak)_kz[z +  expected, the Van Hove singularities disappear in the dis-
6 — 2(cosk, + cosk, + cosk,)]"! of the ordered cubic ordered system. A&, decreases from positive to nega-
lattice (the sum runs over the Brillouin zone apd= tive values foro = 1, the peak ing(w)/? shifts towards
—w? + i€) as follows: smaller frequencies. At the same time the peak intensity

< I'(z) — K > 0. irrlcrealsesf [37]. Obviousflyhthe Iowk;flrequenc(;/ pegkbpliys

— — — = =0, the role of a precursor of the instability introduced by the
1= [Pe) = Kyl = 2Go(2)]/3T(2) presence of small and negative force constants. We con-
with  Go(z) = Golz/T'(z)]/T(z) and (A) = [dK;; X  clude from our calculations that a low-frequency peak in
P(K;;)A(K;;). The DOS is obtained from a numerical the reduced DOS is a generic feature of a disordered har-
solution of Eq. (1) and use of the relatiom(w) =  monic system and indicates the vicinity of an instability.
—2/m)w IM{G(2)}. Another quantity of interest, in particular in the context

From our calculations we find that if the amount of of thermal conductivity data in structural glasses [1,38],
negative force constants becomes too large the systeimthe mean free path of the phonofis Within the CPA
becomes unstable. Without lower cutoff (i Bmin = —») treatment the mean free path can be identified with the
this happens forr > 0.6. In CPA the instability occurs decay length of the wave intensityexp{iwr/v(w)}?.
at a slightly higher value. In order to be able to studylt is therefore given by '(w) = 2w Im{v(w)}/|v(w)|?

a strongly disordered system with = 1 we introduced and behaves aé™!' « w* for ® — 0 (Rayleigh scatter-
the lower cutoffK i, which controls the amount of small ing). In Fig. 2 we have plotted(w) for the force con-
and negative force constants. Here the system becomstant distributions witho = 1 of Fig. 1. It is seen that
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FIG. 1. Reduced DOS(w)/w? versus frequency for force
constant distributions with (i)o = 0 (no disorder, dashed

unstable neakn, = —0.6 (humerical diagonalization),
whereas in CPA the instability occurs B, = —0.85.
In Fig. 1 we present the results fgfw)/w? obtained

in CPA (lines) and by numerical diagonalization (sym-boson peak (arrows) occurs near this crossover.

bols) for various values otr and Kn,. For compari-
son the spectrum of the ordered lattice € 0) is also

in all cases a crossover from the low-frequency weak
Rayleigh scattering to an almost frequency-independent
mean free path occurs (strong scattering regime). The
This
crossover is similar to that which appeared in the earlier
coupled-harmonic-oscillator investigations [30—-34]. We

shown. The excellent agreement of the CPA calculationshow also for comparison the (generalized) wavelength
with the numerical analysis [36] (except for the immedi- A(w) = 27 Re{v(w)}/w. It can be seen from Fig. 2 that
ate vicinity of the instability) indicates both the reliability € and A are of the same order of magnitude in the bo-

of the CPA and the correctness of the procedure utilizedon peak region.

In this case the phonons may become
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FIG. 3. Level distance statistics for the distribution with
FIG. 2. Mean free pat(w) with ¢ '(w) = 20 Im{v(w)}/ o =1 and Kmin = —0.6. The statistics has been taken from
lv(w)|* and wavelength\(o) = 27 Re{v(w)}/w, calculated in 11 samples witl. = 14 in frequency intervals centered around
CPA for the distributions witho = 1 of Fig. 1. The arrows w, (see legend) with widthAw = 1. The GOE and Poisson
indicate the position of the boson peak. distributions are depicted as well. The states around the

boson peakw = 1 follow the GOE statistics and are therefore

localized according to the loffe-Regel criterion [38]. This delocalized.

can be checked by an investigation of the level statistics
[39]. If we define modified eigenvalues (with normal- can be related in an obvious way to the atomic pair dis-
ized mean level spacing) by: = F(A;), a histogram of tribution and thus to structural disorder [34]. In “strong”
the distances; = |e; — €;+1| should yield a distribution glasses with covalent bond¥K) could be obtained from
according to the Gaussian orthogonal random matrix eneomputer simulations. In both cases it seems worthwhile
semble (GOE)P(s) = %ws exp{—s2/4} in the case of to study the interplay betwedhK) and the boson peak in
delocalized states, whereas one expects a Poissonian diketail [42].
tribution P(s) = exp{—s} for localized states. Thisis due = We have treated a scalar model and thus ignored the
to the fact that the delocalized states show level repulsiornyector character of the phonons completely. We believe,
whereas the localized ones do not. however, that our model already is able to mimic the
In Fig. 3 we show the level distance statistics corre-behavior of transverse phonons in a glass. If the vector
sponding to frequency intervalAw = 0.5 for several character is taken into account, one would expect an even
interval midpointsw,, as evaluated from 11 samples with stronger scattering due to the admixture of longitudinal
L =14, ¢ = 1, andKny, = —0.6. Except for the vicin- degrees of freedom. This might enhance the strength
ity of the band edgesd, = 0.25, wg = 4.25) the statistics of the boson peak and the localization tendency of the
follows closely that of the GOE ensemble, which meansorresponding states. Therefore we still consider it as
that the corresponding states are delocalized. The data fan open question, whether the modes associated with the
wo = 4.25 are close to the Poisson distribution indicatingboson peak are localized or delocalized. Our model shows,
a mobility edge near the band edge. In the low-frequencyiowever, that is not necessary to postulate the existence of
regime the finite-size effects are dominant. (The modédocalized states or strongly anharmonic effects to obtain an
with a wavelength equal to the system size bas- 0.45.)  excess contribution in the DOS.
In this regime one expects for the infinite system propagat- As we have treated only harmonic interactions the
ing modes [40]. The modes in the vicinity of the bosoneffects associated with the glass-liquid transformation are
peak are obviously neither propagating nor localized, indioutside the scope of the present model. However, the
cating a diffusive type of transport of vibrational energy.dynamics described by the mode-coupling theory in the
Such a diffusive motion of vibrational excitations has al-idealized glass phase [25,43] appears to be similar to that
ready been shown [15,17] to be typical for glasses and tdescribed within the present model.
be responsible for the temperature dependence of the ther-In conclusion, we have solved a simple model of
mal conductivity above the plateau region. coupled harmonic oscillators, both numerically and in
When comparing our results with real three-dimensionatoherent-potential approximation. Near the point of in-
disordered systems like glasses [41] a few comments argability the model exhibits a low-frequency peak in the
in order. In materials which can be described in terms ofeduced density of stategw)/w?, which we view as the
interatomic potentials the force constant distributR(X)  analog to the boson peak observed in structural glasses.
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