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Abstract

We study the low-temperature behaviour of an elastic continuum with spatially fluctuating elastic
constants and a cubic anharmonic coupling. By functional integral quantization and techniques used
previously for treating an electron gas in the presence of disorder and interactions, we obtain an
effective action which describes the density fluctuations of the system. By means of a saddle-point
approximation we derive a self-consistent set of equations for the density fluctuation propagator
Q(w,T) where w is the frequency and T is the temperature. From the low-frequency solutions of
these equations we are able to obtain a mean free path £ oc w™'Im{Q(w, T)'/?}. This leads roughly
to a T? law for the thermal conductivity. We also obtain a specific heat which varies linearly with
temperature at low temperatures. At higher temperatures the quantity C(T)/T? exhibits a peak
(”boson peak”). The former features are due to the anharmonic interactions, whereas the latter is

mainly due to the disorder in the harmonic elastic constants.

To find a theoretical explanation of the low-frequency vibrational properties of glasses and their
related low-temperature thermal properties is a long-standing problem [1]. At very low temperatures
(around and below 1K) the specific heat C(T") varies (almost) linearly with temperature T'[2], and
the thermal conductivity [3] £(T") obeys a k o« T® law with s &~ 2. At higher temperatures (around
10 K) x(T') shows a characteristic plateau, and the quantity C(T)/T? has a peak which corresponds
to a peak in the density of states g(w), divided by w? ("boson peak”). The anomalies below ~ 1
K are traditionally discussed in terms of the tunneling model [4] in which the acoustic waves are
assumed to be scattered inelastically by local bistable defects (two-level systems, TLS) with a
broad distribution of resonance energies. The features around 10 K have been discussed in terms
of a generalization of this model (soft-potential model) [5]

Although many of the observed experimental findings including the absorption and dispersion of
ultrasound could be explained by the TLS model and its generalizations [5, 6], doubts where raised
[7] whether the presence of TLS centers could be the only reason for the observed anomalies. Indeed,
for the anomalous specific heat a much more general explanation in terms of a spin-glass like model

was proposed recently [8].



For the boson peak there exist a large number of alternative models [9]. To our opinion the most
simple and obvious explanation is the one in terms of spatially fluctuating elastic constants [10, 11]
which lead to elastic scattering of phonons by the frozen disorder [12].

In the present contribution we generalize our previous ideas concerning the boson peak anomaly
to include an anharmonic interaction. By field theoretic methods, borrowed from the theory of
electrons in disordered systems [13, 14, 15, 16], we show that the low-temperature anomalies can
be explained as a result of the inelastic mode-mode coupling of acoustic phonons induced by the
combined effect of disorder and anharmonicity.

In order to demonstrate the main features of our proposed scenario we consider a simplified model
of an elastic continuum which supports only longitudinal vibrations® (i. e. V x u = 0, where u(r, t)

are the displacements), which is described by a classical Lagrangian density of the form
L(r,t) = T(r,t) = V(r,t) = % ([Bru(r, £)]2 — K[V - u(r,)]?) (1)

Here 7 and V are the kinetic and potential energy densities, mg = M pg is the mass density, M the
atomic mass, pg the number density. K = ¢ = (A + 2p), is the elastic constant composed of the
Lamé constants A, i, and c is the sound velocity. The elastic constant K is now assumed both to
have a spatial variation due to the structural disorder of the material as well as a space-and-time

variation due to an anharmonic coupling to the density fluctuations Ap(r,t)/po = —V - u(r, t):
K(r,t) = [Ko + AK(r)][1 - 29V - u(r, )] (2)

AK (r) is the static spatial fluctuation of K which is supposed to have a Gaussian distribution of

the form )
P[AK]| =P, exp{—% /d3r[AK(r)]2} (3)

where v = AK? (the variance of AK) is the parameter which measures the strength of the disorder.

g is the Griineisen parameter defined by

g=dlnc/dInp|,_, =%dlnk/dlnp B 4)
p=po
The quantum partition function can now be written as [18]
L 7 3 .
P Tr{eﬁ/kBT} _ /D[u] . LS[u(r, T =it)] _ /D[u]e 7 Odefd rL(r,T = it) -

S is the Euklidean (imaginary-time) action and 8 = h/kpT.
From now on we use dimensionless units such that lengths are measured in units of the inverse of

the Debye wavenumber kp = [67%po]'/?, times in units of the inverse Debye frequency wp = ckp,

IThe calculation including the transverse degrees of freedom is straightforward [17] but cumbersome and will be
carried out in a later paper. However — as we believe — the main features of the full theory will be similar to those

described by the present simplified version



energies in units of Aiwp, and temperatures in units of the Debye temperature Op = fwp/kp. In
these units the dimensionless mass density is given by o = moc/hkt, = Mc?/6r*hwp, and for the
dimensionless average force constant we have Ky = 1.

In order to be able to perform the disorder average from the outset we make use of the replica trick:
Averages over physical variables are carried out with weights e %S (1 (r, 7)]

without denominators Z for 7 replicas (labelled by the index ), and we have to let # — 0 at the
end of the calculation.

Integrating out the disorder produces an effective quartic interaction which is taken apart by the
Fadeev-Popov ghost field method [16], introducing the matrix fields

Qoo (r,7,7') = 2V - u,(r,7)V - uy (r,7') and the ”ghost fields” Agq (r,7,7'). The latter turns
out to play the role of a self ernergy and the average of the former is the density-density propagator,
taken at r' — r. Integrating out the original fields in the standard way [13, 14, 15, 16, 17] yields

the following effective action
_ l N “ N ~ A 1 A9 4/792 Ag
Serf[@,A] = —2Tr{10g[A0 + 1+ A} +Te{AQ} + 2Tr{Q + . Tr{Q°} + AS[Q, A] (6)
0

where the operators appearing in (6) are defined by

<rr|QI' T Sa0r = Qaa(t, 7,78 — 1 )d0u
<rrlA'T Sow = Aaw (57, 7)0(E 1) a ()
< kn|fi0 |k,nl >aal = (wi/k2) 51(1(’ 5nn,5aa,

Here n are integers which run from —oo to +o0o and are related to the Matsubara frequencies by
wp, = 2mnkpT. AS is a contribution, which arises from odd powers in Vu and vanishes in the
saddle-point approximation introduced below.

Varying the matrix fields @ and A yields saddle-point equations which can be solved by replica-
diagonal and space independent functions Quu(r,7,7') = Q(7 — ™)0aa and Ay (r,7,7") =
A(T — )840 They obey self-consistent equations, which can be written in terms of the Fourier
coefficients Q,, = Q(z = iw,) = foﬂd%e_"“’“;Q(%) and A, = A(z = iw,) with # =7 — 7' and

Q(7) = lim %<V-u(r,7~'—|—7”)v-u(r’,7”) > (8)
r—r’
 denotes a configuational average, < . .. > a thermal one. The self consistent saddle-point
equations are
1 k?
O = 32 —oviE
2 1 <to —(wn)2 + k21 + Ap)
12vg?
mo

Here

Qn = Qz=iwn) =T Y QuQn o



B o
= /0 dfenTQ(7)? (10)

The quantity
G(k,2) = [-22 + (1 + Ap)] ! (11)

is the averaged displacement Green’s function (propagator), and Q(k, z) = k>G(k, z) is the density
fluctuation propagator (also called response function or dynamical susceptibility). The density of
states is given by g(w) = —(7/2)wIm{G(z =w+i)} with G(z) = >, G(k, 2).

Let us now first discuss equations (9) in the absence of the anharmonic @2 term (g=0). Without
this term they constitute the self-consistent born approximation (SCBA) for force-constant disorder,
which has been derived previously for mass disorder in ref. [17] by similar techniques. On the other
hand, it can be shown that the well-known coherent-potential approximation (CPA) [19] reduces
to the SCBA in the regime of weak disorder (y/KZ < 1). By means of the CPA (compared with
a numerical simulation) it has been demonstrated in ref. [11] that the boson peak is a natural
consequence of disorder in a harmonic solid with fluctuating elastic constants. Therefore it is not
surprising that within the harmonic limit of the present model the SCBA also predicts a boson
peak both in the quantity g(w)/w? and in C(T)/T? calculated from this g(w). In fig. 1 we show
C(T)/T? calculated for the harmonic model in SCBA for three values of . For v > ¢y = 0.5 the

model becomes instable as in the harmonic models considered in [11].

Let us now turn to a discussion of the self-consistent equations (9) in the presence of the anharmonic
terms. As in the harmonic case we use the analytic functions Q(z),Q2(z) and A(z) in the real
frequency domain z=w+ie, i. e. we have Q(z) = Q'(w) + Q" (w) with the spectral representation
Qz)=(1/n) jOO:dQQ” (@)/(@w — z). The dynamical susceptibility can be re-written as

1

Qz) = m (1 + z2G(z)) (12)

We see that in the low-frequency regime (which we are interested in) the 22G(z) term is negligible.

In the real frequency domain we can use the fluctuation-dissipation theorem [20] to relate Q" (w) to

the van-Hove correlation function S(t) = limy_,» 20 < V - u(r,t + to)V - u(r’, to) > and its Fourier
transform S(w) = fj(:dtei“’t S(t) in the following way

QW) = 5 (1-e)S) = () S(w)
Q) = J(8w) SHw) (13)

with Shw) = [T20d¢t et S2(t).

We have now a simplified set of equations which bears strong similarity to the set of equations
studied in the context of glass transition singularities [12, 21]. The detailed analytic and numerical
solution of the full and simplified set of equations will be studied in a future publication [22]. For the

present discussion we only note that in the low-frequency regime the frequency dependence of S(w)



is very weak, and the temperature dependence enters via the thermal factors f(Sw). In order to be

able to calculate the thermal conductivity we remind ourselves that the mean free path £(w) can be

calculated from the imaginary part of the inverse of the complex sound velocity ¢(z) = /1 + A(2):
1
—— = 2wIm{[1 + A(z)] /2 14
o7 = 2m{{L+ AG)] (14)
Using (12) this becomes for small w
1
— = 2wV2I 1/2
iy = 2Vemiee)
! 1/2
= w[Q(2)] - Q'(w)] (15)
The function Q(z) can be written as
L S(z/B)
—— 1
o) =1 [ derTED (16)

If we believe that the frequency dependence of S(w) is very weak, (2) is essentially a function of
Bz so that we can state

b(w) = f(Bw)/w (17)
where f (Bw) is some function of fw. This is the same type of frequency and temperature dependence
as that of the mean free path for inelastic scattering from two-level systems [4], which, inserted into

the conventional formula for the thermal conductivity derived from the phonon Boltzmann equation

/dwg )B2w? ex;}{(,gfuﬂ}w—} 073 1c2£(w) (18)
leads to
k(T) x T? (19)

In order to be able to discuss the specific heat we have to consider the average energy which can

be easily calculated by adding a static source j to the Lagrangian: £(j) = T(1+j) - V(1 —j), and

we have
— 1d
Ho= gz m20)l=o
1d .
— lim ZG)" 5 4200 (20)

Omitting the AS term the effective j dependent action is
L1 X PR i (Yos a2y L 9% A3 2
Sers(4) = =5 Tr{loglAo(147) +1(1—j) + A+ Tr{AQ} + { S TH{Q} + m—OTr{Q ) 1=5)" (21)

This gives in saddle-point approximation

—_— —w? 4fyg2T2
H = -const.+ TZ 2 AR+ A ] g ; QnQvQ—n—v
= const. + ’HD( )+ AH(T) (22)



Here Hp(T) is the usual Debye expression for the average energy? and W(T) is the anomalous
contribution which arises due to the anharmonic coupling. Since @, is an even function of the
Matsubara frequencies w, o T, we can state AH(T) = (47¢2T2/10)Q(z = 0)3T2 + O(T*) and
therefore

2
lim O(T) = izl—f)moﬁ (23)

Numerical calculations to determine the entire temperature dependence of the specific heat using
the full self-consistent equations (9) will be done shortly [22].

We conclude by emphasizing that our anharmonic contribution to the action arises from a combi-
nation of disorder and anharmonicity. If one of the ingredients of our theory, disorder (represented

by the parameter ) or anharmonicity (represented by g) vanish, the anomalies disappear.
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Figure Caption

Fig. 1: Reduced specific heat C(T)/T* against temperature, calculated in self-
consistent Born approximation (g=0) for 4 values of the disorder parameter v =

(AK)2.




