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We present a heterogeneous version of Maxwell’s theory of viscoelasticity based on the assumption of
spatially fluctuating local viscoelastic coefficients. The model is solved in coherent-potential approx-
imation (CPA). The theory predicts an Arrhenius-type temperature dependence of the viscosity in
the vanishing-frequency limit, independent of the distribution of the activation energies. It is shown
that this activation energy is generally different from that of a diffusing particle with the same
barrier-height distribution, which explains the violation of the Stokes-Einstein relation observed fre-
quently in glasses. At finite, but low frequencies the theory describes low-temperature asymmetric
alpha relaxation. As examples we report the good agreement obtained for selected inorganic, metal-
lic and organic glasses. At high frequencies the theory reduces to heterogeneous elasticity theory,
which explains the occurrance of the boson peak and related vibrational anomalies.

PACS numbers: 65.60.+a

The interplay between relaxation and elasticity in very
viscous glass-forming supercooled liquids has been in
the focus of glass scientists since the pioneering work of
Maxwell on visco-elasticity [1]. Within Maxwell’s theory
the glass transition is a very simple matter. The relax-
ation time is given by τ = η/G∞, where η = η(T ) is
the shear viscosity and G∞ is the high-frequency shear
modulus. If this quantity is (much) larger than the
observation time or the typical time for glassblower’s
manipulations the material has transformed effectively
to a solid. Within Maxwell’s theory the loss part of
the frequency-dependent shear modulus exhibits a De-
bye peak of the form G′′(ω) = ηω/(1 + ω2τ2), which
gives a peak at the frequency τ−1. The peak positions
of mechanical and dielectrical response spectra exhibit
the same temperature dependence as the inverse viscos-
ity, which varies exponentially with the inverse temper-
ature as η(T ) ∝ EA(T )/kBT . Near and above the glass
transition temperature Tg (defined in the above way) the
differential activation energy EA follows a Vogel-Fulcher-
Tammann law EA ∝ T/(T − T0). At lower temperatures
it levels off towards a temperature-independent value.
There is some evidence that this temperature dependence
of EA is very similar to that of the shear modulus [2–4].
The idea behind this finding is that activation barriers
are related via the yield stress to the shear stiffness [5].
The ratio between the low- high-temperature activation
energies may serve as a measure of Angell’s fragility clas-
sification. It is 1 for “strong” materials and up to 4
for “fragile” materials [6, 7]. In fragile glasses the elas-
tic and dielectric loss peaks (α peaks), however, do not
have the above Debye form but are broadened on a loga-
rithmic frequency scale, which is called “stretching”[13].
The alpha peak in the low-temperature regime below Tg

becomes quite asymmetric [8–12]. In this temperature
regime the stretched alpha peaks have been described
with phenomenological formulas like the Cole-Davidson
or Kohlrausch equations [13].

Above the glass transition the mode-coupling theory
(MCT) [14–16] gives a convincing and detailed account of
the stretching phenomenon plus an anomalous increase
beyond the alpha peak (short-time β relaxation). The
glass transition Tc predicted by MCT is located some-
what above Tg. This ideal glass transition is described
as an ergodicity-breaking transition with a corresponding
divergence of the viscosity according to η ∝ [T − Tc]

−γ ,
which describes the temperature dependencd of fragile
glasses above Tc as well as the VFT law. Below Tc real
glasses do not show a divergence of the viscosity, but
the crossover to the high-EA activation law. The acti-
vation energy of the viscosity in this regime is not equal
to that of the diffusivity, a phenomenon, which has been
called Stokes-Einstein violation [17, 18] for which an ex-
planation will be given in the present treatment. There
is evidence that in this temperature regime relaxation
processes are governed by a free-energy “landscape”, im-
plying a broad distribution of activation barriers, which
have to be overcome for single relaxational steps [19–21].
This spatial heterogeneity of activation barriers implies a
strong heterogeneity of the local relaxation processes (dy-
namical or relaxational heterogeneity). Dynamical het-
erogeneities are not only visible in the relaxation spectra
but also in the vibrational spectra (elastic heterogeneity),
leading to vibrational anomalies, which violate the pre-
diction of Debyes predictions based on elasticity theory
[22–26].

In the present treatment, which addresses the temper-
ature regime near and below Tg, we assume that the dy-
namical heterogeneities are frozen in. Contrary to other
treatments based on such an assumption [27–29], we do
not assume that the relaxation processes occur in paral-
lel. To achieve this goal we use the CPA [30–32], which is
known to capture the percolation aspects, which are in-
herent in heterogeneous transport: The conductivity of
a strongly heterogeneous system is neither obtained by
averaging over the microscopic resistances (series equiva-
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lent circuit), nor by averaging the conductances (parallel
equivalent circuit), but the current follows the percola-
tive path of least resistance.
Applying our theory to both the heterogeneous viscos-

ity and diffusivity problem we are able to put our finger
on the fact that these dynamical problems involve dif-
ferent percolative aspects, which then lead to the Stokes-
Einstein violation. These aspects have been addressed in-
directly recently by the hard-sphere glass-transition the-
ory [33].
At finite frequencies our heterogeneous viscoelastic

CPA theory develops its power in describing the strong
asymmetry of the α relaxation peak in terms of the dis-
tribution of the free-energy barriers. The increase of the
loss modulus on the low-frequency side of the α peak as
G′′(ω) ∝ η(T )ω and hence its time-temperature super-
position behavior is included automatically. The high-
frequency part of the alpha maximum is non-universal in
accordance with experiment. It reflects the details of the
barrier distribution of the material, as anticipated by the
seminal ideas of Goldstein [19] and Johari [8].
At very high frequencies, i.e. below and near the De-

bye frequency, our theory reduces to the CPA version of
heterogeneous elasticity theory, which accounts for the
vibrational anomalies of glasses [32].
We now start the description of our model in de-

tail. We consider a visco-elastic fluid in which both
the viscosity η(r) and the high-frequency shear modu-
lus G(r) are assumed to vary in space. The local vis-
cosity is assumed to be governed by a local free energy
ln[η(r)/η0] = F (r)/kBT with F (r) = E(r) − TS(r). E
is the local energy barrier and S is a multi-excitation en-
tropy [34, 35], which is related to E by a compensation
(Meyer-Neldel) rule [34–37] S(r)/kB = αE(r), so that
we have η(r) = η0e

βeffE(r) with βeff = [kBT ]
−1 − α. The

activation barrier, in turn, is assumed [3, 4] to be re-
lated by E(r) = V G(r) to the local high-frequency shear
modulus, where V is an activation volume. The spatial
fluctuations of E are assumed to be statistically inde-
pendent, i.e. we work in terms of a coarse-grained model
over volumina of size ξ, which is the correlation length
of the fluctuations [32]. The statistics is then given by a
common density P (Ei), where Ei is the average value of
E(r) inside a coarse-graining volume, centered at ri.
We start working out our theory by writing down

the linear Navier-Stokes equations in frequency space
(∂/∂t → s = −iω + ǫ) for this model:

sρmvℓ(r, s) =
K

s
∇ℓ∇ ·v+2

∑

j

∇jηeff(r, s)V̂ℓj(r, s) (1)

vℓ(r, s) are the Cartesian coefficients of the Eulerian ve-

locity field,K is the bulk modulus [38], and V̂ is the trace-

less shear strain rate tensor V̂ℓj = Vℓj −
1
3Tr

{
Vδℓj

}
with

Vℓj =
1
2

(
∇ℓvj+∇jvℓ

)
. The space-dependent Maxwellian

visco-elastic term is given by

1

ηeff(r, s)
=

s

Geff(r, s)
=

1

η(r)
+

s

G(r)
(2)

Replacing in Eq. (1) ηeff by Geff/s and vi by sui, where
ui are the dynamic displacements, one obtains equations
of motions of linear elasticity with a space and frequency
dependent shear modulus. These equations can be solved
approximately in coherent-potential approximation [32]
(CPA), giving a macroscopic frequency-dependent shear
modulus G(ω) = sη(ω) = G′(ω)−iG′′(ω), where G′(ω) =
ωη′′(ω) is the storage modulus and G′′(ω) = ωη′(ω) is the
loss modulus. η(s) = η′(ω) + iη′′(ω), is the frequency-
dependent viscosity. The self-consistent CPA equations
for η(s) are [32]

η(s) =

〈
η
(i)
eff (s)

1 + ν̃
3

(
η
(i)
eff (s)− η(s)

)
Λη(s)

〉

i

(3a)

Λη(s) =
3

k3ξ

∫ kξ

0

dkk2
( 4

3sk
2

s2 +
[
K + 4

3sη(s)
]
k2

+
2k2

s+ η(s)k2

)
s→0
−→

2

η(s)
(3b)

ν̃ is an adjustable number of order unity, related to the

ultraviolett cutoff kξ of the theory [32]. η
(i)
eff (s) is the local

effective viscosity, i.e. Eq. (2), averaged over a coarse-
graining volume, centered around ri. 〈. . . 〉i denotes an
average with respect to the local energiesEi. The explicit

form of η
(i)
eff is

1

η
(i)
eff (E, s)

=
1

η0
e−βeffE +

sV

E
(4)

We emphasize that in the very high frequency regime,
where viscous effects become irrelevant, our theory re-
duces to heterogeneous elasticity theory [26, 32], which
describes the high-frequency vibrational anomalies of
glasses associated with the boson peak (see the discus-
sion of Eqs. (8) - (10) and Fig. 2 at the end of this
article). This means that the present theory describes
both dynamical and vibrational heterogeneities.
As we want to compare in the following the behavior of

the heterogeneous viscosity with diffusive single-particle
motion in the same energy landscape, (heterogeneous dif-
fusivity) in the ω → 0 limit, we quote the CPA equations
for this problem from Köhler et al. [32]:

D(s) =

〈
D(i)

1 + ν̃
3

(
D(i)(s)−D(s)

)
ΛD(s)

〉

i

(5)

with ΛD(s) = 3
k3
ξ

∫ kξ

0
dkk4[s+D(s)k2]−1 Here D(s) is

the dynamic diffusivity and D(i) = D0e
−βeff,DE(i)

are the
local diffusivities with βeff,D = [kBT ]

−1 − αD [39].
In the s → 0 limit Λη → 2/η(s = 0) ≡ 2/η and ΛD →

1/D(s = 0) ≡ 1/D, and we obtain for the ω → 0 limit of
the viscosity and diffusivity the CPA equations

2ν̃

3
=

∫
∞

0

dEP (E)
1(

3
2ν̃ − 1

)
η

η(i) + 1
(6a)



3

ν̃

3
=

∫
∞

0

dEP (E)
1(

3
ν̃ − 1

)
D

D(i) + 1
(6b)

If the macroscopic viscosity and diffusivity are
parametrized as η ∝ eβeffµη , D ∝ e−βeff,DµD , the in-
tegrands in Eqs. (6a) and (5b) become step functions
θ(E − µη) and θ(µD − E), resp. in the low-temperature
limit, and we arrive at

1−
2ν̃

3
=

∫ µη

0

dEP (E)
ν̃

3
=

∫ µD

0

dEP (E) (7)

This means that (within CPA) both the diffusivity and
viscosity with spatially fluctuating activation energies ac-
quire an Arrhenius behavior, independently of the details
of P (E). This result is well known for the diffusivity and
(for charged carriers) conductivity in disordered materi-
als [32, 40]. It reflects the fact that the carrier look for a
path of minimum resistance through the material, which
is a percolation path. In the percolation theory of hop-
ping conduction [40] the number ν̃/3 is the continuum
percolation threshold, which we now call pD. The anal-
ogous quantity for the viscosity is pη = 1 − 2pD, where
the factor 2 can be traced back to the two transverse
cartesian degrees of freedom of the shear motion [32]. As
pointed out in Köhler et al. [32], Eq. (5b) is also equiva-
lent to an effective-medium theory for a conductance net-
work, where the parameter pD is 2/Z, Z being the func-
tionality of the network. So we note the result that except
for the special case pD = 1/3 the activation energy for dif-
fusion and viscosity should be different. The explanation
is that the percolation process for a single-particle and
cooperative motion in three dimension is different. This
is nicely described by the CPA in the ω → 0 limit. If we
take for pD = ν̃/3 the three-dimensional continuum per-
colation threshold ≈ 0.3 we arrive at pη = 1−2pD = 0.4.
Using Eqs. (7) we arrive for a Gaussian distribution cen-
tered at E0 with width parameter σ/E0 = 0.3 at µD/E0

= 0.843 and µη/E0 = 0.925, i.e. the ratio is µD/µη =
0.91. This ratio (Einstein-violation parameter) depends
on dimensionality through pD, but it is non-universal, as
it depends on (and becomes smaller with) the shape of
the distribution.
We now turn to the finite-frequency regime. This is

the regime around and above the alpha peak. In this
frequency regime the function Λη(s) can be replaced by
its low-frequency limit Λη(s) = 2

η(s) . Below the alpha

peak the shear loss modulus is just given by G′′ = ωη(0),
which describes the linear increase of G′′ below the α
peak. Such a behavior is (to the best of our knowledge)
obeyed in all mechanical relaxation data [41].
As stated above, the frequency-dependent viscosity

η(s) depends on the detailed shape of P (E). As we
want to compare our theory with mechanical relaxation
data in metallic glasses, we believe that a good choice
for this function is a Gaussian, truncated at E = 0

[42], i.e. P (E) = P0θ(E)e−(E−E0)
2/2σ2

, because the lo-
cal shear moduli in simulations of metallic [43, 44] and
other glasses with soft-sphere interaction [25, 45, 46] were
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FIG. 1: Main body: Relaxation curves G′′(ω) = ωη′(ω) vs.
ωη(0) for Gaussian distributions with width σ/E0 = 0.3 and
effective inverse temperatures βeffE0 = 24 (violet dash-dots),
26 (red continuous line), 28 (blue long dashes) and 30 (orange
short dashes). The open symbols are representative data of
three bulk metallic glasses compiled by Wang et al. [9]. For
the percolation threshold we used ν̃/3 = 0.3.
Big inset: Same as in the main body but for fixed inverse
temperature βeffE0 = 26 and varied widths σ/E0 = 0.1 (or-
ange dots), 0.2 (blue long dashes), 0.3 (red continuous line,
same as in the main body) and 0.4 (violet dash-dots). The
black short-dashed curve has been obtained with a flat distri-
bution P(E)=0.5 for 0≤ E ≤ 2. We included relaxation data
of non-metallic organic and anorganic glasses (full symbols)
[10–12]. The full chemical formulae of the organic glasses are
tetraphenyl-tetramethyl-trisiloxane (DC704) and 5-phenyl-4-
ether (5-PPE).
Small inset: The distribution densities P (E) used for the cal-
culations of the big inset. Color and line codes are the same
for the two insets.

shown – by evaluating the statistics – to exhibit a Gaus-
sian distribution. In Fig. 1 we show the loss modulus
G′′(ω) = η′(ω)ω as a function of the rescaled frequency
ω̃ = ωη(0). If the main (α) relaxation peak remains
near ω̃ = 1, this means that the time-temperature su-
perposition principle is obeyed. We compare our cal-
culations for various values of the effective inverse tem-
perature and parameter βeffE0 and σ/E0 with a recent
compilation of relaxation data of bulk metallic glasses
near the calorimetric glass transition Tg [9]. In order to
demonstrate the robustness of the results with respect
to the shape of P (E) we included also a flat distribution
P (E) = 0.5θ

(
E[2 − E]

)
. We see that the data fit best

to βeffE0 = 26 and σ/E0 =0.3. As the activation ener-
gies of the viscosity for bulk metallic glasses are in the 3
eV range and the glass transition is around 700 K [47],
we arrive at a relative inverse temperature of Ea/kBT ≈
50, which leaves for the Meyer-Neldel entropy parameter
a value of α/EA ≈ 24, where we used our CPA result
Ea/E0 ≈ 1. In the inset of Fig. 1 we show also relax-
ation data of two organic glasses [10] one anorganic glass
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FIG. 2: Reduced specific heat C(T )/CD(T ) ∝ C(T )/T 3 for
three bulk metallic glasses [48], compared with the predic-
tion of heterogeneous-elasticity theory, Eqs. (8) - (10) with a
Gaussian distribution of shear moduli σG/G0 = σ/E0 = 0.3.
For the ratio between the Debye and correlation cutoff we
used kD/kξ = 1.6 and for the re-scaling of the experimen-
tal temperature scale we used the Debye temperatures ΘD

= 278 K (Pd40Ni40P20), 280 K (Pd40Ni10Cu30P20), 320 K
(Zr46.75Ti8 .25Cu7.5Ni10Be27.5)

[11], and one highly disordered mineral [12] in order to
demonstrate the generality of our approach.
In the beginning we mentioned that at high frequency

our theory becomes equivalent to the CPA version of
heterogeneous-elasticity theory [26, 32], which explains
the boson-peak-related glassy vibrational anomalies in
the THz range. In this regime the viscosity term in
Eq. 2 is negligible, leaving the fluctuating shear mod-
ulus G(ri) ≡ G(i). In terms of the frequency-dependent
shear modulus G(s) = sη(s) and the susceptibility func-
tion ΛG(s) = Λη(s)/s the CPA equation (3a) takes the
form

G(s) =

〈
G(i)(s)

1 + ν̃
3

(
G(i)(s)−G(s)

)
ΛG(s)

〉

i

(8)

from which we can calculate the density of vibrational
states g(ω) and the specific heat C(T ) as

g(ω) =
2ω

3π
Im

{
3

k3D

∫ kD

0

dkk2
(

1

s2 +
[
K + 4

3G(s)
]
k2

+
2

s2 +G(s)k2

)}
(9)

C(T ) ∝

∫
∞

0

dω g(ω)(ω/T )2
e~ω/kBT

[e~ω/kBT − 1]2
(10)

Here kD is the Debye wavevector. In Fig. 2 we show a
calculation of the reduced specific heat C(T )/CD(T ) ∝
C(T )/T 3 according to the CPA equations (8) to (8), to-
gether with experimental data of the same bulk metallic
glasses referred to in Fig. 1. We used the same width-
maximum relation σG/G0 = σ/E0 as in the calculations
of the blue lines in Fig. 1. The other parameters are
given in the caption. This calculation and the agreement
to the data demonstrates that the same CPA theory can
be used for the relaxation spectrum and the vibrational
anomalies.

In conclusion we can state that we have established
a combined theory for the ω → 0 limit of the viscos-
ity, the low-temperature asymmetric α relaxation and
the high-frequency vibrational anomalies within a uni-
fied framework. This has been achieved by assuming
that the viscous and elastic coefficients of Maxwell’s the-
ory of viscoelasticity fluctuate in space according to a
frozen distribution of activation barriers. We have found
an explanation of the discrepance of the activation ener-
gies for diffusion and viscosity in terms of the different
percolative properties of the two heterogeneous transport
problems and a theory for the low-temperature alpha re-
laxation below the glass transition.
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17, 5915 (1984).
[15] W. Götze, in Liquids, Freezing and the Glass Transition,

edited by J. P. Hansen, D. Levesque, and J. Zinn-Justin
(Elsevier, Amsterdam, 1991).

[16] W. Götze, Complex Dynamics of Glass-Forming Liquids
(Oxford Univ. Press, Oxford, 2009).
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