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Disentangling boson peaks and Van Hove singularities in a model glass
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Using the example of a two-dimensional macroscopic model glass in which the interparticle forces can be
precisely measured, we obtain strong hints for resolving a controversy concerning the origin of the anomalous
enhancement of the vibrational spectrum in glasses (boson peak). Whereas many authors attribute this anomaly
to the structural disorder, some other authors claim that the short-range order, leading to washed-out Van Hove
singularities, would cause the boson-peak anomaly. As in our model system, the disorder-induced and short-
range-order-induced features can be completely separated, we are able to discuss the controversy about the
boson peak in real glasses in a new light. Our findings suggest that the interpretation of the boson peak in terms
of short-range order only, might result from a coincidence of the two phenomena in the materials studied. In
general, as we show, the two phenomena both exist, but are two completely separate entities.

DOI: 10.1103/PhysRevB.98.174207

I. INTRODUCTION

Glass shows a deviation in its vibrational density of states
(DOS) from Debye’s ωd−1 law, where d is the dimensionality,
which occurs in the THz regime, about one-tenth of the Debye
frequency ωD . This deviation leads to a peak in the reduced
DOS, g(ω)/ωd−1 [boson peak (BP)] [1–3]. The origin of
the BP is still under intense debate. The main controversy
is whether it is the result of the structural disorder [4–10]
or the glassy counterpart of the first (transverse) Van Hove
singularity (VHS) in crystal [11–14], i.e., the result of the
short-range order of the glass.

In their recent publications about a glassy mineral and
glassy SiO2, Chumakov et al. [11,12] compared the DOS
and the specific heat of the glassy materials with the spectra
of the corresponding crystalline materials. They found that
the BP frequency of glass—if rescaled to the corresponding
crystalline density—coincides with the position of the first
(transverse) VHS of the corresponding crystal. This was also
substantiated for other materials [13]. From this coincidence,
they concluded that the BP would be the same physical
phenomenon as the VHS in the crystal, namely coming from
the piling up of resonances as a result of the bending down of
the phonon dispersion near the edge of the pseudo Brillouin
zone (BZ) kp = k0/2 ≈ π/a (k0 is the wave number of the
first sharp diffraction peak and a is a mean intermolecular
spacing) [14]. It is possible to reformulate this point of view
in terms of length scales: if the wavelength becomes short
enough, the wave is sensitive to the atomic order (or the
short-range order in glass) so that the dispersion bends down
and leads to the VHS.
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On the other hand, there is ample evidence from exper-
imental [15,16] and numerical [10,17] work that the BP in
glass is associated with a disorder-induced rapid increase
of the Brillouin linewidth of the transverse excitation and
a characteristic dip in the transverse sound velocity. These
anomalies have been shown to result from the disorder in
the elastic constants (elastic heterogeneity [10,18–21]). It
has been demonstrated that all these BP-related anomalies
occur because the wavelengths of the acoustic excitations get
small enough to be sensitive to the breakdown of the trans-
lational, rotational, and inversion symmetries [5,15,19,20,22].
As fluctuations of the shear modulus around a rather small
value imply the existence of “soft spots,” where the limit of
structural stability is reached, this view of the BP origin is
also consistent with the soft-potential model [1,4,6,23,24] and
the view of the vicinity of a saddle transition [25].

So the controversy between the two views is whether the
BP occurs as a result of short-range order or as a result of
structural disorder. In 3D structural glasses, the length scales,
where these local features become distinct, are not very differ-
ent, so one cannot clearly distinguish between the two aspects.

In our experiment, we found that the two length scales—
and, correspondingly, the two characteristic frequencies—are
clearly separate, showing that the first VHS and the BP are
two separate entities.

II. EXPERIMENTAL METHODS

In this experiment (see Fig. 1), we used a biaxial apparatus
(or simply “biax”) [26,27] to prepare an isotropically com-
pressed jammed packing of photo-elastic disks. Viewed from
the above, the biax consisted of a square domain with four
mobile walls, whose positions could be precisely controlled
with an accuracy of 0.1 mm using Panasonic servo motors to
move symmetrically when applying isotropic compression.
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FIG. 1. (a) Schematic of the experimental setup. (b) Top: Normal
image without polarizers. Middle: Stress image with polarizers.
Bottom: Reconstructed stress image based on calculated contact
forces.

We filled the square domain with 2720 large disks (DL =
1.4 cm) and 2720 small disks (DS = 1.0 cm). These disks
were randomly deposited to maximize the mixing of two
types of disks. The biax was mounted on a glass plate, on
top of which the two-dimensional horizontal disk layer was
placed. The surface between glass plate and disks was powder
lubricated to minimize friction. Viewed from the side, below
the glass plate, a circular polarizer sheet was attached. Below
this sheet, an LED light source provided uniform illumination

of the disk layer. One and a half meters above the biax, an
array of 2 × 2 high-resolution cameras were mounted to take
images of the whole disk packing. Right below the cameras,
a second (matched) circular polarizer sheet was mounted
horizontally, which could be freely inserted or removed so that
two types of images of disk packing were taken to record disk
configurations and stress information.

Since the total disk number was fixed, the packing fraction
(the total disk area over the area of the square domain) was
essentially determined by the size of the square domain, as
controlled by the biax. In preparing the jammed packing, we
applied gentle vibrations to the disk layer to break transient
force chains due to the friction between disks to achieve a
homogeneous and stress-free state before the packing fraction
exceeded ∼84%, which is the typical value of the isotropic
jamming point of bidisperse frictionless disks.

We estimate that the contribution of elastic energy due to
tangential contact forces only amounts to a few percent of the
total elastic energy of the system. The data presented in the
main text came from one packing configuration, while several
other configurations were prepared using the same protocol.
The differences of the data in the DOS and related properties
between different configurations are slight, comparable to the
symbol sizes in the figures.

The forces between these disks can be accurately deter-
mined (see Refs. [26,27]). We applied imaging processing to
extract the spring constants kn and kt at individual contacts us-
ing the calibrated contact-force laws and the values of contact
forces. From these quantities, we constructed the harmonic
dynamical matrix Hij (Hessian) as follows:

Hij = 1√
mimj

[
kij,n cos2 θij + (kij,t − fij,n/rij ) sin2 θij (kij,n − kij,t + fij,n/rij ) cos θij sin θij

(kij,n − kij,t + fij,n/rij ) cos θij sin θij kij,n sin2 θij + (kij,t − fij,n/rij ) cos2 θij

]
, i �= j ,

mi is the mass of a disk i, kij,n are the normal, kij,t the
tangential spring constants between disk i and disk j . θij is the
orientation angle of the bond between disk i and disk j . fij,n

is the normal force between disk i and disk j . rij is the length
of the bond between disk i and disk j . The matrix elements of
the Hessian obey Hii = −∑

j �=i Hij .

III. RESULTS

A. The boson peak and Van Hove singularities

By diagonalizing Hij , we obtained the eigenvalues ω2
λ, and

the eigenvectors eλ = {eλ(1), eλ(2), . . . eλ(N )}. From these
ωλ, we obtained the DOS,

g(ω) = 1

2N

∑
λ

δ(ω − ωλ), (1)

and the single-site DOS [28],

gi (ω) = 1

2N

∑
λ

|eλ(i)|2δ(ω − ωλ) . (2)

In Fig. 2, we show the obtained DOS g(ω) and the reduced
DOS g(ω)/ω, with a BP at ωBP ≈ 0.43 ≈ 0.18ωD [29], i.e.,

an enhancement over the Debye DOS, for which the reduced
DOS would be constant. Here, the frequency ω is in units of√〈kn〉/m, where 〈kn〉 is the average normal spring constant.

From the eigenvectors, we calculate the transverse and
longitudinal current-correlation functions (CCFs):

CT (k, ω) =
∑

λ

δ(ω − ωλ)

∣∣∣∣∣
∑

λ

[k̂ × eλ(j )] exp(i�k · �rj )

∣∣∣∣∣
2

,

(3)

CL(k, ω) =
∑

λ

δ(ω − ωλ)

∣∣∣∣∣
∑

λ

[k̂ · eλ(j )] exp(i�k · �rj )

∣∣∣∣∣
2

. (4)

Here k̂ = �k/|�k|, and �rj is the position of disk j .
The DOS can be calculated alternatively with the help of

the CCFs of Eqs. (3) and (4) [8,15,21],

gC (ω) = 1

Nk2
max

∫ kmax

0
k(CL(k, ω) + CT (k, ω))dk

= gC,L(ω) + gC,T (ω), (5)
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FIG. 2. (a) The DOS g(ω) (the distribution of eigenfrequencies)
is plotted using a black solid curve. The black solid circles represent
gC (ω), which is an integration of the current-correlation functions
from 0 up to 1.1×(Debye wave number) and is decomposed into
the transverse (orange triangles) and longitudinal (blue squares)
components. (b) The reduced DOS g(ω)/ω. The gray thick line
marks the boson peak position.

where kmax should be near the Debye wave vector kD [29].
By this, we are able to trace the origin of the eigenfunctions
corresponding to the eigenvalues sampled in the DOS. Com-
paring with Eq. (1), we find agreement between g(ω) and
gC (ω) for kmax = 1.1kD .

From the contributions to gC (ω) displayed also in Fig. 2,
the BP is dominated by the transverse modes, in agreement
with theoretical [8,9,21] and numerical results [10,28].

In Fig. 3, we plot the CT,L(k, ω) in the relevant wave
number k range, as well as the CT,L(k, ω)/ω, correspond-
ing to the reduced DOS. In the left panel of Fig. 4,
we plot the maximum, �max

T ,L (k), of the CT,L(k, ω) against
k versus the transverse and longitudinal dispersions of

a regular triangular lattice ωT =
√

2K
m

sin(
√

3
4 k) and ωL =√

K
m

√
1 − cos k

2 + 2(1 − cos k), where K is the spring con-
stant. Clearly, �max

T ,L (k) follow the crystalline dispersions and
level off near the pseudo BZ boundary at kD [29].

In the right panel of Fig. 4, we show the DOS as evaluated
with Eq. (5), but instead of the lower integral boundary kmin =
0, we used several finite values for kmin (see caption). We see
that, when kmin approaches the k value where the leveling-
off of the longitudinal and transverse dispersions happens, the
peaks in the DOS align with the VHSs of the triangular lattice

0 1 2 0 1 2

FIG. 3. Left: Transverse (orange, left) and longitudinal (blue,
right) current-correlation functions (CCFs) CT,L(k, ω) for k =
0.85, 1.54, 2.23, 2.92, 3.61, 4.29 (in units of 〈D〉−1) from bottom
to top, which are rescaled by their maximum. Dotted lines connect
the maximum of CT,L(k, ω), denoted using �max

T ,L (k). Right: Reduced
CCFs CT,L(k, ω)/ω.

at ωV H1 = √
2 and ωV H2 = 2.25, very near �max

T ,L (k), whose k

is at the pseudo BZ boundary as indicated by the dashed line.
By fitting

CT,L(k, ω) ∝ ω2

(ω2 − �T ,L(k)2)2 + ω2�T ,L(k)2
, (6)
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FIG. 4. Left: Pseudodispersion relations of �max
T ,L (k) (solid sym-

bols) and �T ,L(k) (open symbols), which are obtained from the
resonance frequencies in the DHO fitting of the CCFs. The solid
curves represent the dispersion relations of a triangular lattice. The
vertical dashed line indicates the Debye wave number kD ≈ 3.6.
Right: The longitudinal (top) and transverse (bottom) DOS derived
from the integration of CCFs from kmin to kmax = 1.1 × kD , with the
lower integration limit kmin = [0.8, 0.6, 0.4, 0.2, 0] × kmax, from
bottom to top. The vertical dashed lines indicate the first (transverse)
and second (longitudinal) Van Hove singularities of the triangular
lattice. The gray thick lines mark the boson peak position.
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using damped-harmonic-oscillator functions (DHO) (see
Refs. [10,28] and the Appendix), one can identify intrin-
sic dispersion functions �T ,L(k) and attenuation functions
(Brillouin line widths) �T ,L(k). From the left panel of Fig. 4,
we can see that the curves �T ,L(k) agree nicely to �max

T ,L (k),
and those of the triangular (crystalline) lattice.

We emphasize that in our sample there is by no means
a triangular long-range order. However, we verified that, on
average, particles have sixfold coordination as in the trian-
gular lattice by calculating the integral over the first coor-
dination shell of the radial distribution function g(r ), Z̄ =
2π

∫ RC

0 drrg(r ) ≈ 5.5. (Here RC is the first minimum of g(r ),
see Appendix Fig. 8). The fact that the “glassy dispersions”
�L,T (k) agree to the dispersions of the triangular lattice
(including the VHS) is obviously due to the almost sixfold
short-range order.

Therefore, we clearly observe what was described by the
authors of Refs. [11–14] as a would-be scenario for the origin
of the BP. However, the VHS—namely, the leveling off of
the transverse dispersion—occurs at a much higher frequency,
completely separated from ωBP.

B. Anomalies associated with the boson peak

As we now see that the BP is not identical to the VHS,
in contrast to Refs. [11–14], we now analyze in detail the
vibrational states giving rise to the BP in terms of the struc-
tural disorder. One prominent feature is the existence of a
disorder-induced sound attenuation �T ,L, corresponding to the
Brillouin linewidth of inelastic neutron and x-ray scattering
(Brillouin scattering) experiments [15,16], as evaluated in the
DHO fits and plotted in Fig. 5(a). In Fig. 5(b), we plot sound
velocities vT,L(�) = �T ,L(k)/k, rescaled by the macroscopic
velocities vT

0 = √
G/ρ, vL

0 = √
(G + B )/ρ. We see a charac-

teristic dip in vT,L(�) just near ωBP, where �(�) is steepest.
Figures 5(a) and 5(b) agree with the heterogeneous elastic-

ity theory [9,21], where the elastic-constant disorder produces
frequency-dependent complex elastic moduli. For the trans-
verse elastic modulus, we have

Ĝ(ω) = G′(ω) − iG′′(ω) = G′(ω)[1 − i�T (ω)/ω]. (7)

Near the Brillouin resonance, we may write

Ĝ(ω) ≈ Ĝ
(
�

) = G′(�)[1 − i�T

(
�

)
/�]. (8)

So vT (�)2 ∝ G′(�) and �T (�) ∝ �G′′(�) are related to
each other by the Kramers-Kronig transformation, as dictated
by causality [21], meaning where G′′(�) has its strongest
increase G′(�) must have a dip. As shown by Ref. [9], the
BP is produced by the disorder-induced strong increase of
�T (�). So the BP, the strong increase of �T (�), and the dip in
vT (�) are just the same phenomenon. These three anomalies
come about because on the length scale of LBP = 2π/kBP,
comparable to the spatial extent of the elastic-constant fluctua-
tions [21,30], the system is no more effectively homogeneous
and isotropic (as it is for large scales). At this length scale,
which is about six “atomic” (disk) diameters, the vibrational
excitations are no more Debye-type plane waves but random-
matrix-type modes, which cannot be degenerate because of
the absence of symmetries. The strong increase of �(�) near
ωBP in many cases follows a �(�) ∝ �d+1 law (Rayleigh
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FIG. 5. Frequency dependence of sound attenuations �T ,L(�) (a)
and sound velocities vT,L(�) = �T ,L(k)/k, normalized by macro-
scopic velocities v

T,L
0 (b) for longitudinal and transverse modes. Fre-

quency dependence of the participation ratio (c) and the diffusivity
(d). The gray thick lines in all panels mark the boson peak position.
In panel (a), the black solid line �3 is a guide to the eye. The
Ioffe-Regel limits of the transverse and longitudinal modes are given
by the crossing points between the dashed line �/π and the curves
of �T ,L(�), which occur slightly before the boson peak position.
In panels (c), (d), the dots represent individual modes and the solid
curves are the average.

scattering) [10,15–17]. Indeed, in our case, �T (�) is com-
patible to �3 just below the BP, as depicted in Fig. 5(a);
in addition, the Ioffe-Regel limit of both the transverse and
longitudinal modes occurs slightly below, ωBP, consistent
with Refs. [10,16,28], suggesting that acoustic modes stop
propagation and become diffusive near the BP.

Further evidence for the disorder-induced nature of the BP
comes from considering the participation ratio p(ω) and the
frequency-dependent diffusivity d(ω) [31]. The participation
ratio p(ωλ) = (

∑
i |eλ(i)|2)

2
/(N

∑
i |eλ(i)|4) is expected to

be comparable to 1 for de-localized plane-wavelike states
and of the order of 1/N for Anderson-localized states, i.e.,
states which are only finite in a certain region. In Fig. 5(c),
ωBP marks a crossover frequency, around which p(ω) stops
decreasing and reaches a plateau; eventually, at sufficiently
high frequency ωloc ≈ 2.16, p(ω) drops sharply to a value
comparable to 1/N , indicating Anderson localization near
ωD , in agreement with the literature (e.g., Ref. [7]).

We confirm this scenario by considering the frequency-
dependent diffusivity d(ω) [31]. Below ωBP, d(ω) decreases
as is typical for the Debye wave regime. Between ωBP and
ωloc, the diffusivity is finite and constant, so ωBP marks the
crossover between the nearly free wave and diffusive regimes,
in agreement with the crossing of the Ioffe-Regel limit for the
transverse excitations near ωBP as seen in Fig. 5(a).
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FIG. 6. Probability distributions of contact coordination number
(a), spring constant (c), and local inversion-symmetry parameter (d)
for all particles (left blue columns) and soft spots (right red columns).
(b) Reduced density of states per particles gi (ω)/ω averaged over
particles of different coordination numbers, and the black solid curve
represents gi (ω)/ω averaged for all particles.

C. Structural signatures associated with the boson peak

We further substantiate that the BP is related to so-
called soft spots in our sample, which have been investigated
recently in connection with the plastic movement of glasses
under shear [32,33]. We define soft spots in the following
way: We consider the statistics of local vibrational intensities
|eλ(i)|2 near ωBP. Sites (i), which belong to the top 5% of the
statistics, are called soft spots.

In Fig. 6, we compare the spectral statistics of all sites
with those of soft spots for (a) the contact coordination
number (CCN), (b) the reduced single-site DOS gi (ω)/ω, (c)
the average magnitude of spring constants, and (d) the local
inversion-symmetry parameter FIS, as introduced by Zaccone
[22]. The CCN of soft spots have a significant contribution
from CCN = 3, whereas they distribute symmetrically around
CCN = 4.5 for all sites. For gi (ω)/ω, particles of CCN = 3
make significant contributions to the BP. Moreover, the distri-
bution of spring constants of soft spots shifts down compared
to that of all particles, as shown in Fig. 6(c). The FIS, which
is unity for crystals and decreases as the central symmetry
breaks down, appears lower for soft spots than for all particles,
consistent with some recent ideas [22].

IV. DISCUSSION

Let us now discuss the relevance of our findings with the
BP-related vibrational anomalies in three-dimensional real
glassy materials.

These anomalies have been identified by spectroscopic
methods, namely Raman scattering [34], as well as inelastic-
neutron, x-ray [15,16], and nuclear [3] scattering. As the
scattered intensity followed the temperature dependence of

the boson occupation function (from which the name “boson
peak” was coined), the conclusion was that the fluctuation
spectrum of the excitation was temperature independent,
pointing to harmonic degrees of freedom. So the discus-
sion concentrated on characterizing the dynamical matrix of
glasses to relate the glass structure to the observed anomalies.

As mentioned above, these efforts led to conflicting char-
acterizations of the BP-related anomalies in terms of elastic
disorder (heterogeneous elasticity) [4–10], as well as in terms
of washed-out VHS, created by short-range order [11–14].

Model systems with repulsive soft-sphere interactions
proved in the past to be very useful for characterizing and
understanding the vibrational features of glass [10,35,36].

Our soft-disc model system (which is not a virtual but
a real one) serves as an analog simulation of a disordered
dynamical matrix of glass. We find both evidence for a crystal-
like dispersion leading to VHS-like features in the DOS, as
well as evidence for vibrational anomalies as characterized by
heterogeneous-elasticity theory.

What makes our model system different from
glassy materials—namely, that it is macroscopic and
two-dimensional—is, in fact, not a disadvantage, but, on
the contrary, serves to disentangle the disorder-related and the
short-range-order-related features of glasses.

Obviously, in many glasses, especially those investigated
by the advocates of the VHS model, the scale of the molecular
units and the range of the disorder correlations are approx-
imately the same, so that it is difficult to separate the spec-
troscopic consequence of structural disorder and short-range
order.

In our system, these scales are almost one order of mag-
nitude different, leading to a clear separation of the VHS and
the disorder-induced BP.

V. CONCLUSIONS

Our findings can be summarized as follows:
We have carefully prepared a 2D model glass, which has

a completely amorphous structure but still predominantly six-
fold nearest-neighbor coordination. By evaluating the CCFs,
we observe a bending down of the transverse and longitudinal
dispersions of the vibrational excitations near the pseudo-
BZ radius kp ≈ kD . This bending down leads to a piling
up of vibrational states as in the VHS of crystals and leads
to corresponding maxima in the DOS near the VHS of the
triangular lattice. Such a scenario was made responsible for
the appearance of the boson peak in glass by Chumakov et al.
[11–14].

However, we observe a boson peak, i.e., a peak in the re-
duced DOS at a much lower frequency as that of the transverse
VHS.

The BP shows all the features of a disorder-induced en-
hancement of the DOS as described by heterogeneous elas-
ticity theory [8,9,21]: The boson-peak frequency coincides
with the Ioffe-Regel frequency and marks the transition from
a weakly damped wave regime to the regime of diffusive wave
transport. The boson-peak wave number kBP = ωBP/vT =
2π/LBP denotes the length scale at which the waves start to
feel the breakdown of the continuum symmetry.
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With the help of our model system, we hope to have made
clear that the washed-out VHS and the BP in glasses are two
separate physical phenomena. The former are a result of the
short-range order, reminiscent of the crystalline state. The lat-
ter is a result of the structural disorder, produced by the
breakdown of the continuum symmetry near the BP length
scale. While both features are likely to occur in glass, the
coincidence of the Van Hove and BP length scales, observed
in some materials, does not mean that the two phenomena are
the same.

The features accompanying the disorder-related boson
peak, namely the rapid increase of the attenuation and the
characteristic dip in the group velocity, are a way to disen-
tangle the boson peak and the Van Hove features in real glass.
In our model glass, the two features are separated due to our
special geometry.
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APPENDIX: DETAILS OF THE STRUCTURAL AND
SPECTRAL ANALYSIS

In Fig. 7, we show the static structure factor,

S(k) = 1

N

N∑
i=1

∑
j �=i

〈e−ik(r i−r j )〉,

0
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3
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FIG. 7. (a) Static structure factors S(k) for all particles. (b)
Partial static structure factors (S: small disks, L: large disks).
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FIG. 8. Integrated radial distribution function Z(r ), radial distri-
bution function g(r ), and partial radial distribution function (S: small
disks, L: large disks).

where r i are the positions of the centers of the disks and N

the total number (N = 5440) of the disks.

FIG. 9. Longitudinal (a) and transverse (b) current-correlation
functions and DHO fitting (solid lines).
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In Fig. 8(b), we show the radial distribution function:

g(r ) = 1

Nρ

N∑
i=1

∑
j �=i

〈δ(r + r i − rj )〉.

ρ = N/A is the density, A is the area of the biax. In the upper
panel, we show the integrated radial distribution function,

Z(r ) = 2π

∫ r

0
dr̃r̃g(r̃ ),

which can be interpreted as an r-dependent coordination
number. Z(r ) gives the number of disks around a given disk,
the center of which has a distance from the given one smaller

or equal to r . We see that this function has a plateau where
g(r ) has a broad minimum at rmin = 1.35. This minimum
defines the first coordination shell. This leads to a value of
Z(rmin) = 5.5.

In Fig. 9, we show the current-current correlation functions
fitted with the DHO function:

CL,T (k, ω) ∝ ωIm

{
1

�2
L,T (k) − ω2 − iω�L,T (k)

}

= ω2 �L,T (k)

(�L,T (k)2 − ω2)2 + ω2�L,T (k)2
.
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