Institut für Physik SS 2014

Friederike Schmid

Übungen zur Vorlesung "Mathematische Rechenmethoden" Blatt 12

Aufgaben (abzugeben vor der Vorlesung vom 18. Juli 2014)

Aufgabe 56) Nabla-Operator (4 Punkte)

Gegeben sei das Vektorfeld $\vec{V} = (y^2z^2, x^2z^2, x^2y^2)$

Berechnen Sie $\nabla \times (\nabla \times (\nabla \times \vec{V}))$.

Aufgabe 57) Laplace-Operator (4 Punkte)

Berechnen Sei $\Delta \ln(r)$ in zwei und drei Raumdimensionen für $r \neq 0$. (Hier ist $r = |\vec{r}|$).

Aufgabe 58) Identitäten mit Rotation und Gradient (6 Punkte)

Zeigen Sie für zweimal differenzierbare Skalarfelder $\Phi(\vec{r})$ und Vektorfelder $\vec{V}(\vec{r})$:

- (a) div rot $\vec{V} = 0$
- (b) rot grad $\Phi = 0$
- (c) $\nabla \times (\nabla \times \vec{V}) = \nabla(\nabla \cdot \vec{V}) \Delta \vec{V}$

Aufgabe 59) Zentralfeld (6 Punkte)

Gegeben Sei ein Vektorfeld der Form $\vec{V}(\vec{r}) = \frac{\vec{r}}{r} \Phi(\vec{r})$, wobei $\Phi(\vec{r})$ ein Skalarfeld ist.

- (a) Zeigen Sie $\nabla \times \vec{V} = -\frac{\vec{r}}{r} \times \nabla \Phi(\vec{r})$
- (b) Zeigen Sie: Falls $\Phi(\vec{r})$ nur vom Betragrdes Orts abhängt, ist $\nabla\times\vec{V}=0.$
- (c) Zeigen Sie umgekehrt: Falls $\nabla \times \vec{V} = 0$, hängt $\Phi(\vec{r})$ nur vom Betrag r ab.

Aufgabe 60) Gaußscher Integralsatz (8 Punkte)

Betrachten Sie ein kompaktes Gebiet mit Volumen V und glattem Rand ∂V . Zeigen Sie mit Hilfe des Gaußschen Integralsatzes:

- (a) Den <u>Volumensatz</u>: $V = \frac{1}{3} \int_{\partial V} d\vec{A} \cdot \vec{r}$.
- (b) Für differenzierbare Vektorfelder $\vec{F}(\vec{r})$ gilt die Identität

 $\int_{V} dV \, \nabla \times \vec{F} = \int_{\partial V} dA \times \vec{F}$

(Hinweis: Wenden Sie zuerst den Gaußschen Satz für ein Vektorfeld $\vec{V}=\vec{F}\times\vec{a}$ an mit frei wählbarem Vektor \vec{a} .)