Friederike Schmid

Übungen zur Vorlesung "Mathematische Rechenmethoden" Blatt 5

Aufgaben (abzugeben vor der Vorlesung vom 30. Mai 2014)

Aufgabe 17) Ableitungen I (4 Punkte)

Berechnen Sie die Ableitungen von folgenden Funktionen:

(a)
$$f(x) = \sqrt{1 + \sqrt{x}}$$

(b)
$$f(x) = \ln(x) \ln(\ln(x)) - \ln(x)$$

(c)
$$f(x) = x^x$$

(d)
$$f(x) = \operatorname{artanh}(x)$$

Aufgabe 18) Ableitungen II (6 Punkte)

Berechnen Sie folgende Ableitungen

(a)
$$\frac{d^2}{dx^2}$$
 artanh $\left(\frac{\sqrt{\cosh^2(\omega t(x))-1}}{\cosh(\omega t(x))}\right)$

(b)
$$\frac{\mathrm{d}^2}{\mathrm{d}a^2} f(g(a))$$

(c)
$$\frac{\mathrm{d}^2}{\mathrm{d}x^2} \left(\exp[(\alpha x^2 + \beta x + \gamma)^2] - A \right)$$

Aufgabe 19) Ableitungen III / Grenzwerte (4 Punkte)

Berechnen Sie folgende Grenzwerte mit Hilfe des Satzes von l'Hôpital.

(a)
$$\lim_{x\to 0} \frac{\sin x^2}{x}$$

(b)
$$\lim_{x\to 0} \frac{x}{a^x-1}$$

(c)
$$\lim_{x\to 2\pi} \frac{\ln(\cos x)}{1-\exp(2\pi-x)}$$

(d)
$$\lim_{x\to\infty} \frac{\ln x}{x^a}$$

Aufgabe 20) Partielle Ableitungen und totales Differential (6 Punkte)

Berechnen Sie die partiellen Ableitungen $\frac{\partial f}{\partial x}$ und $\frac{\partial f}{\partial y}$ und das totale Differential der folgenden Funktionen

(a)
$$f(x,y) = (x+y) \exp(x)$$

(b)
$$f(x,y) = \frac{1}{\sqrt{x^2+y^2}}$$

(c)
$$f(x,y) = \exp xy^2$$

Aufgabe 21) Partielle Ableitungen II (8 Punkte)

Betrachten Sie die Funktion $f(x, y) = xy(x^2 - y^2)/(x^2 + y^2)$.

(a) Schauen Sie sich auf der Wolfram Alpha Seite den dreidimensionalen Verlauf der Funktion an und skizzieren Sie das Bild auf Ihr Aufgabenblatt. (Der Befehl lautet

Plot3D[x
$$y(x^2-y^2)/(x^2+y^2)$$
})

- (b) Berechnen Sie die partiellen Ableitungen $f_x(x,y) = \frac{\partial f}{\partial x}$ und $f_y(x,y) = \frac{\partial f}{\partial y}$.
- (c) Berechnen Sie nun speziell den Punkt (x,y)=(0,0) und berechnen Sie die partiellen Ableitungen $f_{yx}=\frac{\partial f_x(0,y)}{\partial y}|_{y=0}$ und $f_{xy}=\frac{\partial f_y(x,0)}{\partial x}|_{x=0}$ an diesem Punkt.
- (d) Berechnen Sie für allgemeine (x,y) $f_{yx} = \frac{\partial f_x(x,y)}{\partial y}$ und $f_{xy} = \frac{\partial f_y(x,y)}{\partial x}$. Zeigen Sie $f_{xy} = f_{yx}$ für $(x,y) \neq (0,0)$. Was passiert bei (x,y) = (0,0)? Schauen Sie sich auf der Wolfram Alpha Seite den dreidimensionalen Verlauf der Funktion $f_{xy}(x,y)$ an.