Mathematische Rechenmethoden

Version vom SS 2014*

Universität Mainz Fachbereich 08 Theorie der kondensierten Materie Prof. Dr. Friederike Schmid[†]

Mathematische Rechenmethoden für Physiker

Mathematische Rechenmethoden 1

Grundlegendes

Zahlen

Reelle Funktionen

Komplexe Zahlen

Vektorrechnung

Vektoren und Vektorräume

Skalarprodukt

Vektorprodukt

Infinitesimalrechnung

Folgen und Reihen

Differenzieren

Potenzreihen

Integrieren

Differentialgleichungen

Vektoranalysis Zusatz für Studierende Bachelor of Science

Die Delta-Funktion

Partielle Differentialgleichungen

^{*}Elektronisch: Letzte Änderung am 11.07.2014

 $^{^{\}dagger}03-534$, Tel. (06131-)39-20365, <friederike.schmid@uni-mainz.de>

Literatur

- K. Hefft Mathematischer Vorkurs (online unter http://www.thphys.uni-heidelberg.de/~hefft/vk1/)
- W. Nolting Theoretische Physik Bd. 1, erstes Kapitel
- S. Großmann Mathematischer Einführungskurs für die Physik
- K.-H. Goldhorn, H.-P. Heinz Mathematik für Physiker 1
- C. Lang, N. Pucker Mathematische Methoden in der Physik
- M. L. Boas Mathematical Methods in the Physical Sciences

WolframAlpha http://www.wolframalpha.com/examples

Inhaltsverzeichnis

1 Grundlegendes					1	
	1.1	Die Sprache der Physik				
		1.1.1	Zeichen	für physikalische Größen \hdots	2	
		1.1.2	Zeichen	für Verknüpfungen	3	
		1.1.3	Einheite	en	4	
	1.2	Zahler	ı		6	
		1.2.1	Vorab: I	Mengen, Gruppen, Ringe, Körper	6	
		1.2.2	Natürlic	the Zahlen $\mathbb N$	7	
		1.2.3	Ganze Z	$\operatorname{Zahlen} \mathbb{Z} \ \ldots \ldots \ldots \ldots \ldots$	8	
		1.2.4	Rationa	le Zahlen $\mathbb Q$	9	
		1.2.5	Reelle Z	\mathbb{R} ahlen \mathbb{R}	9	
		1.2.6	Komple	xe Zahlen $\mathbb C$	10	
		1.2.7	Zusamm	nenfassung	11	
	1.3	Reelle	Funktion	nen	12	
		1.3.1	Element	care Funktionen	12	
			1.3.1.1	Polynome und rationale Funktionen	12	
			1.3.1.2	Algebraische Funktionen	13	
			1.3.1.3	Exponential funktion	14	
			1.3.1.4	Logarithmus	15	
			1.3.1.5	Trigonometrische Funktionen	16	
			1.3.1.6	Hyperbolische Funktionen	16	
			1.3.1.7	Funktionen mit Ecken und Sprüngen	17	
			1.3.1.8	Weitere wichtige abgeleitete Funktionen	17	
		1.3.2 Eigenschaften von Funktionen				
			1.3.2.1	Spiegelsymmetrie	18	
			1.3.2.2	Beschränktheit	18	
			1.3.2.3	Monotonie	18	
			1.3.2.4	Eineindeutigkeit	18	
			1.3.2.5	Stetigkeit	19	
			1.3.2.6	Grenzwerte	19	

	1.4	Komp	lexe Zahle	en	21			
		1.4.1	Die imag	ginäre Einheit	21			
		1.4.2	Rechnen	mit komplexen Zahlen	22			
			1.4.2.1	Rechnen mit der imaginären Einheit	22			
			1.4.2.2	Charakterisierung allgemeiner komplexer Zahlen:	22			
			1.4.2.3	Euler-Formel	23			
			1.4.2.4	Rechenregeln	23			
			1.4.2.5	Spezielle Transformationen	24			
		1.4.3	Funktion	nen einer komplexen Variablen	24			
			1.4.3.1	Potenzen	25			
			1.4.3.2	Wurzeln	25			
			1.4.3.3	Exponentialfunktion (natürlich)	26			
			1.4.3.4	Logarithmus (natürlich)	26			
			1.4.3.5	Trigonometrische Funktionen	27			
2	Vek	torrec	hnung		29			
	2.1							
		2.1.1	Definition	on bzw. Begriffsklärung	29			
		2.1.2	Koordin	atensysteme und Koordinatendarstellung	30			
		2.1.3	Element	ares Rechnen mit Vektoren, Vektorräume	31			
	2.2	Skalar	urprodukt (inneres Produkt) 3					
		2.2.1	Definition	on und mathematische Struktur	33			
		2.2.2	Koordin	atendarstellung und Kronecker-Symbol	33			
	2.3	8 Vektorprodukt (äußeres Produkt, Kreuzprodukt)						
		2.3.1	Definition	on und mathematische Struktur	35			
		2.3.2	Koordin	atendarstellung und Levi-Civita-Symbol	35			
		2.3.3	Höhere '	Vektorprodukte	36			
3	Infi	${f nitesin}$	nalrechn	ung	39			
	3.1	Folgen	und Reil	hen	39			
		3.1.1	Folgen .		39			
		3.1.2	Reihen .		40			
	3.2	Differe	entialrech	nung	42			
		3.2.1	Die Able	eitung	42			
		3.2.2	Element	are Beispiele	44			
		3.2.3	Different	tiationsregeln	46			
		3.2.4	Anwend	ungen der Differentiationsregeln	47			
		3.2.5	Tabelle	wichtiger Ableitungen	48			
		3 2 6	Vektorw	ertige Funktionen	49			

			3.2.6.1 Infinitesimalrechnung mit vektorwertigen Funktionen	4		
			3.2.6.2 Speziell Raumkurven	4		
		3.2.7	Extremwertaufgaben	5		
	3.3	Taylor	r-Entwicklung	5		
		3.3.1	Kurzer Abriss über Potenzreihen	5		
		3.3.2	Konstruktion der Taylor-Reihe	5		
		3.3.3	Anwendungen	5		
	3.4	alrechnung	6			
		3.4.1	Das Riemannsche Integral	6		
		3.4.2	Hauptsatz und Stammfunktion	6		
		3.4.3	Integrationsmethoden	6		
		3.4.4	Uneigentliche Integrale	6		
		3.4.5	Mehrfachintegrale	7		
			3.4.5.1 Beispiele	7		
			3.4.5.2 Polarkoordinaten	7		
			3.4.5.3 Wechsel der Integrationsvariablen und Jacobi- Determinante	7		
4	Gev	Gewöhnliche Differentialgleichungen				
	4.1	Gewö]	hnliche Differentialgleichungen 1. Ordnung	7		
		4.1.1	Separable Differentialgleichungen	7		
		4.1.2	Lineare Differentialgleichungen	7		
	4.2	Systeme von Differentialgleichungen				
		4.2.1	Differentialgleichungen höherer Ordnung versus Differentialgleichungssysteme erster Ordnung	8		
		4.2.2	Lineare Differentialgleichungssysteme	8		
		4.2.3	Speziell: Lineare Differentialgleichungen mit konstanten Koeffizienten	8		
		4.2.4	Lineare Differentialgleichssysteme mit konstanten Koeffizienten	8		
5	Vek	torana	alysis	8		
	5.1	Vorbe	merkungen und Erinnerung	8		
		5.1.1	Physikalische Skalare, Vektoren und Tensoren	8		
		5.1.2	Felder	8		
		5.1.3	Kurvenintegral bzw. Linienintegral	8		
		5.1.4	Flächenintegral	8		
	5.2	Der N	abla-Operator	9		
		5 2 1	Skalare Felder und Gradient	g		

		5.2.2	Vektorfelder: Divergenz und Rotation 91		
		5.2.3	Der Laplace-Operator		
		5.2.4	Wichtige Zusammenhänge		
	5.3	.3 Krummlinige Koordinaten			
		5.3.1	Allgemeine und orthogonale Koordinatensysteme 92		
		5.3.2	Darstellung in orthogonalen Koordinatensystemen 94		
		5.3.3	Zusammenstellung der Formeln für die wichtigsten Koor-		
			dinatensysteme		
	5.4	.4 Integralsätze			
		5.4.1	der Gaußsche Integralsatz		
			5.4.1.1 Der Satz		
			5.4.1.2 Folgerungen aus dem Gaußschen Integralsatz 98		
		5.4.2	Der Greensche Satz in der Ebene		
		5.4.3	Der Integralsatz von Stokes		
6	Die	Dirac	sche Delta-Funktion 103		
	6.1	Motiv	ation und Einführung		
	6.2	Defini	tion		
	6.3	3 Darstellungen der Delta-Funktion			
		6.3.1	Darstellung als Grenzwert glatter Funktionen 104		
		6.3.2	Darstellung als Integral		
	6.4	Reche	nregeln mit der Delta-Funktion		
	6.5	Verall	gemeinerung für höhere (d) Dimensionen 107		
7	Die	Fourie	ertransformation 109		
	7.1				
		7.1.1	Definition		
		7.1.2	Eigenschaften der diskreten Fouriertransformation 111		
	7.2	Fourie	erintegral		
		7.2.1	Definition		
		7.2.2	Eigenschaften und Rechenregeln		
		7.2.3	Paare von Fourier-Transformierten		
		7.2.4	Anwendungsbeispiele		
			7.2.4.1 Wellengleichung		
			7.2.4.2 Diffusionsgleichung		
			7.2.4.3 Greensche Funktion		
	7.3	Fourie	erreihe		
		7.3.1	Definition		
		7.3.2	Darstellung in trigonometrischen Funktionen 119		

8	Par	tielle 1	Differentialgleichungen	121	
	8.1	Übers	sicht über die wichtigsten Beispiele in der Physik	121	
		8.1.1	Elliptischer Typ	122	
		8.1.2	Hyperbolischer Typ	122	
		8.1.3	Parabolischer Typ	123	
	8.2	Lösun	ngsverfahren für partielle Differentialgleichungen	123	
		8.2.1	Laplace-Gleichung	124	
			8.2.1.1 Numerische Lösung	124	
			8.2.1.2 Lösung mit Separation der Variablen	124	
		8.2.2	Wellengleichung	126	
			8.2.2.1 Freie Wellen: Lösung mittels Fouriertransformation	126	
			8.2.2.2 Schwingende Saite/Membran: Lösung mit Separationsansatz	127	
		8.2.3	Diffusionsgleichung	128	
			8.2.3.1 Separationsansatz und asymptotisches Verhalten	128	
			8.2.3.2 Propagatordarstellung	129	
		8.2.4	Inhomogene Gleichungen und Greens-Funktion	129	
9	Orthogonale Funktionen			131	
	9.1	1 Allgemeiner Rahmen			
		9.1.1	Eigenwertgleichungen und Funktionensysteme	131	
		9.1.2	Das Sturm-Liouville-Problem	132	
		9.1.3	Beispiele für Sturm-Liouville-Gleichungen	133	
	9.2	2 Legendre-Polynome			
		9.2.1	Die einfache Legendresche Differentialgleichung	134	
		9.2.2	Wichtige Eigenschaften der Legendre-Polynome	135	
		9.2.3	Zugeordnete Legendre-Polynome	136	
		9.2.4	Kugelflächenfunktionen	137	
	9.3	Die B	Besselsche Differentialgleichung	139	
\mathbf{A}	Anl	nang:]	Matrizen	141	
	A.1	Beispiele von Matrizen			
	A.2	Eleme	entare Begriffe	143	
	A.3	Rechnen mit Matrizen			
	A.4	Deter	minanten	145	
	A.5	Drehu	ıngen und Drehmatrizen	148	
	A.6	Das E	${f Eigenwert}$ problem	149	
	A 7	Funkt	tionen von Matrizen	151	

В	Anh	nang: Analytische Funktionen	153			
	B.1	Definitionen	. 15	53		
	B.2	Cauchy-Riemannsche Differentialgleichungen	. 15	i 4		
	B.3	Integralsätze	. 15	5		
	B.4	Taylor-Reihe und Laurent-Reihe	. 15	6		

Anhang A

Anhang: Matrizen

A.1 Beispiele von Matrizen

Matrizen: Neben Vektoren weitere nützliche Konstrukte, mit denen sich Sachverhalte kurz und präzise ausdrücken lassen. Bedeutung unter anderem für

- Lineare Gleichungssysteme
- Beschreibung von Drehungen im Raum
- Darstellung bestimmter physikalischer Größen

Das soll im Folgenden kurz illustriert werden.

Lineare Gleichungssysteme

Charakterisiert durch "Koeffizientenmatrix" $\begin{pmatrix} 3 & 7 & -2 \\ -2 & 1 & 0 \end{pmatrix}$

und "Spaltenvektor"
$$\begin{pmatrix} 2\\1 \end{pmatrix}$$
.

Eigenschaften des Gleichungssystems werden im Wesentlichen von der Koeffizientenmatrix bestimmt.

"Matrix" hier: Zahlenschema aus $m \times n$ Zahlen a_{ij} (m Zeilen, n Spalten)

Darstellung des Gleichungssystems in Matrixschreibweise:

$$\left(\begin{array}{ccc} 3 & 7 & -2 \\ -2 & 1 & 0 \end{array}\right) \left(\begin{array}{c} x \\ y \\ z \end{array}\right) = \left(\begin{array}{c} 2 \\ 1 \end{array}\right).$$

Drehungen

Gegeben physikalischer Vektor \vec{a} , zwei rechtwinklige Koordinatensysteme Σ , Σ' mit Basisvektoren $\{\vec{e}_i\}$, $\{\vec{e}'_i\}$ (Einheitsvektoren entlang Achsen i).

Darstellung von \vec{a} im Koordinatensystem Σ : $\vec{a} = \sum_i a_i \vec{e}_i$ mit $a_i = (\vec{a} \cdot \vec{e}_i)$. Darstellung von \vec{a} im Koordinatensystem Σ' : $\vec{a} = \sum_i a_i' \vec{e}_i'$ mit $a_i' = (\vec{a}' \cdot \vec{e}_i')$.

 \Rightarrow Einfache Regel für die Umrechnung von Koordinaten $\{a_i\} \rightarrow \{a'_i\}$:

$$a_i' = (\vec{a} \cdot \vec{e}_i') = (\sum_j a_j \vec{e}_j) \cdot \vec{e}_i' = \sum_j (\vec{e}_i' \cdot \vec{e}_j) a_j =: \sum_j \mathcal{D}_{ij} a_j$$
(A.1)

Definiert <u>Drehmatrix</u> $\mathcal{D} = (\mathcal{D}_{ij})$ mit $\mathcal{D}_{ij} = \vec{e}'_i \cdot \vec{e}_j$. Dann folgt $a_i' = \sum_j \mathcal{D}_{ij} a_j$ bzw. in Matrixschreibweise: $a' = \mathcal{D}a$.

Dies gilt für alle physikalischen Vektoren \vec{a} . Drehung des Koordinatensystems wird durch das Zahlenfeld \mathcal{D} vollsändig bestimmt.

Konkret z.B. Ebene:
$$\mathcal{D} = \begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix}$$

Verallgemeinerung: Allgemeine affine Koordinatentransformation zwischen Koordinatensystemen, die nicht unbedingt rechtwinklig sind: Beschrieben durch allgemeine invertierbare 3×3 -Matrix.

Bemerkung: Mit der Einführung der Drehmatrizen wird die Konkretisierung des Begriffs "physikalischer Vektor" möglich: Ein physikalischer Vektor ist eine Größe, charakterisiert durch drei Zahlen $\{v_i\}$ (im dreidimensionalen Raum – zwei Zahlen in der Ebene), die sich unter Drehung des Koordinatensystems in folgender Weise transformieren:

$$\{v_i\} \to \{v_i'\} \text{ mit } v_i' = \sum_j \mathcal{D}_{ij} v_j.$$

Physikalische Tensoren

Beispiel: Trägheitsmoment und Trägheitstensor

Trägheitsmoment θ Verknüpft Drehimpuls mit Winkelgeschwindigkeit Z.B. symmetrischer Kreisel, der sich um Symmetrieachse dreht. Symmetrieachse sei die z-Achse.

Winkelgeschwindigkeit: $\omega = d\phi/dt$.

Drehimpuls: Vektor \vec{L} mit Betrag $L = \theta \omega$ und Richtung z θ ist das Drehmoment und charakterisiert den Kreisel

(Konkret: $\theta = \int d^3r \rho(\vec{r})(x^2 + y^2)$)

Bedeutung des Drehimpulses: Physikalische Erhaltungsgröße.

Verallgemeinerung: Trägheitstensor I

Frage: Beliebige Drehachse? Asymmetrischer Kreisel?

→ Drehimpuls nicht unbedingt parallel zur Drehachse.

Aber: Immer noch linearer Zusammenhang.

Führe vektorielle Winkelgeschwindigkeit $\vec{\omega}$ ein.

Betrag: ω , Richtung: Drehachse.

$$\begin{array}{l} \text{Dann gilt:} \begin{pmatrix} L_1 \\ L_2 \\ L_3 \end{pmatrix} = \begin{pmatrix} I_{11} & I_{12} & I_{13} \\ I_{21} & I_{22} & I_{23} \\ I_{31} & I_{32} & I_{33} \end{pmatrix} \begin{pmatrix} \omega_1 \\ \omega_2 \\ \omega_3 \end{pmatrix} \text{bzw.: } \vec{L} = \mathbf{I}\vec{\omega} \\ \text{mit } \mathbf{I:} \ 3 \times 3\text{-Matrix, die eine } physikalische \ Eigenschaft \ des \ Kreisels \end{array}$$

beschreibt. (Konkret: $I_{ij} = \int d^3r \rho(\vec{r}) (r^2 \delta_{ij} - x_i x_j)$

 \Rightarrow Definition eines "physikalischen Tensors" ähnlich der Definition des physikalischen Vektors: Größe, charakterisiert durch 3×3 -Matrix $\{t_{ij}\}$, die sich unter Drehung des Koordinatensystems in folgender Weise transformieren:

$$\{t_{ij}\} \to \{t'_{ij}\} \text{ mit } t'_{ij} = \sum_{kl} \mathcal{D}_{ik} \mathcal{D}_{jl} t_{kl}.$$

(Strenggenommen <u>Tensor zweiter Stufe</u>. Tensoren höherer Stufe: Selbes Prinzip, nur mehr Indizes.)

A.2 Elementare Begriffe

1) Definition einer Matrix

Eine $m \times n$ -Matrix ist ein rechteckiges Zahlenschema mit m Zeilen und n

Spalten:
$$\begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} = (a_{ij}) \ (a_{ij} \in \mathbb{R} \text{ oder } \mathbb{C}).$$

Zwei Matrizen gelten als gleich, wenn jeder Eintrag a_{ij} gleich ist.

2) Spezielle Matrizen

- Nullmatrix: $\begin{pmatrix} 0 & \cdots & 0 \\ \vdots & & \vdots \\ 0 & \cdots & 0 \end{pmatrix}$.
- Quadratische $n \times n$ -Matrizen
 - Symmetrische Matrix: $a_{ij} = a_{ji} \forall i, j$
 - Antisymmetrische Matrix: $a_{ij} = -a_{ji} \forall i, j$
 - Diagonal matrix: $a_i j = \delta_{ij} a_i$
 - Einheitsmatrix: $E = 1 = \delta_{ij}$
- Vektoren:

Spaltenvektor: $n \times 1$ -Matrix

Zeilenvektor: $1 \times n$ -Matrix

 \rightarrow Koordinatendarstellungen von Vektoren sind spezielle Formen von Matrizen.

3) Rang einer Matrix

 $m \times n\text{-Matrix}$ kann man sich zusammengesetzt denken aus m Zeilenvektoren oder n Spaltenvektoren.

Zeilenrang: Maximale Zahl linear unabhängiger Zeilenvektoren Spaltenrang: Maximale Zahl linear unabhängiger Spaltenvektoren

Es gilt: Spaltenrang = Zeilenrang.

A.3 Rechnen mit Matrizen

1) Addition : Sei $A = (a_{ij}), B = (b_{ij}),$ gleiche Zahl von Zeilen/Spalten.

$$C = (c_{ij}), C = A + B$$
 bedeutet: $c_{ij} = a_{ij} + b_{ij} \forall i, j$

2) Multiplikation mit Skalar : Sei λ Skalar

$$C = \lambda A$$
 bedeutet: $c_{ij} = \lambda a_{ij} \ \forall \ i, j$.

Bemerkung: Matrizen mit Addition und Skalarmultiplikation bilden wieder Vektorraum über dem Körper der Skalare (\mathbb{R} oder \mathbb{C}).

3) Transposition

$$C = A^T$$
 bedeutet: $c_{ij} = a_{ji}$

4) Matrixmultiplikation : Sei $A = (a_{ij}), B = (b_{ij}),$

Anzahl Spalten von A =Anzahl Zeilen von B

$$C = AB$$
 bedeutet: $c_{ij} = \sum_{k} a_{ik} b_{kj}$.

Eigenschaften der Matrixmultiplikation

- Assoziativ: A(BC) = (AB)C
- Neutrales Element: 1 erfüllt $A1 = 1 A \forall A$
- Nicht kommutativ: Im allgemeinen ist $AB \neq BA$.
- Matrix A kann Inverses haben (siehe 5), muss aber nicht.
- 5) Matrixinversion A sei eine $m \times n$ -Matrix:

 $n \times m$ -Matrix (A^{-1}) ist "Linksinverses" von A, wenn $(A^{-1})A = 1$. (Definition der "Rechtsinversen": Analog)

Es gilt: (Leicht zu zeigen)

$$(AB)^{-1} = B^{-1}A^{-1}$$

$$(A^{-1})^{-1} = A$$

Für n=m: $AA^{-1}=\nVdash$

(d.h. A^{-1} ist dann auch Rechtsinverses).

Praktische Berechnung: Lösung eines Satzes von linearen Gleichungssystemen.

Beispiel: Gegeben $A = \begin{pmatrix} 1 & 3 \\ 2 & 1 \end{pmatrix}$. Gesucht $A^{-1} = \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix}$ mit $\begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} \begin{pmatrix} 1 & 3 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. Entspricht zwei linearen Gleichungssystemen:

$$\operatorname{mit} \left(\begin{array}{cc} x_{11} & x_{12} \\ x_{21} & x_{22} \end{array} \right) \left(\begin{array}{cc} 1 & 3 \\ 2 & 1 \end{array} \right) = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right).$$

(*)
$$1x_{11} + 3x_{12} = 1$$
 $1x_{21} + 3x_{22} = 0$
(**) $2x_{11} + 1x_{12} = 0$ $2x_{21} + 1x_{22} = 1$

→ Dieselben Transformationen führen zum Ziel.

Lösungsverfahren (für $n \times n$ -Matrizen).

Schreibe Koeffizientenmatrix (für linke Seite) und Einheitsmatrix (für rechte Seiten) nebeneinander auf. Führe dann die Zeilentransformationen aus, die die Gleichungssysteme lösen.

→ Linke Matrix (Koeffizientenmatrix) wird zur Einheitsmatrix, rechte Matrix wird zur gesuchten inversen Matrix.

Konkret:
$$\begin{pmatrix} 1 & 3 & 1 & 0 \\ 2 & 1 & 0 & 1 \end{pmatrix} \stackrel{(**)\to(**)-3(*)}{\longrightarrow} \begin{pmatrix} 1 & 3 & 1 & 0 \\ 0 & -5 & -2 & 1 \end{pmatrix}$$

$$\stackrel{(**)\to-(**)/5}{\longrightarrow} \begin{pmatrix} 1 & 3 & 1 & 0 \\ 0 & 1 & \frac{2}{5} & -\frac{1}{5} \end{pmatrix} \stackrel{(*)\to(*)-3(**)}{\longrightarrow} \begin{pmatrix} 1 & 0 & -\frac{1}{5} & \frac{3}{5} \\ 0 & 1 & \frac{2}{5} & -\frac{1}{5} \end{pmatrix}$$

$$\Rightarrow \underline{\text{Ergebnis:}} A^{-1} = \begin{pmatrix} -\frac{1}{5} & \frac{3}{5} \\ \frac{2}{5} & -\frac{1}{5} \end{pmatrix}$$

(Alternativen: Cramers Regel, siehe nächster Abschnitt, wird aber für n > 2 impraktikabel. Weitere numerische Verfahren, z.B. LU-Zerlegung, siehe Numerikliteratur).

6) Spur : Für $n \times n$ Matrizen A ist $Sp(A) := \sum_{i=1}^{n} a_{ii}$ Es gilt: Sp(AB) = Sp(BA)

(leicht zu sehen, wenn man es explizit hinschreibt).

 $\rightarrow \operatorname{Sp}(A_1 \cdots A_{n-1} A_n) = \operatorname{Sp}(A_n A_1 \cdots A_{n-1}):$

Matrizen in der Spur dürfen zyklisch vertauscht werden.

7) Determinante : Siehe nächster Abschnitt

A.4 Determinanten

1) **Definition:** Betrachte $n \times n$ Matrix $A = (a_{ij})$

$$\det(A) := \sum_{P} (-1)^{P} a_{1P_{1}} a_{2P_{2}} \cdots a_{nP_{n}}$$
(A.2)

Hier ist: $(P_1 \cdots P_n)$: Permutationen von $(1 \cdots n)$

 Σ_P : Summe über alle Permutationen

$$(-1)^P$$
:
$$\begin{cases} 1 & \text{, falls Permutation gerade} \\ -1 & \text{, falls Permutation ungerade} \end{cases}$$

wobei - 'gerade' Permutation: lässt sich durch gerade Anzahl paarweiser Vertauschungen (Transpositionen) realisieren.

- 'ungerade Permutation: ungerade Anzahl Transpositionen

Es gilt: Zuordnung Permutation ↔ gerade/ungerade ist eindeutig.

Notation:
$$\det(A) = \det \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix} = \begin{vmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{vmatrix}$$

Konkret:
$$2 \times 2$$
: $\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11} a_{22} - a_{12} a_{21}$.
 3×3 : $\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = \sum \epsilon_{ijk} a_{1i} a_{2j} a_{3k}$

$$\rightarrow \underline{\text{Spatprodukt:}} \ (\vec{a}\vec{b}\vec{c}) = \sum \epsilon_{ijk} \ a_i \ b_j \ c_k = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

entspricht genau dem von $(\vec{a}, \vec{b}, \vec{c})$ aufgespannten Volumen.

Geometrische Interpretation: $A = (\vec{a}_1 \cdots \vec{a}_n) (\vec{a}_i \text{ Spaltenvektoren})$

Dann ist $|\det(A)|$ genau das von $(\vec{a}_1 \cdots \vec{a}_n)$ aufgespannte *n*-dimensionale Volumen im *n*-dimensionalen Raum.

Daraus folgt z.B. $det(A) = 0 \Leftrightarrow \vec{a}_i$ linear abhängig \Leftrightarrow Rang A < n.

2) Rechenregeln

• Transposition : $det(A^T) = det(A)$.

(Begründung:
$$\det(A^T) = \sum_P (-1)^P a_{P_1 1} \cdots a_{P_n n} = \sum_P (-1)^P a_{1 P_1^{-1}} \cdots a_{n p_n^{-1}}$$

$$= \sum_{\hat{P}} (-1)^{\hat{P}} a_{1 \hat{P}_1^{-1}} \cdots a_{n \hat{P}_n^{-1}} \text{ mit } \hat{P} = P^{-1},$$
letzter Schritt folgt aus $(-1)^P = (-1)^{P^{-1}}$.)

• Addition einer Zeile/Spalte

$$\begin{vmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{i1} + b_{i1} & \cdots & a_{in} + b_{in} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{i1} & \cdots & a_{in} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{vmatrix} + \begin{vmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ b_{i1} & \cdots & b_{in} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{vmatrix}.$$

Spalte analog.

(Begründung: Faktoren $(a_{ij} + b_{ij})$ in Gl. (A.2) ausmultiplizieren.)

• Multiplikation einer Zeile/Spalte mit einer Zahl α

$$\begin{vmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ \alpha a_{i1} & \cdots & \alpha a_{in} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{vmatrix} = \alpha \begin{vmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{i1} & \cdots & a_{in} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{vmatrix}.$$

(Begründung: Faktor α in Gl. (A.2) vor die Summe ziehen.)

Folgerung $det(\alpha A) = \alpha^n det(A)$.

• Vertauschung zweier Zeilen/Spalten ändert Vorzeichen.

(Begründung bei Spaltenvertauschung $i \leftrightarrow j$: Entspricht in Gl. (A.2) dem Ersetzen der Permutationen P durch $P' = T_{ij}P$, wobei T_{ij} die Transposition $(i \leftrightarrow j)$ ist. Falls P gerade, ist P' ungerade und umgekehrt.)

• Sind zwei Zeilen/Spalten gleich, folgt det(A) = 0.

(Begründung: Vertauschung ändert A nicht, aber Vorzeichen von det A.)

- → Wenn ein Vielfaches einer Zeile/Spalte auf eine andere addiert wird, ändert sich Determinante nicht.
- Determinanten-Multiplikationssatz :

$$\det(AB) = \det(A) \det(B)$$

(ohne Begründung: siehe Mathematik-Vorlesung)

• Algebraisches Komplement : $A^{(ij)}$ sei die Matrix, die aus A durch Streichen der i-ten Zeile und j-ten Spalte entsteht. Algebraisches Komplement: $U_{ij} = (-1)^{i+j} \det(A^{(ij)})$.

• Determinanten-Entwicklungssatz :

$$\det(A) = \sum_{i} a_{ij} U_{ij}$$
 Entwicklung nach Zeile i
= $\sum_{j} a_{ij} U_{ij}$ Entwicklung nach Spalte j

(ohne Begründung: siehe Mathematik-Vorlesung)

• Andererseits: $\sum_{k} a_{ik} U_{jk} = 0$, $\sum_{k} a_{ki} U_{kj} = 0$ für $i \neq k$.

(Begründung: Definiere Matrix \overline{A} , die bis auf j-te Zeile identisch ist mit A, nur j-te Zeile durch i-te Zeile ersetzt. Dann ist $\det(\overline{A}) = 0$. Erste Behauptung (Zeile) folgt aus Entwicklungssatz: $\det(\overline{A}) = \sum_k \overline{a}_{jk} U_{jk} = \sum_k a_{ik} U_{jk}$. Zweite Behauptung analog.)

3) Folgerungen und Anwendungen

• **Inverses** einer $n \times n$ -Matrix:

Voraussetzung: $\det(A) \neq 0$ Dann lässt sich A invertieren und $[A^{-1}]_{ij} = U_{ji}/\det(A)$.

 $([A^{-1}]_{ij}$: Eintrag in der *i*-ten Zeile, *j*-ten Spalte der Matrix A^{-1}).

• Lineare Gleichungssysteme Allgemeine Form: $A\underline{x} = \underline{b}$

mit Koeffizientenmatrix $A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix}$, und Spaltenvektoren $\underline{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, \underline{b} = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix}$.

Lösbarkeit

• $A\underline{x} = \underline{b}$ lösbar \Leftrightarrow Rang(A) = Rang(A, b). (denn: Schreibe $A = (\underline{a}_1 \cdots \underline{a}_n)$ mit $\underline{a}_i = \begin{pmatrix} a_{1i} \\ \vdots \\ a_{mi} \end{pmatrix}$. $A\underline{x} = \underline{b} \Rightarrow \sum_i \underline{a}_i x_i = \underline{b} \Rightarrow \underline{b}$ ist Linearkombination der \underline{a}_i .)

• Lösung ist <u>eindeutig</u> \Leftrightarrow Rang(A) = n. (denn: Rang $(A) = n \Rightarrow$ alle \underline{a}_i linear unabhängig. Aus $\sum_i \underline{a}_i x_i = \underline{b} = \sum_i \underline{a}_i \lambda_i$ folgt $x_i = \lambda_i \quad \forall i$)

Lösung für $n \times n$ -Systeme

Gleichungssystem $A\underline{x} = \underline{b}$ allgemein lösbar (für alle \underline{b}), wenn $\det(A) \neq 0 \Leftrightarrow A$ invertierbar. Dann ist $x = A^{-1}b$.

Cramersche Regel:

Definiere $A^{(k)}$: Matrix wie A, k-te Spalte ersetzt durch \underline{b} . Dann ist Lösung von $A\underline{x} = \underline{b}$: $x_k = \det(A^{(k)})/\det(A)$. (folgt nach Einsetzen von $[A^{-1}]_{ij} = U_{ji}/\det(A)$ in $x_k = [A^{-1}\underline{b}]_k$).

A.5 Drehungen und Drehmatrizen

Erinnerung (A.1): Koordinaten eines Vektors \vec{a} ändern sich bei Drehung des Koordinatensystems $\Sigma \to \Sigma'$ gemäß $a' = \mathcal{D}a$ mit $\mathcal{D} = (\mathcal{D}_{ij}), \mathcal{D}_{ij} = \vec{e}'_i \cdot \vec{e}_j$. Im Folgenden: Vertiefung der Diskussion von Drehmatrizen.

1) Charakteristika von Drehmatrizen

• Orthonormal : $\mathcal{D}^{-1} = \mathcal{D}^T$ bzw. $\mathcal{D}^T \mathcal{D} = \mathcal{D} \mathcal{D}^T = \mathbb{1}$

(Begründung:
$$[\mathcal{D}^T \mathcal{D}]_{ik} = \sum_j \mathcal{D}_{ij}^T \mathcal{D}_{jk} = \sum_j \mathcal{D}_{ji} \mathcal{D}_{jk} = \sum_j (\vec{e}_i \cdot \vec{e}_j')(\vec{e}_j' \cdot \vec{e}_k) = \vec{e}_i (\sum_j \vec{e}_j' (\vec{e}_j' \cdot \vec{e}_k)) = \vec{e}_i \cdot \vec{e}_k = \delta_{ik} \forall \vec{a}$$

Folgerung für die Struktur von Drehmatrizen:

Spaltenvektoren v_i in $\mathcal{D} = (v_1, v_2, v_3)$ stehen senkrecht aufeinander und $|v_i| = 1$.

• **Determinante** : $det(\mathcal{D}) = 1$.

(Begründung: $\det \mathcal{D} = \pm 1$ folgt aus $\mathcal{D}^T \mathcal{D} = 1$. Vorzeichen + folgt daraus, dass Σ , Σ' beides Rechtssysteme sind \rightarrow lassen sich kontinuierlich ineinander überführen.

Konkret: \mathcal{D} parametrisierbar durch drei Winkel, $\mathcal{D}(\phi, \theta, \xi)$ mit $\mathcal{D}(0, 0, 0) = \mathbb{1} \Rightarrow \det(\mathcal{D}(0, 0, 0)) = 1$. Drehung \mathcal{D} sind stetige Funktionen dieser Winkel, damit ist auch $\det(\mathcal{D}(\phi, \theta, \xi))$ stetig und springt nicht einfach von +1 nach -1 um.)

Bemerkung: Es gibt auch Transformationen T mit $T^TT = 1$ und det(T) = -1, z.B. Spiegelung am Ursprung, T = -1. In diesem Fall geht Rechtssystem in Linkssystem über.

2) Wirkung von Drehungen auf physikalische Größen (teilweise Wdh.)

physikalischer Skalar Φ : Invariant unter Drehung, $\Phi \to \Phi' = \Phi$. physikalischer Vektor $v: v \to v' = \mathcal{D}v$.

physikalischer Tensor 2. Stufe
$$t: t \to t' = \mathcal{D}t\mathcal{D}^T$$
.

Kann nun auch begründet werden aus Transformationsverhalten physikalischer Vektoren: Tensor angewandt auf Vektor gibt Vektor (z.B. Trägheitstensor: $I\vec{\omega} = \vec{L}$.)

$$\Rightarrow$$
 $(tv) \rightarrow (tv)' = \mathcal{D}(tv) = \mathcal{D}t\mathcal{D}^T v'.$

Verallgemeinerung für Tensoren n-ter Stufe leichter in Indexschreibweise: $t_{ijk...} \rightarrow t'_{ijk...} = \sum_{i'j'k'...} \mathcal{D}_{ii'} \mathcal{D}_{jj'} \mathcal{D}_{kk'}...t_{ijk...}$.

Speziell Invarianten: Aus Tensoren abgeleitete Skalare.

Vektoren : Betrag

Tensoren 2. Stufe: Spur und Determinante

(jeweils nicht schwer zu zeigen).

3) Einordnung der Drehmatrizen, Drehgruppe

Klassifizierung reeller Matrizen

- (i) Invertierbare $n \times n$ -Matrizen bilden Gruppe $GL(n, \mathbb{R})$
- (ii) Matrizen $U \in GL(n, \mathbb{R})$ mit $U^{-1} = U^T$ bilden Gruppe: Orthogonale Gruppe O(n)
- (iii) Matrizen $\mathcal{D} \in O(n)$ mit $\det(\mathcal{D}) = +1$ bilden Gruppe: Spezielle orthogonale Gruppe SO(n).
- NB: Ähnliche Strukturen gibt es auch bei den komplexen Matrizen: Matrizen U mit $U^{-1} = U * T$ bilden **unitäre Gruppe** U(n). Matrizen $U \in U(n)$ mit $\det(U) = 1$ bilden **spezielle unitäre Gruppe** SU(n). Spielen wichtige Rolle in der Elementarteilchenphysik.

A.6 Das Eigenwertproblem

Beispiel: Trägheitstensor I des Kreisels verknüpft Drehimpuls \vec{L} mit Winkelgeschwindigkeit $\vec{\omega}$: $\vec{L} = I\vec{\omega}$. Es gibt offensichtlich eine Drehachse, für die gilt $\vec{L} \parallel \vec{\omega}$ (die Symmetrieachse). Für diese gilt $I\vec{\omega} = \theta\vec{\omega}$.

Das Trägheitsmoment θ ist ein Beispiel für einen Eigenwert

1) Eigenwerte und Eigenvektoren

Allgemein: Gegeben $n \times n$ -Matrix M

Einen Vektor $v \neq 0$ mit $Mv = \lambda v$ (λ : Zahl) nennt man **Eigenvektor**. Der zugehörige Wert λ heißt **Eigenwert**. Die Gleichung $Mv = \lambda v$ ist eine **Eigenwertgleichung**.

Eigenwertgleichungen spielen eine wichtige Rolle in allen Bereichen der Physik.

2) Bestimmung von Eigenwerten: Charakteristisches Polynom

Forme Eigenwertgleichung $Mv = \lambda v$ um zu $(M - \lambda \mathbb{1})v = 0$ $(v \neq 0)$. $\Rightarrow (M - \lambda \mathbb{1})$ ist nicht invertierbar. $\Rightarrow \det(M - \lambda \mathbb{1}) = 0$.

Folgerung:

Definiere **charakteristisches Polynom** $\chi_M(\lambda) = \det(M-1)$ (Polynom vom Grad n). Eigenwerte von M können dadurch bestimmt werden, dass man die Nullstellen λ_i von $\chi_M(\lambda)$ ermittelt.

Den zu einem Eigenwert λ_i zugehörigen **Eigenvektor** v_i erhält man dann durch Lösung des Gleichungssystems $(M - \lambda_i \mathbb{1})v_i = 0$.

3) Eigenvektoren und Eigenräume

- Es gilt: Eigenvektoren zu <u>verschiedenen</u> Eigenwerten sind voneinander linear unabhängig.

Begründung: Die Behauptung gelte für (k-1) Eigenvektoren zu verschiedenen (k-1) Eigenwerten λ_j . Der k-te Eigenvektor zum Eigenwert λ_k , sei linear abhängig: $v_k = \sum_{j=1}^{k-1} c_j v_j$.

Dann folgt einerseits $Mv_k = M \sum c_j v_j = c_j M v_j = \sum c_j \lambda_j v_j$ und andererseits $Mv_k = \lambda_k v_k = \lambda_k \sum c_j v_j = \sum c_j \lambda_k v_j$,

Also zusammen $\sum c_j(\lambda_j - \lambda_k)v_j = 0$. Da die v_j (für j < k) linear unabhängig sind, folgt $c_i = 0 \,\forall j$ oder $\lambda_k = \lambda_i$ für mindestens ein j.

- Ist M symmetrisch, dann stehen die Eigenvektoren zu verschiedenen Eigenwerten senkrecht aufeinander.

Begründung: Sei v_j Spaltenvektor, v_j^T der zugehörige Zeilenvektor. Mit $Mv_j = \lambda_j v_j$ folgt $v_j^T M^T = v_j^T \lambda_j$. Weiterhin $v_j^T v_k = \vec{v}_j \cdot \vec{v}_k$ (Skalarprodukt). Damit ist einerseits $v_k^T M v_j = v_k^T \lambda_j v_j = \vec{v}_k \cdot \vec{v}_j \lambda_j$ und andererseits $v_k^T M^T v_j = \lambda_k \vec{v}_j \cdot \vec{v}_k$, also zusammen $\vec{v}_j \cdot \vec{v}_k (\lambda_j - \lambda_k) = 0$. Damit ist entweder $\lambda_i = \lambda_k$ oder $\vec{v}_i \cdot \vec{v}_k = 0$ (d.h., $\vec{v}_i \perp \vec{v}_k$.)

- Ist λ_i ein <u>vielfacher</u> Eigenwert, d.h. vielfache Nullstelle des charakteristischen Polynoms, dann kann es mehrere linear unabhängige Eigenvektoren zu λ_j geben. Mit $v_j^{(1)}$ und $v_j^{(2)}$ ist auch jede Linearkombination $c_1 v_i^{(1)} + c_2 v_i^{(2)}$ wieder Eigenvektor. Die Gesamtheit aller Eigenvektoren bildet also wieder einen Vektorraum, den "Eigenraum" des Eigenwerts. Dabei ist die Dimension des Eigenraums maximal die Vielfachheit des Eigenwerts (z.B. doppelter Eigenwert: – Eigenraum kann maximal eine Hyperfläche sein).

4) Diagonalisierung

Allgemein

Eine $n \times n$ -Matrix M habe n verschiedene linear unabhängige Eigenvektoren v_j zu Eigenwerten λ_j (gilt z.B. sicher dann, wenn sie n verschiedene Eigenwerte hat).

Konstruiere Matrix $V = (v_1, \dots, v_n)$ aus den Spaltenvektoren v_i . Invertierbar, da die v_j linear unabhängig (det $(V) \neq 0$).

Es gilt:
$$MV = (\lambda_1 v_1, ..., \lambda_n v_n) = (v_1, ..., v_n) \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_n \end{pmatrix} =: V\Lambda.$$

$$\Rightarrow V^{-1}MV = \Lambda \text{ mit } \Lambda: \text{ Diagonal matrix}$$

Transformationen $M \to V^{-1}MV$ heißen Ähnlichkeitstransformation. Falls es eine Ähnlichkeitstransformation gibt, die M diagonal macht, heißt M diagonalisierbar.

Speziell symmetrische Matrizen

Siehe 3): Vektoren v_j stehen senkrecht aufeinander, können natürlich auch normiert werden ($|v_i| = 1$).

 $\rightarrow V$ is orthonormal, entspricht einer Drehmatrix, ggf. gekoppelt mit Spiegelung (falls det(V) = -1).

$$\rightarrow \boxed{\Lambda = V^T M V}$$
 bzw. $\boxed{M = V \Lambda V^T}$

M geht aus Λ durch Drehung hervor.

Spektralsatz: Symmetrische Matrizen sind diagonalisierbar.

 \rightarrow Für symmetrische Tensoren (wie z.B. der Trägheitstensor) läßt sich ein rechtwinkliges Koordinatensystem finden, in dem die (x,y,z)-Achsen Eigenvektoren sind.

("Hauptachsen" und "Hauptachsentransformation")

A.7 Funktionen von Matrizen

Zum Abschluss: Mit $n \times n$ -Matrizen kann man im Prinzip fast so hantieren wie mit Zahlen. Man muss nur darauf achten, dass sie nicht kommutieren (i.A. $AB \neq BA$). Insbesondere kann man Funktionen von Matrizen bilden.

- Potenzen: Klar $(M^n, ggf. M^{-n}, falls M invertierbar)$.
- Allgemein (siehe Kapitel 3) lassen sich die meisten Funktionen durch <u>Potenzreihen</u> darstellen: $f(x) = \sum_{k=0}^{\infty} c_k x_k$
 - \Rightarrow Verallgemeinerung auf Matrizen: $f(M) = \sum_{k=0}^{\infty} c_k M^k$.
- Damit läßt sich für diagonalisierbare Matrizen M noch eine weitere Konstruktionsvorschrift motivieren:

Sei
$$M = V\Lambda V^{-1}$$
 und $f(M) = \sum c_k M^k = \sum c_k (V\Lambda V^{-1})^k = V(\sum c_k \Lambda^k) V^{-1}$.
Mit $\Lambda = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix}$ folgt $\Lambda^k = \begin{pmatrix} \lambda_1^k & & \\ & \ddots & \\ & & \lambda_n^k \end{pmatrix}$.

$$\Rightarrow f(M) = V\left(\sum c_k \begin{pmatrix} \lambda_1^k & & \\ & \ddots & \\ & & \lambda_n^k \end{pmatrix}\right) V^{-1} = V\left(\begin{pmatrix} f(\lambda_1) & & \\ & \ddots & \\ & & f(\lambda_n) \end{pmatrix}\right) V^{-1}.$$

Diese Vorschrift läßt sich auch unabhängig von der Potenzreihendarstellung von f(x) anwenden.