Mathematische Rechenmethoden

Version vom SS 2014*

Universität Mainz Fachbereich 08 Theorie der kondensierten Materie Prof. Dr. Friederike Schmid[†]

Mathematische Rechenmethoden für Physiker

Mathematische Rechenmethoden 1

Grundlegendes

Zahlen

Reelle Funktionen

Komplexe Zahlen

Vektorrechnung

Vektoren und Vektorräume

Skalarprodukt

Vektorprodukt

Infinitesimalrechnung

Folgen und Reihen

Differenzieren

Potenzreihen

Integrieren

Differentialgleichungen

Vektoranalysis Zusatz für Studierende Bachelor of Science

Die Delta-Funktion

Partielle Differentialgleichungen

^{*}Elektronisch: Letzte Änderung am 11.07.2014

 $^{^{\}dagger}03-534$, Tel. (06131-)39-20365, <friederike.schmid@uni-mainz.de>

Literatur

- K. Hefft Mathematischer Vorkurs (online unter http://www.thphys.uni-heidelberg.de/~hefft/vk1/)
- W. Nolting Theoretische Physik Bd. 1, erstes Kapitel
- S. Großmann Mathematischer Einführungskurs für die Physik
- K.-H. Goldhorn, H.-P. Heinz Mathematik für Physiker 1
- C. Lang, N. Pucker Mathematische Methoden in der Physik
- M. L. Boas Mathematical Methods in the Physical Sciences

WolframAlpha http://www.wolframalpha.com/examples

Inhaltsverzeichnis

L	Grv	\mathbf{ndlege}	\mathbf{endes}		1
	1.1	Die Sp	orache de	r Physik	1
		1.1.1	Zeichen	für physikalische Größen \hdots	2
		1.1.2	Zeichen	für Verknüpfungen	3
		1.1.3	Einheite	en	4
	1.2	Zahler	ı		6
		1.2.1	Vorab: I	Mengen, Gruppen, Ringe, Körper	6
		1.2.2	Natürlic	the Zahlen $\mathbb N$	7
		1.2.3	Ganze Z	$\operatorname{Zahlen} \mathbb{Z} \ \ldots \ldots \ldots \ldots \ldots$	8
		1.2.4	Rationa	le Zahlen $\mathbb Q$	9
		1.2.5	Reelle Z	\mathbb{R} ahlen \mathbb{R}	9
		1.2.6	Komple	xe Zahlen $\mathbb C$	10
		1.2.7	Zusamm	nenfassung	11
	1.3	Reelle	Funktion	nen	12
		1.3.1	Element	care Funktionen	12
			1.3.1.1	Polynome und rationale Funktionen	12
			1.3.1.2	Algebraische Funktionen	13
			1.3.1.3	Exponential funktion	14
			1.3.1.4	Logarithmus	15
			1.3.1.5	Trigonometrische Funktionen	16
			1.3.1.6	Hyperbolische Funktionen	16
			1.3.1.7	Funktionen mit Ecken und Sprüngen	17
			1.3.1.8	Weitere wichtige abgeleitete Funktionen	17
		1.3.2	Eigenscl	haften von Funktionen	18
			1.3.2.1	Spiegelsymmetrie	18
			1.3.2.2	Beschränktheit	18
			1.3.2.3	Monotonie	18
			1.3.2.4	Eineindeutigkeit	18
			1.3.2.5	Stetigkeit	19
			1.3.2.6	Grenzwerte	19

	1.4	Komp	lexe Zahle	en	21
		1.4.1	Die imag	ginäre Einheit	21
		1.4.2	Rechnen	mit komplexen Zahlen	22
			1.4.2.1	Rechnen mit der imaginären Einheit	22
			1.4.2.2	Charakterisierung allgemeiner komplexer Zahlen:	22
			1.4.2.3	Euler-Formel	23
			1.4.2.4	Rechenregeln	23
			1.4.2.5	Spezielle Transformationen	24
		1.4.3	Funktion	nen einer komplexen Variablen	24
			1.4.3.1	Potenzen	25
			1.4.3.2	Wurzeln	25
			1.4.3.3	Exponentialfunktion (natürlich)	26
			1.4.3.4	Logarithmus (natürlich)	26
			1.4.3.5	Trigonometrische Funktionen	27
2	Vek	torrec	hnung		29
	2.1	Vektor	ren		29
		2.1.1	Definition	on bzw. Begriffsklärung	29
		2.1.2	Koordin	atensysteme und Koordinatendarstellung	30
		2.1.3	Element	ares Rechnen mit Vektoren, Vektorräume	31
	2.2	Skalar	produkt (inneres Produkt)	33
		2.2.1	Definition	on und mathematische Struktur	33
		2.2.2	Koordin	atendarstellung und Kronecker-Symbol	33
	2.3	Vektor	rprodukt	(äußeres Produkt, Kreuzprodukt)	35
		2.3.1	Definition	on und mathematische Struktur	35
		2.3.2	Koordin	atendarstellung und Levi-Civita-Symbol	35
		2.3.3	Höhere '	Vektorprodukte	36
3	Infi	${f nitesin}$	nalrechn	ung	39
	3.1	Folgen	und Reil	hen	39
		3.1.1	Folgen .		39
		3.1.2	Reihen .		40
	3.2	Differe	entialrech	nung	42
		3.2.1	Die Able	eitung	42
		3.2.2	Element	are Beispiele	44
		3.2.3	Different	tiationsregeln	46
		3.2.4	Anwend	ungen der Differentiationsregeln	47
		3.2.5	Tabelle	wichtiger Ableitungen	48
		3 2 6	Vektorw	ertige Funktionen	49

			3.2.6.1 Infinitesimalrechnung mit vektorwertigen Funktionen	4			
			3.2.6.2 Speziell Raumkurven	4			
		3.2.7	Extremwertaufgaben	5			
	3.3	Taylor	r-Entwicklung	5			
		3.3.1	Kurzer Abriss über Potenzreihen	5			
		3.3.2	Konstruktion der Taylor-Reihe	5			
		3.3.3	Anwendungen	5			
	3.4	Integr	alrechnung	6			
		3.4.1	Das Riemannsche Integral	6			
		3.4.2	Hauptsatz und Stammfunktion	6			
		3.4.3	Integrationsmethoden	6			
		3.4.4	Uneigentliche Integrale	6			
		3.4.5	Mehrfachintegrale	7			
			3.4.5.1 Beispiele	7			
			3.4.5.2 Polarkoordinaten	7			
			3.4.5.3 Wechsel der Integrationsvariablen und Jacobi- Determinante	7			
4	Gev	Gewöhnliche Differentialgleichungen 7					
	4.1	Gewö]	hnliche Differentialgleichungen 1. Ordnung	7			
		4.1.1	Separable Differentialgleichungen	7			
		4.1.2	Lineare Differentialgleichungen	7			
	4.2						
		4.2.1	Differentialgleichungen höherer Ordnung versus Differentialgleichungssysteme erster Ordnung	8			
		4.2.2	Lineare Differentialgleichungssysteme	8			
		4.2.3	Speziell: Lineare Differentialgleichungen mit konstanten Koeffizienten	8			
		4.2.4	Lineare Differentialgleichssysteme mit konstanten Koeffizienten	8			
5	Vek	torana	alysis	8			
	5.1	Vorbe	merkungen und Erinnerung	8			
		5.1.1	Physikalische Skalare, Vektoren und Tensoren	8			
		5.1.2	Felder	8			
		5.1.3	Kurvenintegral bzw. Linienintegral	8			
		5.1.4	Flächenintegral	8			
	5.2	Der N	abla-Operator	9			
		5 2 1	Skalare Felder und Gradient	g			

		5.2.2	Vektorfelder: Divergenz und Rotation 91
		5.2.3	Der Laplace-Operator
		5.2.4	Wichtige Zusammenhänge
	5.3	Krum	mlinige Koordinaten
		5.3.1	Allgemeine und orthogonale Koordinatensysteme 92
		5.3.2	Darstellung in orthogonalen Koordinatensystemen 94
		5.3.3	Zusammenstellung der Formeln für die wichtigsten Koor-
			dinatensysteme
	5.4	Integr	alsätze
		5.4.1	der Gaußsche Integralsatz
			5.4.1.1 Der Satz
			5.4.1.2 Folgerungen aus dem Gaußschen Integralsatz 98
		5.4.2	Der Greensche Satz in der Ebene
		5.4.3	Der Integralsatz von Stokes
6	Die	Dirac	sche Delta-Funktion 103
	6.1	Motiv	ation und Einführung
	6.2	Defini	tion
	6.3	Darste	ellungen der Delta-Funktion
		6.3.1	Darstellung als Grenzwert glatter Funktionen 104
		6.3.2	Darstellung als Integral
	6.4	Reche	nregeln mit der Delta-Funktion
	6.5	Verall	gemeinerung für höhere (d) Dimensionen 107
7	Die	Fourie	ertransformation 109
	7.1	Diskre	ete Fouriertransformation
		7.1.1	Definition
		7.1.2	Eigenschaften der diskreten Fouriertransformation 111
	7.2	Fourie	erintegral
		7.2.1	Definition
		7.2.2	Eigenschaften und Rechenregeln
		7.2.3	Paare von Fourier-Transformierten
		7.2.4	Anwendungsbeispiele
			7.2.4.1 Wellengleichung
			7.2.4.2 Diffusionsgleichung
			7.2.4.3 Greensche Funktion
	7.3	Fourie	erreihe
		7.3.1	Definition
		7.3.2	Darstellung in trigonometrischen Funktionen 119

8	Par	tielle 1	Differentialgleichungen	121	
	8.1	Übers	sicht über die wichtigsten Beispiele in der Physik	121	
		8.1.1	Elliptischer Typ	122	
		8.1.2	Hyperbolischer Typ	122	
		8.1.3	Parabolischer Typ	123	
	8.2	Lösun	ngsverfahren für partielle Differentialgleichungen	123	
		8.2.1	Laplace-Gleichung	124	
			8.2.1.1 Numerische Lösung	124	
			8.2.1.2 Lösung mit Separation der Variablen	124	
		8.2.2	Wellengleichung	126	
			8.2.2.1 Freie Wellen: Lösung mittels Fouriertransformation	126	
			8.2.2.2 Schwingende Saite/Membran: Lösung mit Separationsansatz	127	
		8.2.3	Diffusionsgleichung	128	
			8.2.3.1 Separationsansatz und asymptotisches Verhalten	128	
			8.2.3.2 Propagatordarstellung	129	
		8.2.4	Inhomogene Gleichungen und Greens-Funktion	129	
9	Ort	hogon	ale Funktionen	131	
	9.1	Allger	meiner Rahmen	131	
		9.1.1	Eigenwertgleichungen und Funktionensysteme	131	
		9.1.2	Das Sturm-Liouville-Problem	132	
		9.1.3	Beispiele für Sturm-Liouville-Gleichungen	133	
	9.2	2 Legendre-Polynome			
		9.2.1	Die einfache Legendresche Differentialgleichung	134	
		9.2.2	Wichtige Eigenschaften der Legendre-Polynome	135	
		9.2.3	Zugeordnete Legendre-Polynome	136	
		9.2.4	Kugelflächenfunktionen	137	
	9.3	Die B	Besselsche Differentialgleichung	139	
\mathbf{A}	Anl	nang:]	Matrizen	141	
	A.1	Beisp	iele von Matrizen	141	
	A.2	Eleme	entare Begriffe	143	
	A.3	Rechnen mit Matrizen			
	A.4	Deter	minanten	145	
	A.5	Drehu	ungen und Drehmatrizen	148	
	A.6	Das E	${f Eigenwert}$ problem	149	
	A 7	Funkt	tionen von Matrizen	151	

В	Anh	nang: Analytische Funktionen	153
	B.1	Definitionen	153
	B.2	Cauchy-Riemannsche Differentialgleichungen	154
	B.3	Integralsätze	155
	B.4	Taylor-Reihe und Laurent-Reihe	156

Kapitel 7

Die Fouriertransformation

Motivation:

In Kapitel 3.3: Entwicklung von Funktionen in <u>Potenzreihen</u> \Rightarrow Taylor-Reihe. \Rightarrow kann für praktische Rechnungen sehr nützlich sein.

In diesem Kapitel fast noch wichtigere Entwicklung: Zerlegung in Sinusund Kosinusfunktionen bzw. $e^{i\omega t} \Rightarrow$ Fourierreihe oder Fourierintegral. Fülle von Anwendungen in Mathematik (Differentialgleichungen) und Technik (Elektrotechnik, Signalverarbeitung, Bildverarbeitung). Konkrete physikalische Bedeutung in vielen Bereichen der Physik (Optik, Akustik, Quantenmechanik, Streuung)

Beispiele:

• Lichtbrechung am Prisma bzw. Regenbogen:

Weißes Licht setzt sich aus einem Spektrum an reinen Farben / Wellenlängen zusammen. Diese werden durch das Prisma sichtbar gemacht ~ entspricht einer Fourierzerlegung.

Akustik

Geräusche $\widehat{}$ Dichteschwankungen der Luft $\delta\rho(t)$

→ Frequenzspektrum

Teilweise nimmt Ohr/Gehirn selbst Zerlegung in Frequenzen vor. (Dreiklänge, Stimmengewirr etc.)

Teilweise wird Gemisch von Frequenzen als ein Ton mit bestimmter charakteristischer "Klangfarbe" wahrgenommen.

• Streuexperimente

Meßgrößen sind im Allgemeinen Fouriertransformierte von Korrelationsfunktionen.

7.1 Diskrete Fouriertransformation

Beginne mit dem mathematisch unproblematischsten Fall: Transformation eines endlichen Satzes von Zahlen (Datenpunkten).

Numerische Bedeutung: Datensätze im Computer sind immer endlich.

Für diskrete Fouriertransformationen gibt es ultraschnelle Algorithmen (Fast Fourier Transformation).

7.1.1 Definition

Gegeben Zahlenfolge $(a_0, a_1, \dots, a_{N-1}) \in \mathbb{C}$.

Diskrete Fouriertransformierte:

$$\hat{a}_k = \frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} e^{-2\pi i \, kj/N} a_j \qquad \text{für } k \in \{0, 1, \dots, N-1\}$$

Inverse Transformation: Ursprüngliche Daten können zerlegt werden in

$$a_j = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} e^{2\pi i \, kj/N} \, \hat{a}_k$$

Verbindung über Darstellung des Kronecker-Deltas

$$\delta_{nm} = \frac{1}{N} \sum_{p=0}^{N-1} e^{2\pi i \, pn/N} e^{-2\pi i \, pm/N}$$
 für $n, m \in \{0, 1, \dots, N-1\}.$

(Check: Erst Gleichung für δ_{nm} :

$$n \neq m : \sum_{p=0}^{N-1} e^{2\pi i \frac{n-m}{N}p} = \sum_{p=0}^{N-1} (e^{2\pi i \frac{n-m}{N}})^p$$

$$= (e^{2\pi i (\frac{n-m}{N})N} - 1)/(e^{2\pi i \frac{n-m}{N}} - 1) = (1-1)/(e^{2\pi i \frac{n-m}{N}} - 1) = 0$$

$$= m : \sum_{p=0}^{N-1} e^{2\pi i \frac{n-m}{N}p} = \sum_{p=0}^{N-1} 1 = N$$

$$\Rightarrow \sum_{p=0}^{N-1} e^{2\pi i \frac{n-m}{N}p} = N \delta_{nm} \quad \checkmark.$$

Nun inverse Fouriertransformation: Einsetzen

$$\Rightarrow \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} e^{2\pi i \frac{kj}{N}} \hat{a}_k = \frac{1}{N} \sum_{k=0}^{N-1} \sum_{j'=0}^{N-1} e^{2\pi i kj/N} e^{-2\pi i kj'/N} a_{j'}$$

$$= \sum_{j'=0}^{N-1} a_{j'} \underbrace{\frac{1}{N} \sum_{k=0}^{N-1} e^{2\pi i kj/N} e^{-2\pi i kj'/N}}_{\delta_{jj'}} = a_k \quad \checkmark \quad)$$

Bemerkung: Vorfaktoren $(1/\sqrt{N})$ in den Gleichungen für \hat{a}_k bzw. a_j sind Konventionssache und von Anwendung zu Anwendung verschieden. Hier wurden sie so gewählt, dass die diskrete Fouriertransformation und die inverse Transformation symmetrisch sind. Eine andere häufige Wahl wäre z.B. $\hat{a}_k = \sum_j \mathrm{e}^{-2\pi i\,kj/N} a_j$ und dementsprechend $a_j = \frac{1}{N} \sum_k \mathrm{e}^{2\pi i\,kj/N} \hat{a}_k$.

Interpretation: Datensatz (a_0, \dots, a_{N-1}) wird durch "Frequenz-Anteile" $e^{i\omega_k j}$ charakterisiert mit $\omega_k = \frac{2\pi}{N}k$. Amplituden \hat{a}_k zu kleinen Frequenzen enthalten Information über großräumige Datenstruktur (z.B. $k = 0 \leftrightarrow \text{Mittelwert}$).

7.1.2 Eigenschaften der diskreten Fouriertransformation

Vorab: Von nun an Konvention: Periodische Fortsetzung.

Für
$$k \notin [0, ..., N-1]$$
 definiere $\hat{a}_k \coloneqq \hat{a}_{k \mod N}$

Für
$$j \notin [0, ..., N-1]$$
 definiere $a_j \coloneqq a_{j \mod N}$

(NB:
$$\hat{a}_k = \frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} e^{-2\pi i \frac{kj}{N}} a_j = \frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} e^{-2\pi i \frac{(k+lN)j}{N}} a_j \quad \forall \ l \in \mathbb{Z}$$

 \Rightarrow Konvention ist konsistent. Dasselbe gilt für a_j).

- (i) Linearität: $c_j = \alpha \, a_j + \beta \, b_j \, \text{mit } \alpha, \beta \in \mathbb{C} \quad \Leftrightarrow \quad \hat{c}_k = \alpha \, \hat{a}_k + \beta \, \hat{b}_k$.
- (ii) Translation: $c_{j} = a_{j-n} \iff \hat{c}_{k} = e^{-2\pi i k n/N} \hat{a}_{k}$ (denn: $\hat{c}_{k} = \frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} e^{-2\pi i \frac{k j}{N}} a_{j-n} = e^{2\pi i \frac{k n}{N}} \frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} e^{-2\pi i \frac{k (j-n)}{N}} a_{j-n}$ $= e^{2\pi i \frac{k n}{N}} \frac{1}{\sqrt{N}} \sum_{j=-n}^{N-1-n} e^{-2\pi i \frac{k j}{N}} a_{j}$ $| a_{j} \text{ und } e^{-2\pi i \frac{k j}{N}} \text{ sind periodisch modulo } N$ $= e^{2\pi i \frac{k n}{N}} \frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} e^{-2\pi i \frac{k j}{N}} a_{j} = e^{2\pi i \frac{k n}{N}} \hat{a}_{k}$
- (iii) Symmetrien:

$$a_j \text{ reell} \iff \hat{a}_0 \text{ reell}, \ \hat{a}_{n-k} = \hat{a}_{-k} = \hat{a}_k^*$$

$$(\text{denn: } \hat{a}_{-k} = \frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} e^{2\pi i \frac{kj}{N}} a_j = (\frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} e^{-2\pi i \frac{kj}{N}} a_j)^* = \hat{a}_k^*)$$

$$a_j \text{ rein imaginär} \iff \hat{a}_0 = 0, \ \hat{a}_{n-k} = \hat{a}_{-k} = -\hat{a}_k^*$$

$$(\text{analog})$$

(iv) Parsevalsche Gleichung:

$$\sum_{j=0}^{N-1} |a_j|^2 = \sum_{k=0}^{N-1} |\hat{a}_k|^2$$
bzw. allgemeiner
$$\sum_{j=0}^{N-1} a_j^* b_j = \sum_{k=0}^{N-1} \hat{a}_k^* \hat{b}_k$$

$$\begin{aligned} & \text{(Beweis: } \sum_{k=0}^{N=1} \hat{a}_k^* \hat{b}_k = \frac{1}{N} \sum_{k=0}^{N-1} \sum_{j=0}^{N-1} \sum_{j'=0}^{N-1} \mathrm{e}^{-2\pi i \frac{kj}{N}} \mathrm{e}^{2\pi i \frac{kj'}{N}} a_j^* b_{j'} \\ & = \sum_{j=0}^{N-1} \sum_{j'=0}^{N-1} a_j^* b_{j'} \underbrace{\frac{1}{N} \sum_{k=0}^{N-1} \mathrm{e}^{-2\pi i \frac{kj}{N}} \mathrm{e}^{2\pi i \frac{kj'}{N}}}_{\delta_{jj'}} = \sum_{j=0}^{N-1} a_j^* b_j \quad \checkmark) \end{aligned}$$

(v) Faltungssatz: Für
$$c_l = \sum_{j=0}^{N-1} a_j b_{l-j}$$
 gilt $\hat{c}_k = \sqrt{N} \hat{a}_k \hat{b}_k^*$

$$\text{(Beweis: } \hat{c}_k = \frac{1}{\sqrt{N}} \sum_{l=0}^{N-1} \mathrm{e}^{-2\pi i \frac{kl}{N}} c_l = \frac{1}{\sqrt{N}} \sum_{l=0}^{N-1} \sum_{j=0}^{N-1} a_j \ b_{l-j} \underbrace{\mathrm{e}^{-2\pi i \frac{kl}{N}}}_{\mathrm{e}^{-2\pi i \frac{kl}{N}}} = \underbrace{\frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} \mathrm{e}^{-2\pi i \frac{kj}{N}} a_j}_{\hat{a}_k} \underbrace{\sum_{l=0}^{N-1} \mathrm{e}^{-2\pi i \frac{k(l-j)}{N}} b_{l-j}}_{\sum_{l=-j}^{N-1-j} \mathrm{e}^{-2\pi i \frac{k(l-j)}{N}} b_{l-j} = \sqrt{N} \hat{a}_k \ \hat{b}_k \ \checkmark) }_{\sum_{l=-j}^{N-1-j} \mathrm{e}^{-2\pi i \frac{kl}{N}} b_l = \sum_{l=0}^{N-1} \mathrm{e}^{-2\pi i \frac{kl}{N}} b_l = \sqrt{N} \hat{b}_k$$

7.2 Fourierintegral

Betrachte nun statt diskreter Datenpunkte kontinuierliche Funktion f(x). Fourierintegral: Kontinuierliche Variante der diskreten Fouriertransformation.

7.2.1 Definition

Gegeben Funktion $f(x): \mathbb{R} \to \mathbb{C}$ mit Eigenschaften (Dirichlet-Jordan):

- Absolut integrierbar: $\int_{-\infty}^{\infty} dx |f(x)| < \infty$
- Hat in jedem endlichen Teilintervall nur endlich viele Sprungstellen, endlich viele Maxima und Minima und beschränkte Schwankung.

Dann ist:

Fouriertransformierte:
$$\hat{f}(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dx \, f(x) \, e^{-ikx}$$

Inverse Transformation:
$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dk \, \hat{f}(k) \, e^{ikx}$$

Verbindung über Darstellung der Delta-Funktion

$$\delta(p - p') = \frac{1}{2\pi} \int_{-\infty}^{\infty} dy e^{ipy} e^{-ip'y}$$

(Check: Gleichung für Delta-Funktion: Siehe Kapitel 6.3.2 Inverse Fouriertransformation: Einsetzen

$$\frac{1}{\sqrt{2\pi}} \int dk \, \hat{f}(k) \, e^{ikx} = \frac{1}{2\pi} \int dk \, \int dx' \, f(x') e^{ikx} e^{-ikx'}$$

$$= \int dx' \, f(x') \underbrace{\frac{1}{2\pi} \int dk \, e^{ikx} e^{-ikx'}}_{\delta(x-x')} = f(x) \, \checkmark)$$

Bemerkung: Auch hier wieder völliger Wildwuchs in der Literatur bezüglich Vorfaktoren! Deshalb: Immer überprüfen, über welche Gleichung die Fouriertransformation konkret definiert ist.

Verallgemeinerung auf d Dimensionen:

$$\hat{f}(\vec{k}) = \frac{1}{\sqrt{2\pi^d}} \iiint d^d r f(\vec{r}) e^{-i\vec{k}\cdot\vec{r}} \qquad f(\vec{r}) = \frac{1}{\sqrt{2\pi^d}} \iiint d^d k \hat{f}(\vec{k}) e^{i\vec{k}\cdot\vec{r}}$$

7.2.2 Eigenschaften und Rechenregeln

(Beweise völlig analog dem Fall der diskreten Fouriertransformationen)

(i) Linearität:
$$h(\vec{r}) = \alpha f(\vec{r}) + \beta g(\vec{r}) \iff \hat{h}(\vec{k}) = \alpha \hat{f}(\vec{k}) + \beta \hat{g}(\vec{k})$$

(ii) Translation:
$$h(\vec{r}) = f(\vec{r} - \vec{a})$$
 \Leftrightarrow $\hat{h}(\vec{k}) = e^{-i\vec{k}\cdot\vec{a}} \hat{f}(\vec{k})$

(iii) Symmetrien:
$$f(\vec{r})$$
 reellwertig $\Leftrightarrow \hat{f}(-\vec{k}) = \hat{f}^*(\vec{k})$
 $f(\vec{r})$ rein imaginär $\Leftrightarrow \hat{f}(-\vec{k}) = -\hat{f}^*(\vec{k})$

(iv) Parsevalsche Gleichung:
$$\int d^d r |f(\vec{r})|^2 = \int d^d k |\hat{f}(\vec{k})|^2$$
 bzw. verallgemeinert
$$\int d^d r f^*(\vec{r}) g(\vec{r}) = \int d^d k \hat{f}^*(\vec{k}) g(\vec{k})$$

(v) Faltungssatz:
$$h(\vec{r}) = \int d^d r' f(\vec{r}') g(\vec{r} - \vec{r}') \iff \hat{h}(\vec{k}) = \sqrt{2\pi} \hat{f}(\vec{k}) \hat{g}(\vec{k})$$

Zusätzliche wichtige Eigenschaften

(vi) Produkt:
$$h(\vec{r}) = f(\alpha \vec{r}) \Leftrightarrow \hat{h}(\vec{k}) = \frac{1}{|\alpha|^d} \hat{f}(\vec{k}/\alpha)$$

(denn: $\hat{h}(\vec{k}) = \frac{1}{\sqrt{2\pi}} \int d^d \vec{r} f(\alpha \vec{r}) e^{-i\vec{k}\cdot\vec{\tau}}$

$$= \lim_{\substack{\text{Substitution} \\ \vec{\tau} = \alpha \vec{r}}} \frac{1}{\sqrt{2\pi}} \int d^d \tau \frac{1}{|a|^d} \int_{\substack{\text{Dacobi-} \\ \text{Determinante}}} f(\vec{\tau}) e^{-i\vec{k}\cdot\vec{\tau}/\alpha} \checkmark)$$

(vii) Ableitungen:
$$h(\vec{r}) = \partial_{\alpha} f(\vec{r}) \iff \hat{h}(\vec{k}) = ik_{\alpha} \hat{f}(\vec{k})$$

$$h(\vec{r}) = \partial_{\alpha_{1}} \cdots \partial_{\alpha_{n}} f(\vec{r}) \iff \hat{h}(\vec{k}) = i^{n} k_{\alpha_{1}} \cdots k_{\alpha_{n}} \hat{f}(\vec{k})$$
(denn: Für $h(\vec{r}) = \partial_{\alpha} f(\vec{r})$ gilt
$$\hat{h}(\vec{k}) = \frac{1}{2\pi} \int d^{d}r \, e^{-i\vec{k}\cdot\vec{r}} \partial_{\alpha} f(\vec{r}) = \int_{\substack{\text{partielle} \\ \text{Integration}}} \int d^{d}r \, f(\vec{r}) \, \partial_{\alpha} (e^{-i\vec{k}\cdot\vec{r}})$$

$$= -\frac{1}{\sqrt{2\pi}} \int d^{d}r \, f(\vec{r}) (-ik_{\alpha}) e^{-i\vec{k}\cdot\vec{r}} = ik_{\alpha} \, \hat{h}(\vec{k})$$
Höhere Ableitungen analog.)

(viii) Momente:
$$h(\vec{r}) = r_{\alpha} f(\vec{r})$$
 $\Leftrightarrow \hat{h}(\vec{k}) = i \frac{\partial}{\partial k_{\alpha}} \hat{f}(\vec{k})$
 $h(\vec{r}) = r_{\alpha_{1}} \cdots r_{\alpha_{n}} f(\vec{r}) \Leftrightarrow \hat{h}(\vec{k}) = i^{n} \frac{\partial}{\partial k_{\alpha_{1}} \cdots \partial k_{\alpha_{n}}} \hat{f}(\vec{k})$

(Herleitung: Analog zu (vii) wegen Symmetrie von Fouriertransformation und inverser Fouriertransformation, oder, für $h(\vec{r}) = r_{\alpha} f(\vec{r})$

$$\hat{h}(\vec{k}) = \frac{1}{2\pi} \int d^d r \underbrace{e^{-i\vec{k}\cdot\vec{r}}r_{\alpha}}_{i\frac{\partial}{\partial k_{\alpha}}e^{-i\vec{k}\cdot\vec{r}}} f(\vec{r}) = i\frac{\partial}{\partial k_{\alpha}} \frac{1}{\sqrt{2\pi}} \int u d^d r f(\vec{r}) e^{-i\vec{k}\cdot\vec{r}} = i\frac{\partial}{\partial k_{\alpha}} \hat{f}(\vec{k}) \checkmark$$

Höhere Momente analog.)

7.2.3 Paare von Fourier-Transformierten

in einer Dimension

	f(x)	$\hat{f}(k) = \frac{1}{\sqrt{2\pi}} \int dx e^{-ikx} f(x)$	
(i) Delta-Funktion	$\delta(x)$	$1/\sqrt{2\pi}$	laut 6.3.2
(ii) Konstante	C	$C\sqrt{2\pi}\delta(x)$	laut 6.3.2
(iii) Kosinus Sinus	$\cos(\omega x)$ $\sin(\omega x)$	$\sqrt{\frac{\pi}{2}} \left(\delta(k+\omega) + \delta(k-\omega) \right)$ $\sqrt{\frac{\pi}{2}} i \left(\delta(k+\omega) - \delta(k-\omega) \right)$	Euler- formel
(iv) Gaußkurve	$e^{-x^2/2\sigma^2}$	$\sigma e^{-k^2 \sigma^2/2}$	siehe unten
(v) Lorentzkurve	$1/(x^2+a^2)$	$\sqrt{\frac{\pi}{2}} \frac{1}{ a } e^{- ka }$	siehe unten
(vi) Exponentialfunktion	$e^{-a x } \qquad (a > 0)$	$\sqrt{\frac{2}{\pi}} \frac{a}{k^2 + a^2}$	Invers zu (v)
(vii) Rechteckfunktion	$\theta(a- x) \qquad (a>0)$	$\sqrt{\frac{2}{\pi}} \frac{\sin(ka)}{k}$	Übungsaufgabe

Bemerkungen:

- Manche der obigen Funktionen erfüllen das Kriterium der absoluten Integrierbarkeit $\int \mathrm{d}x \, |f(x)| < \infty \, nicht!$ (z.B. Konstante, Sinus, Kosinus). In diesem Fall kann man sich einfach einen infinitesimalen "Dämpfungsterm" $\mathrm{e}^{-\epsilon|x|}$ im Integral dazudenken mit $\epsilon \to 0^+$ (vgl. 6.3.2).
- Aus schmalen Peaks werden breite Peaks und umgekehrt. Zum Beispiel Gaußfunktion: f(x) hat Breite σ , $\hat{f}(k)$ hat Breite $1/\sigma$. Generell gilt: $\left(\int dx \, x^2 \, |f(x)|^2\right) \left(\int dk \, k^2 \, |\hat{f}(k)|^2\right) \ge \frac{1}{4}$

(ohne Beweis,

Spezialfall der Unschärferelation, Stoff von Theorie III).

Rechnungen zu (iv)-(vi)

Brauche Theorie der analytischen Funktionen (AnhangB)

Falls f(z) analytisch (differenzierbar) innerhalb eines Gebietes G in der komplexen Ebene, das von einer Kurve C umschlossen wird, gilt:

- Cauchyscher Integralsatz: $\oint dz f(z) = 0$

– Cauchysche Integralgleichung: $\oint dz \frac{f(z)}{z-w} = 2\pi i f(w)$ für $w \in G$ Dabei wird Kurve C gegen den Uhrzeigersinn durchlaufen.

Nun Rechnungen:

(iv)
$$f(x) = e^{-x^2/2\sigma^2}$$

$$\Rightarrow \hat{f}(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dx e^{-ikx} e^{-x^2/2\sigma^2} = e^{-\frac{1}{2}k^2\sigma^2} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dx e^{-\frac{1}{2\sigma^2}(x+ik\sigma^2)^2} e^{-\frac{1}{2\sigma^2}(x+ik\sigma^2)^2}$$

Substituiere $\tilde{x} = x + ik\sigma^2$ Verschiebe Integrationsweg parallel zur reellen Achse

Wert des Integrals gleich, da keine Singularität überstrichen wird. $= e^{-k^2\sigma^2/2} \frac{1}{\sqrt{2\pi}} \underbrace{\int_{-\infty}^{\infty} \mathrm{d}\tilde{x} \, e^{-\tilde{x}^2/2\sigma^2}}_{\sqrt{2\pi}\sigma} = \sigma e^{-k^2\sigma^2/2}$

(vi)
$$f(x) = e^{-a|x|}$$

$$\Rightarrow \hat{f}(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dx \, e^{-a|x|} \, e^{ikx} = \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} dx \, e^{-ax} (e^{ikx} + e^{-ikx})$$

$$= \frac{1}{\sqrt{2\pi}} \left(\frac{1}{a - ik} + \frac{1}{a + ik} \right) = \frac{1}{\sqrt{2\pi}} \frac{2a}{k^2 + a^2}$$

(v) Folgt im Prinzip aus (vi) wegen Symmetrie der Fouriertransformation und der inversen Fouriertransformation.

Alternative Herleitung: Betrachte
$$f(x) = 1/(x^2 + a^2)$$

$$\Rightarrow \hat{f}(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dx \, e^{-ikx} \, \frac{1}{x^2 + a^2} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dx \, e^{-ikx} \left(\frac{1}{x - i|a|} - \frac{1}{x + i|a|} \right) \frac{1}{2i|a|}$$

Schließe Integrationsweg in komplexer Ebene über Halbkreis im Unendlichen in oberer oder unterer Halbene

k < 0: Weg C oben herum (über $i\infty$), da $e^{-ikx} \sim e^{-iki\infty} \sim e^{-|k|\infty} = 0$. k > 0: Weg C' unten herum (über $-i\infty$), da $e^{-ikx} \sim e^{iki\infty} \sim e^{-k\infty} = 0$. Achtung: Damit Integral über C' gegen den Uhrzeigersinn läuft, dreht sich dabei Vorzeichen um!

lauft, drent sich dabei Vorzeichen um!
$$\Rightarrow k < 0: \hat{f}(k) = \frac{1}{2i|a|} \frac{1}{\sqrt{2\pi}} \oint_C dz \, e^{-ikz} \left(\frac{1}{z-i|a|} - \frac{1}{z+i|a|}\right) = \frac{1}{2i|a|} \frac{1}{\sqrt{2\pi}} \oint_C dz \, \frac{e^{-ikz}}{z-i|a|}$$

$$= \sqrt{\frac{\pi}{2}} \frac{1}{|a|} e^{k|a|} \qquad \qquad \text{Pol nicht eingeschlossen kein Beitrag}$$

$$k > 0: \hat{f}(k) = -\frac{1}{2i|a|} \frac{1}{\sqrt{2\pi}} \oint_{C'} dz e^{-ikz} \left(\frac{1}{z-i|a|} - \frac{1}{z+i|a|}\right) = \frac{1}{2i|a|} \frac{1}{\sqrt{2\pi}} \oint_{C'} dz \, \frac{e^{-ikz}}{z+i|a|}$$

$$= \sqrt{\frac{\pi}{2}} \frac{1}{|a|} e^{-k|a|} \qquad \qquad \text{Pol nicht eingeschlossen kein Beitrag}$$

$$2\pi i e^{-ik(-i|a|)}$$
Zusammen:
$$\hat{f}(k) = \sqrt{\frac{\pi}{2}} \frac{1}{|a|} e^{-|ka|} \qquad \checkmark$$

7.2.4 Anwendungsbeispiele

Neben ihrer physikalischer Bedeutung ist die Fouriertransformation sehr nützlich zum Lösen linearer Differentialgleichungen. (Das begründet natürlich ihre Bedeutung, da die wichtigsten Gleichungen in der Physik lineare Differentialgleichungen sind).

7.2.4.1 Wellengleichung

(Beispiel (k) in Kapitel 4)

Gesucht: Allgemeine Lösung u(x,t) der Gleichung $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$

Im Fourierraum: $u(x) \to \hat{u}(k)$; $\frac{\partial^2}{\partial x^2} u \to -k^2 \hat{u}$; $\frac{\partial^2}{\partial t^2} u \to \frac{\partial^2}{\partial t^2} \hat{u}$ $\Rightarrow \frac{\partial^2 \hat{u}}{\partial t^2} = -k^2 c^2 \hat{u}$: gewöhnliche Schwingungsgleichung In Kapitel 4 gelöst (4.2.3) Allgemeine Lösung: $\hat{u}(k,t) = a(k) \mathrm{e}^{-i\omega t} + b(k) \mathrm{e}^{i\omega t}$ mit $\omega = |k|c$

7.2.4.2 Diffusionsgleichung

(Beispiel (j) in Kapitel 4)

Gesucht: Lösung $\rho(x,t)$ der Gleichung $\frac{\partial \rho}{\partial t} = D \frac{\partial^2 u}{\partial x^2}$ im unbegrenzten Raum mit Anfangsbedingung $\rho(x,t=0) = \delta(x)$

Im Fourierraum: $\rho(x) \to \hat{\rho}(k)$; $\frac{\partial^2}{\partial x^2} \rho \to -k^2 \hat{\rho}$; $\frac{\partial}{\partial t} \rho \to \frac{\partial}{\partial t} \hat{\rho}$; $\delta(x) \to \frac{1}{\sqrt{2\pi}}$ $\Rightarrow \frac{\partial \hat{\rho}}{\partial t} = -Dk^2 \hat{\rho}$ mit $\hat{\rho}(0) = \frac{1}{\sqrt{2\pi}}$: entspricht Zerfallsgleichung In Kapitel 4 gelöst (4.1.1) Lösung: $\hat{\rho}(k,t) = \frac{1}{\sqrt{2\pi}} e^{-Dk^2 t}$

⇒ Lösung im Realraum: $\rho(x,t) = \frac{1}{\sqrt{2\pi}} \int \mathrm{d}k \, \mathrm{d}^{ikr} \hat{\rho}(k,t) = \frac{1}{4\pi Dt} \mathrm{e}^{-x^2/4Dt}$ entspricht zerfließender Gaußfunktion

7.2.4.3 Greensche Funktion

Häufige Problemstellung, z.B. in der Elektrodynamik (Theorie II): Lösung der Gleichung $\Delta G(\vec{r}) = \delta(\vec{r})$ in beliebigen Dimensionen.

Vorgehen: (hier)

Benutze Fouriertransformation, um auf geeigneten Ansatz zu kommen. Benutze dann Gaußschen Satz, um das Problem zu lösen.

1. Schritt: Lösung der Gleichung im "Fourierraum"
$$\vec{k}$$
.
$$G(\vec{r}) \to \hat{G}(\vec{k}), \quad \Delta G(\vec{r}) \to -k^2 \hat{G}(\vec{k}), \quad \delta(\vec{r}) \to 1/\sqrt{2\pi}^d.$$

$$\Rightarrow -k^2 \hat{G}(\vec{k}) = 1/\sqrt{2\pi}^d \Rightarrow \hat{G}(k) = -1/(\sqrt{2\pi}^d k^2)$$

 $\underline{2.~\mathrm{Schritt}} :$ Rücktransformation in "Ortsraum
" \vec{r} .

Allgemeines Verfahren für Dimensionen |d>2|

$$G(\vec{r}) = -\frac{1}{\sqrt{2\pi^d}} \int d^dk \, e^{i\vec{k}\cdot\vec{r}} \hat{G}(\vec{k}) = -\frac{1}{(2\pi)^d} \int d^dk \, \frac{1}{k^2} e^{ikr\cos\phi(\hat{k},\hat{r})}$$

$$\mid \quad \text{mit } \hat{k} = \vec{k}/k, \hat{r} = \vec{r}/r.$$

$$\mid \quad d^dk = dk \, k^{d-1} \, d\Omega_d \, \text{mit } \Omega_d: \, d\text{-dimensionaler Raumwinkel}$$

$$\stackrel{k'=kr}{=} -\frac{1}{(2\pi)^d} \, r^{2-d} \underbrace{\int_0^\infty dk' \, k'^{d-3} \, \int d\Omega_d \, e^{ik'\cos(\theta)}}_{\text{odd}} \propto r^{2-d}$$

Berechnung von $\int_0^\infty dk' \, k'^{d-3} \int d\Omega_d$... ist aufwendig. Übernimm daher lieber $G(\vec{r}) \propto r^{2-d}$ als Ansatz.

Problem bei $d \le 2$: $\int_0^\infty \mathrm{d}k' k'^{d-3} \dots$ divergiert bei $k' \to 0$ \Rightarrow Rücktransformation nicht zulässig.

Ausweg: Versuchen, ob Abschneiden von $\hat{G}(\vec{k})$ zum Erfolg führt:

Ersetze
$$\hat{G}(\vec{k})$$
 durch $\hat{G}_{\epsilon}(\vec{k}) = -1/(\sqrt{2\pi}^d(k^2 + \epsilon^2))$ mit $\epsilon \to 0^+$.

$$\boxed{d=1}: \hat{G}_{\epsilon}(k) = -\frac{1}{\sqrt{2\pi}}/(k^2 + \epsilon^2) \xrightarrow{7.2.3(v)} G_{\epsilon}(x) = -\frac{1}{2\epsilon} e^{-|x|\epsilon}$$

$$\xrightarrow{\epsilon \to 0^+} -\frac{1}{2\epsilon} + |x|/2 = \text{const.} + |x|/2.$$

NB: Die Differentialgleichung $\Delta G = \delta(x)$ definiert G bis auf eine Konstante (und eine konstante Steigung), deshalb darf const. abgezogen werden. Man zeigt leicht, dass G(x) = |x|/2 die Differentialgleichung $\Delta G = \frac{\mathrm{d}^2}{\mathrm{d}x^2}G = \delta(x)$ erfüllt (Übungsaufgabe).

- ⇒ Führt zu Ansatz $G(\vec{r}) \propto \ln(r)$. (De facto ist $G(\vec{r}) = \frac{1}{2\pi} \ln(r)$ bereits die Lösung, siehe unten).
- 3. Schritt: Auswerten des Ansatzes aus dem 2. Schritt.

$$\begin{split} d > 2 \colon & \text{Ansatz } G(\vec{r}) = C_d \, r^{2-d} \, \Rightarrow \, \nabla G(\vec{r}) = C_d \, (2-d) \, r^{1-d} \, \frac{\vec{r}}{r} \\ & \text{Integriere "uber Kugel um Ursprung mit beliebigem Radius.} \\ & \to \int_V \mathrm{d}^d r \, \Delta G \, \underset{\text{Gauß}}{=} \, \int_{\partial V} \mathrm{d} \vec{A} \cdot \nabla G = C_d \, (2-d) \, \Omega_d. \\ & \text{mit } \Omega_d \colon \text{Oberfl"ache der d-dimensionalen Einheitskugel.} \\ & \text{Andererseits:} \, \int_V \mathrm{d}^d r \, \Delta G \stackrel{!}{=} \int_V \mathrm{d}^d r \, \delta(\vec{r}) = 1. \\ & \Rightarrow \, C_d = -\frac{1}{(d-2)\Omega_d}, \quad G(\vec{r}) = -\frac{1}{(d-2)\Omega_d} \, r^{2-d}. \end{split}$$

$$d=2$$
: Ansatz $G(\vec{r})=C_2 \ln(r) \Rightarrow \nabla G(\vec{r})=C_2 \frac{1}{r} \frac{\vec{r}}{r}$
Verfahren wie oben $\Rightarrow C_2 = \frac{1}{\Omega_2} = \frac{1}{2\pi}, \quad G(\vec{r}) = \frac{1}{2\pi} \ln(r)$
 $d=1$: $G(r)$ oben direkt berechnet: $G(x)=|x|/2$.

7.3 **Fourierreihe**

Zum Abschluss und zur Vervollständigung:

Fouriertransformation von Funktionen auf endlichen Intervallen oder von peri $odischen Funktionen \rightarrow Fourierreihen$

7.3.1 **Definition**

Gegeben periodische Funktion | f(t+nT) = f(t) für $t \in \mathbb{R}, n \in \mathbb{Z}$ mit Eigenschaften (Dirichlet-Bedingungen): Auf Intervall [0:T] hat f(t) nur endlich viele Sprungstellen und endliche viele Minima/Maxima. An jeder Unstetigkeitsstelle existiert linksseitiger und rechtsseitiger Grenzwert.

Dann läßt sich f(t) schreiben als:

Fourierreihe:
$$f(t) = \sum_{n=-\infty}^{\infty} c_n e^{2\pi i n t/T}$$

mit Fourierkoeffizienten:
$$c_n = \frac{1}{T} \int_C^{C+T} dt \ f(t) e^{-2\pi i n t/T}$$

$$(C \in \mathbb{R} \text{ beliebig}).$$

Verbindung über

$$\delta_{nm} = \frac{1}{T} \int_C^{C+T} dt \, e^{-2\pi i n t/T} \, e^{2\pi i m t/T}$$
(*)

$$\delta_{nm} = \frac{1}{T} \int_{C}^{C+T} dt \, e^{-2\pi i n t/T} \, e^{2\pi i m t/T}$$

$$\frac{1}{T} \sum_{n=-\infty}^{\infty} e^{2\pi i n t/T} \, e^{-2\pi i n t'/T} = \sum_{m=-\infty}^{\infty} \delta(t - t' + Tm)$$
(**)

(Check:

(*): Klar (einfach Integral ausrechnen!)

(**): Betrachte
$$S_M = \sum_{n=-M}^M (\mathrm{e}^{2\pi i t/T})^n = x^{-M} \sum_{n=0}^{2M} x^n \quad \text{mit} \quad x \coloneqq \mathrm{e}^{2\pi i t/T}$$

$$= \frac{x^{-M} x^{2M+1} - 1}{x^{-1}} = \frac{\sin(\pi (2M+1)t/T)}{\sin(\pi t/T)}$$
im Grenzwert $M \to \infty$:

Interessant sind t -Werte mit $\sin(\pi t/T) \to 0 \Rightarrow t^* = mT$
Entwickle $t = mT + x, x \ll 1$

$$\Rightarrow \sin(\pi t/T) \approx \pi \frac{x}{T} \cos(\pi m) = (-1)^m \pi \frac{x}{T}$$

$$\sin(\pi (2M+1)\frac{t}{T}) = \sin(\pi m + \pi (2M+1)\frac{x}{T}) = (-1)^m \sin(\pi (2M+1)\frac{x}{T})$$

$$\Rightarrow \frac{\sin(\pi (2M+1)t/T)}{\sin(\pi t/T)} \approx \frac{\sin(\pi (2M+1)x/T)}{\pi x/T} \xrightarrow{M \to \infty} \pi \delta(\pi \frac{x}{T}) = T \delta(x)$$

$$\Rightarrow S_M \xrightarrow{M \to \infty} T \sum_m \delta(t - mT) \quad \checkmark$$
Rest ergibt sich durch Einsetzen und Benutzen von (*) und (**).)

Bemerkung: Fourierreihenentwicklung kann ohne weiteres auf nichtperiodische Funktionen angewendet werden, die nur in einem Intervall [0:T] definiert sind. Diese werden dann einfach periodisch fortgesetzt.

7.3.2 Darstellung in trigonometrischen Funktionen

Im Prinzip dieselbe Entwicklung, aufgespalten in Sinus- und Kosinus-Funktionen.

<u>Definition</u>: Gegeben eine reelle Funktion f(t), die periodisch mit der Periode T ist und die Dirichlet-Bedingungen erfüllt. Sie kann dann geschrieben werden als

$$f(t) = \frac{a_0}{2} + \sum_{n} \left\{ a_n \cos(2\pi n \frac{t}{T}) + b_n \sin(2\pi n \frac{t}{T}) \right\}$$

mit Koeffizienten

$$a_{n} = \frac{2}{T} \int_{C}^{C+T} dt f(t) \cos(2\pi n \frac{t}{T}) = c_{n} + c_{-n}$$

$$b_{n} = \frac{2}{T} \int_{C}^{C+T} dt f(t) \sin(2\pi n \frac{t}{T}) = i (c_{n} - c_{-n})$$

$$a_{0} = \frac{2}{T} \int_{C}^{C+T} dt f(t) = 2c_{0}.$$

Speziell f(t) gerade

f(t) gerade (f(t) = f(-t)) : Reine Kosinusreihe $(b_n = 0 \ \forall \ n)$ f(t) ungerade (f(t) = -f(-t)) : Reine Sinusreihe $(a_n = 0 \ \forall \ n)$ $(a_n = 0 \ \forall \ n)$

Wichtigste weitere Eigenschaft: Parseval-Gleichung

$$\frac{2}{T} \int_{C}^{C+T} dt |f(t)|^{2} = \frac{a_{0}^{2}}{2} + \sum_{n=1}^{\infty} (a_{n}^{2} + b_{n}^{2})$$