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Chapter 1

Brief Recapitulation:
Thermodynamics and Statistical
Physics

© Copyright 2020 Friederike Schmid?!

1.1 Thermodynamics

1.1.1 Basic Notions

Macroscopic systems are described by macroscopic state variables

- Extensive state variables: Proportional to N (particle number)
If two systems are brought in contact, they add up.

- Intensive state variables: Independent of IV
If two systems are brought in contact, they strive to become equal

for example, extensive E,S V N (M)
intensive T P pu (H)

Stationary state: Does not change over time

Equilibrium: Stationary and no fluxes

Special status due to the "Zeroth law of thermodynamics”

If A is at equilibrium with B and B is at equilibrium with C,
then A is at equilibrium with C.

~» At equilibrium, intensive variables are constant throughout the whole
system.

'Prof. Dr. Friederike Schmid, Advanced Statistical Physics, University of Mainz, WS
2024/2025. Last change of PDF file on 16.12.2024.



2 CHAPTER 1. THERMODYNAMICS AND STATISTICAL PHYSICS

Remark: This is the reason why one may introduce intensive variables
such as temperature, chemical potential etc. : They can be defined
based on suitable reference systems and one can construct prescrip-
tions how to measure them.

At equilibrium, state variables can be connected by equations of state.

Examples: Van-der-Waals equation, Curie law (M — CH/T = 0).

Remark: One equation of state is usually not sufficient to fully describe a
system. For example, the ideal gas law PV = N R1T does not provide
sufficient information for deriving the internal energy of an ideal gas.

To fully characterize a thermodynamic system at equilibrium, one needs
to know the thermodynamic potentials

1.1.2 Thermodynamic Potentials
1.1.2.1 Starting Point
The fundamental thermodynamic potential is the Entropy S
S(E,V,N) < E(S,V,N) contains all information on a system

S grows monotonously with E. i.e., g—fj > 0.
Total differential: dE = TdS — PdV + pudN

e First derivatives: %’VN =T, S—‘E/’SN =—-P %‘Sv =/l
— Equations of state
o 2
e Second derivatives: %L@N = —2—5|SN = %% etc.

— Response functions (compressibility, specific heat etc.)

However, typically, one is not interested in functional dependencies on the

entropy, but rather in functional dependencies on the temperature 7' = g—g

= Legendre transform, new thermodynamic potential:
Free energy F(T,V,N) = msin (E(S,V,N)—TS)
Differential: dF = —SdT — PdV + pudN

Analogously, one can define

The free enthalpy or Gibbs free energy G(7T, P, N) = min(F + PV)
dG = =SdT + VdP + pdN

The grand canonical potential Q(T,V, u) = min(F — uN)
dQ = —SdT — PdV — Ndu

The general grand canonical potential A(T, P, u) = min(G — uN)
dA = —SdT + VdP — Ndu

The choice of potential depends on the problem one wishes to study. For
example, in experiments, one usually has constant pressure, therefore it is
more convenient to work with G than with F'.
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1.1.2.2 Properties of thermodynamic potentials

* Gibbs-Duhem relation

E, S are extensive. = All thermodynamic potentials are extensive

In particular: A(T, P, u) is extensive, i.e., A ocN,
but does not depend explicitly on N = A =0

= G=uN, F=upuN-PV, E=uN—-PV +TS,

= SAT —VdP + Ndu=0 or £dT— XdP+du=0

(Gibbs-Duhem relation)

* First derivatives — Equations of state
Second derivative — Response functions

* Convexity

(i) Second law of thermodynamics: S is maximal
= S(E,V,N) concave (N)

(Mathematically: Given a system (

&
=
3

Consider potential subsystems (E;

Define e = E/N,v =V /N,e; = E;/N;,v; = V;/N;

z,‘/;L,Ni) (Z_ 172) a4
with Y, Ny =N, ¥, Vi=V, Y, Ei= E a{

% Asi+(1A)e

E/N

s(e,v) = %S(E, V,N),s; = s(ei, ;). e,

= e=MXe1 + (1 —Nea, v =2Av1 + (1 — Aoz
with X := N1/N

Then, one must have: s(e,v) = As1 + (1 — \)s2 !
(Otherwise, entropy can be increased by splitting
up the system into the two subsystems!)
= s o 0 ?s < 0,

0e2 Y gp2 TS
= Z5| <o, &5 < 0; Similarly: 25 <0.)
2 2 < . P] X U.
B2 |y N P V2| N ) oNZ| gy

(ii) = E(S,V,N) convex (u)

€,

e=Le+(1-1)e

' Entropy can

S/N
.

-° 7 be increased

by phase separation

(Reason: According to (i), we have s(e,v) = As1 + (1 — A)s2
Insert e = Ae1 + (1 — A\)ez; Consider inverse function e(s, v)
= s(Ae1 + (1 —Nez,v) = As1 + (1 — X)s2 =: § = s(e(5,v),v)

s(e,v) increases monotonically with e
= e(§,v) <Aer + (1 — Aez =
’E ’E
WVN> 5 WSNZOEtC.

) s

2 2
2520, Z5>0

(iii) = F(T,V,N): u as a function of V

. 2 A
N as a function of T’ (ZE — _or

General (except for S)
concave (N) as a function of intensive variables
convex (U) as a function of extensive variables

Consequences: Thermodynamic stability conditions
Positivity of compressibility and specific heat etc.

E/N
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1.1.2.3 Thermodynamics of phase transitions

* Examples:

(a) Liquid-gas transition

Phase diagrams in the planes
P-T),(V-T),(P-V)

Example of isotherm in (P — V)
(P(V,T =Ty))

Corresponding free energy curve
(F(V,T =To))

Corresponding Gibbs free energy
(G(P, T =Tp))

\‘ ﬂLegendre

transform

(b) Magnetism: H

Phase diagrams in the planes
(H_T)’ (M_T)7 (H_M)

Example of isotherm in (H — M)
(H(M,T =Ty))

T
—_—
T
Corresponding free energy curve M
(F(M, T =1Tp)) = 7
. L d
Corresponding Gibbs free energy forbidden \ oFs / /trangg)?; re
,/ !

(G(H7 T = TO))

Phase diagrams etc. have a similar topology than in the case of the
liquid-gas transition

Main difference: No phase coexistence at equilibrium, because mag-
netization is not a conserved quantity ~» Spins can flip.

~» "Forbidden” regions instead of coexistence regions
(In real systems, however, nonequilibrium states where domains
with different magnetization coexist are possible and even fre-
quent).

* General remarks:

At discontinuous phase transitions where phases may coexist:
— Intensive variables are equal (P, T, 1)
— Extensive variables "split up” (V' — V(1) + V(2),- )
~+» Consequences for phase diagrams
Intensive variables, e.g., P — T diagram
— parametrized lines (in 2D) or surfaces (in 3D)
Extensive variables, e.g. V — T diagram
— at discontinuous transitions: Coexistence regions or

forbidden regions (areas, volumes)
at continuous transitions: lines, parametrized surfaces etc.

Characterization of phases via “order parameter”: Must be extensive
(must be able to distinguish between coexisting phases)
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* Gibbs phase rule

Example, how general thermodynamic considerations can be used to de-
duce specific statements on phase transitions.

Consider a simple one-component (N PT') system.
Analyze coexistence lines in the (P — T') phase diagram.

If m phases coexist, then the chemical potentials u of all phases have
to be equal py (P, T) = po(P,T) = -+ = pm(P,T)
= (m — 1) equations for two parameters (P and T')
= At most m = 3 phases can coexist (triple point).

More generally: Consider n-component system (NyNj--- N, PT) ,
= n chemical potentials have to be equal in all m phases
= n-(m — 1) equations for 2 + m - (n — 1) unknown parameters

(P, T and c¢;q: concentrations of component i in phase o
with ). ¢ijo = 1) for all phases «)

= f=24+mn—1)—n(m—1) =2+ n—m "free” variables
Require f = 0 = At most m = 2 + n phases can coexist!

Exceptions are possible if certain symmetries ensure the validities of some
of the equations.

x Classification of phase transitions

A phase transition is always associated with a singularity in the thermo-
dynamic potentials (as a function of intensive variables). This motivates
schemes to classify phase transitions.

Ehrenfest classification

First order phase transition: First derivative of the thermodynamic
potential with respect to an intensive variable (e.g., temperature
or an applied field) is discontinuous, makes a finite jump.

NB: Jump in the derivative with respect to temperature indicates
production or consumption of latent heat at the transition.

nth order phase transition: nth derivative is discontinuous, makes
a finite jump

Definition turns out to be problematic, because the second derivatives at
“second order transitions” often diverge instead of simply jumping.
~» The singularity is not characterized sufficiently !

Possible way out: Fractional derivatives

Most common approach in the literature

No ”classification”, but just distinction between first order transi-
tions and continuous transitions

Later (Chapter 6), we will learn that it is possible to classify phase tran-
sitions in terms of so-called universality classes.
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1.2 Statistical physics

Thermodynamics:

Macroscopic state variables and relations between them
Axiomatic (laws of thermodynamics)

Statistical physics:

Starting point: N ~ 102

Hamiltonian 5 (p;, ;)

microscopic particles, 6N degrees of freedom,

Different types of coupling to the environment

— isolated (microcanonical ensemble)

— energy exchange is possible (canonical ensemble)

— energy and particle exchange is possible (grand canonical ensem-
ble)

Ansatz: A microscopic description of the full system is neither possible
nor sensible.
(e.g., would require 3V initial conditions)
— Restriction to statistical statements

1.2.1 Basic assumptions

— Ergodic hypothesis: In the limit ¢ — oo, the system comes arbitrarily close
to every allowed configuration for almost all initial conditions.
Mathematically: Time average = Ensemble average

— Principle of maximal ignorance (Jayne’s principle)
Define information entropy of probability distribution p(I") for config-
urations I'

I'==2rpp(I) () = —np)

!
= | = max

— Additivity: Subdivide system into two subsystems

— I =10 + 1@ & Partitioning possible: prt = p(Up(2)

1)@
0 @ = Particles are indistinguishable!

1.2.2 Consequence: Distributions p(I')

(a) Microcanonical ensemble

Energy is in the interval [E, E + dE]
— Number of possible states: A (E)
= p(0) =1/ A(E);  luax = InA(E)
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(b) Canonical ensemble

I is maximal with boundary condition (EY = E (and drp=1)
— Lagrange parameters 3, A

= 6(Lplp+ AEPE - E) + X(Tp-1)) =0
= Inp+14+BE+A=0 = poxe PP
= Boltzmann distribution: p(E) = g%efﬂE
with 2, = Y e #¥: Canonical Partition function
Lax = =2 pInp = KE) + In Z;

(c) Grand canonical ensemble

I maximal with boundary conditions (E) = E, (N) = N, Sp=1
— additional Lagrange parameter (—u03)

o p = e PE)

with 2. = e #(E=#N). Grand canonical partition function

Lnax = BE) — i{ND) + In Zy,

1.2.3 Relation to thermodynamics

(a) Initial remarks:

* Partition the system into two "weakly coupled” subsystems
= Eym = EM + E® for all partitionings
with p(E) oc e PF
and p(E) = p(ED)p(E®) oc o8B e 8 D
= 1) = B2 = 3 is an intensive quantity.

* (F) is extensive and (E) = —‘”{;‘;z) = In Z is extensive
—aé? = ((E?) —(BE)®) = (AE)? is extensive = 5F oc , /<17>

~> In the limit (N) — oo, the relative energy is arbitrarily sharp!

* Analogeously: pu is an intensive quantity, (N) — o0 = % -0

(b) Thermodynamic potentials

— Grand canonical ensemble:
Define 2 = —% In 2, = Q(B, )

1 1 1 024 1 1 024
= A2 =df{gm In % — 555}~ 5o, o

= S {In 2 + BUE) — i(N))} — 5B8(N)du
= P L — (Ndpe
Identify: u = chemical potential
B = 1/kgT
Lax S/kp
= dQ = -5dT — Ndp

= () corresponds to grand canonical potential in thermodynamics
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— Canonical ensemble
Define F(8, N) = —51n Z,(5,N)
Grand canonical potential: Q) = —% In %5 = —% In (X eﬂHNﬁfc(N))
NY—
AN I (P Z(N))) = F— N
F' corresponds to canonical potential in thermodynamics

— Microcanonical ensemble with fixed energy E

Start from canonical potential:
s i
—%lnﬂi:—%anEe BE ~ —%anV(E)e BE

=E—3In AN (E)=E-TIp o /kp=E-TS

(¢) Thermodynamic limit

To map different ensembles onto each other, we have used that a system
can be partitioned into "weakly coupled” subsystems.

= Energy exchange must be possible (otherwise, thermodynamic equi-
librium cannot be reached), but E = Y, E® + §E with §E/E — oo

< The energy F must be extensive (likewise, F, (), - - - must be extensive)

This is the central assumption of the thermodynamic limit!

Beware: The thermodynamic limit does not always exist!

Example: Consider a system of particles with pair interactions that
decay according to a power law: U(r) oc A/r?

Calculate the energy of a sphere with radius R (volume Vg)
and homogeneous density p in d dimensions:
= FE(R) = Ap SV ddr ddy’
T=RZT
=Ry dad d
= ’ A% Sunit sphereV] R2 d z d y ‘ﬂ “laRo
2
= £ R?*~“const. (with const. = = Af, dd:cddylm 1y|‘7)
= With V(R) oc R?, one gets E(R)/V(R) o« R4~
= The thermodynamic limit exists only for o > d
(at 0 = d it turns out that F(R)/V(R) o In R)

Consequence: In three dimensions (d = 3), the thermodynamic limit
does not exist for o = 1, e.g., systems of particles with Coulomb
interactions or gravitational interactions!

Can often be fixed for overall neutral systems of charged particles
(electrostatic screening), but not for gravitational interactions!

|7 f’l

Why the thermodynamic limit is important

e Necessary for equivalence of ensembles (see above)

e In the canonical and grand canonical ensemble, phase transitions
are only possible in the thermodynamic limit.
~» See next chapter!
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Chapter 2

Introduction: Phase Transitions

2.1 Spectrum of possible phase transitions

A |

Temperature Phase transitions
of the early universe

Plasma

Gases

Liquids
Mixing / Liquid Structural
Demixing crystals glasses

N

Crystal (ordered solid)

/ I \ Metal / insulator

Structural

Order—disorder Magnetism transitions
modifications

transitions

Superconductivity

Superfluidity

Bose Einstein condensation

11



12 CHAPTER 2. INTRODUCTION: PHASE TRANSITIONS

2.1.1 ”Classic” phase transitions
(a) Liquid-gas transition

e Phenomenological description via van der Waals equation:
(P +a/V?*)(V —b) = RT |, with

b: Reduction of accessible volume due to own volume of particles
a/V?: "Internal pressure” due to interaction between particles

— Two classes of isotherms (lines with temperature 7' = const.)

e Small T: P(V) exhibits "van der Waals loop” — unphysical!
mechanical equilibrium: Pressure must decay monotoneously
— phase separation, horizontal isotherm in two-phase region
chemical equilibrium: Chemical potential identical in both phases
— Maxwell area rule (proof: exercise)

e Large T: Pressure P(V') decays monotoneously, no phase transition

_ 0P

= 52 =0

Ve, Te Ve, Te
To analyze transition point: Rewrite van der Waals equation as
&V, T,P):=V3—-V2(b+ RT/P)+V a/P—ab/P =0

e Transition T,: Critical point with 2—5

oP 0P L) a2p foat % 0% 2o ok
((W)T = 7(W)P,T/(ﬁ v, T (E)V2 )T = *(aVQ)P,T/(ﬁ)v,T +(W)P,T(9V3V)T/(ﬁ)?/j
2 . . . 2
= (%)T = (%)T = 0 with ® = 0 implies (%)P,T = (%)P,T = 0)

— Location of critical point:
via ®(V,,T,, P.) = (V — V,)3 (three zeroes collapse)
Insert and compare coefficients = ’VCPC/ RT. =3/ 8‘
(Experimental values: 4 He: 0.308; Hy: 0.304;
O2: 0.292; H20O: 0.230)
— Behavior in the vicinity of the critical point

Compare different paths:

() V=V ip = —F 55| [T =T
with v =1

(i) T=T. P—P.oc|V-V°
with § = 3

(iii) Coexistence: Vi, — Viquia ¢ (T — T)P
with f=1/2

— Algebraic behavior
Critical exponents 7,4, 8 (exp.: v = 1.24,0 = 4.8, 5 = 0.33)

e Conclusions:

Phenomenological description, surprisingly successful
Universal properties at the critical point
(power laws, critical exponents independent of material)
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(b) Magnetism

H | Tlarge T small
e Phase diagram

M

Magnetization of a ferromagnet S
My(T'): Spontaneous magnetization /‘ ’

e Description by phenomenological theory

. : _C
Ideal paramagnet: Curie law M = = H

Ferromagnet: Curie-law + molecular field: H,.,, = AM
(H o o¢ M: interaction with magnetized environment)
= M =%(H+AM) (Curie-Weiss law)
= High temperature: yr = %|T oc ﬁ oC rch'
Low temperature (T' < T,): Description breaks down
Curie law must be replaced by more accurate law:

M o tanh(CTH) — spontaneous magnetization etc.

e Comparison with liquid-gas transition

Phase diagrams:

Critical point

Critical point

gas —>
liquid

Critical exponents:

— Order parameter: Mo(T); (Viase — Viiquia) ¢ |T — Tc\ﬁ

J(order parameter) —
d(conjugated field) o ‘T - TC|

é
— Order parameter < conjugated field: { (P — PH) ?)Cc](\\f/ _v )6 }

— Specific heat: Cy; Cy oc |T — T |

— Susceptibility, compressibility:

Values of critical exponents:

Same for both systems within phenomenological theories:
a = 0 (corresponds to a jump)
B = 1/2 (corresponds to a jump)
v =1 (corresponds to a jump)
d = 3 (corresponds to a jump)
(experimentally: not exactly the same, but similar)
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2.1.2 Other Examples of phase transitions

(c) Demixing of fluids 71 e6.8°C homogeneous
Example: Phenol and water liquid
Twoiphases
~37 %
% Phenol
(d) Antiferromagnet
Atfixed H > 0 Picture: ferromagnetically ordered sublattices

paramagnetic f ¢ f .
2~1/(T=Ty) HH Order parameter:

444 “sublattice magnetization”

(e) Order-disorder phase transformations

e Example: Brass (CuZn alloy)

Zn
it lattice A
JJQ\ Ps Cu/Zn 6§qu attice
R & Cu
(/j; i i Sublattice B
®-® GO
disordered ordered: different compositions

on different sublattices
~~» Positional order

e Example: KCn
CN™

dipoles
K+
(a) (b)
— >
disordered aligned along (110) axes directed orientation

no directed orientation
~» Qrientational order

Order parameter:
(a) Orientational order tensor
(b) Mean orientation : }0; with ; = +1 for &. &

(f) Structural phase transitions
Example: Ba Ti Og

cubic symmetry tetragonal symmetry

Description: ”Condensation” of a specific optical phonon
with q = 0 — ”soft mode”
When approaching the phase transition from the “disordered” state,
this phonon becomes arbitrarily "soft”.
Amplitude ¢ of this phonon — "Order parameter” {¢)
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(g) Melting and freezing

pX) p® “Freezing
¢ 5 of density fluctuations”

L X
T>T, T<T,

— Phase transition is always discontinuous

~ Possible description: p(7) = Y5 pge" ™. with order parameter {Pa}
(h) Liquid crystals

Liquids of strongly anisotropic molecules or building blocks

Possible phases:

I\/

— Disordered:
I\/’
— Nematic: . . No positional order,
but orientational order
. . .. . Order parameter: Orientation tensor
— Cholesteric: ‘\ " . Nematic within (zy) planes
‘ Twisted in z direction

' 1
\\o'}’

— Smectic A: 1] ) “ ) Nematic order
) Positional order in one direction (layers)
AP Positionalo
iquid within layers

— Smectic B: X’ xl Same as smectic A,
1000 09 but tilted orientation

Application: Liquid crystal displays (LCDs)
— exploit optical anisotropy in nematic or smectic phases

(i) Macroscopic quantum states

e Bose condensation: Consider a gas of non-interacting bosons

At low temperatures, high densities: No/n
Macroscopic fraction of particles 1
occupies ground state.

<o) = Jo
Orde.zr parameter: w = \/ne’ Condensate
with n(r): density of condensate T

e Superfluidity: (He3, He?)

Superfluid state: Similar to Bose condensate, P Solid hep
but "liquid”, not "gas”
. . b .
(particles interact strongly) 7 Normal fluid

. . . 1 H
Consequences: e.g., dissipation free flow \~line

Superfluid
through tubes and capillaries e %s T

Normal gas
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e Superconductivity:

Superconductive state: Bose condensate
of electron pairs (Cooper pairs)
Consequences: No resistance
(~ dissipation free current)
Meissner effect (magnetic fields are expelled),
etc.

(j) Phase diagrams of quantum chromodynamics

(Schematic conjectured)

Quark-Gluon Plasma

Nuclear
Color
Gas Liquid \ superconductive

(barionic chemical potential)

(k) Electroweak phase transition

Depends on the mass of the Higgs boson

— Large — Spontaneous symmetry breaking

— Small — Symmetric

H Type |

Normal conductor

Superconductor
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2.2 Description of phase transitions:
Important concepts

(1) Order parameter

A quantity, that distinguishes between phases, e.g., magnetization
(ideally zero in one of the two phases)

Continuous phase transitions
— Order parameter vanishes continuously at a critical point 7,

"First order” phase transition
— Finite jump at the transition point

= Order parameter should be extensive !
If it were intensive, the second scenario would not be possible!

(2) Fluctuations

In the vicinity of phase transitions, one often observes strong fluctuations
— in particular, close to continuous phase transitions

Examples:
e Liquid/Gas critical point: Strong density fluctuations
(critical opalescence)
e Soft mode at structural phase transitions

Fluctuations are generally related to susceptibilities
(e.g. density fluctuations <> compressibility)
~» Susceptibilities often diverge in the vicinity of phase transitions

Consequences:

e Energy fluctuations: Peak in the specific heat
~» Calorimetric measurements are often the first method of choice
when looking for possible phase transitions

e Large correlation lengths / cluster sizes
~» experimentally measurable effects (e.g., critical opalescence)

e Large clusters — longer relaxation times "Critical slowing down”
(Ordering processes are slower close to phase transitions)

(3) Symmetry and Symmetry breaking

Phase transitions often come with changes of the symmetry of a system
(e.g., magnetism, order-disorder transitions, electroweak transition)

In such cases, the order parameter characterizes the symmetry breaking.
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(4) Critical behavior

At the critical point of a continuous phase transition, one often observes
— Power laws

— Critical exponents
— Universality

e.g., Liquid/Gas: Compressibility xp oc |T' — T| ™7
Pressure <> Volume at T,: |P — P.| oc |V — V,|°
Coexistence curve: V.. — Viguia € (T — T)?
Magnetism: Susceptibility x = (%)T o |T =T,
Field < Magnetization at Tp.: |H| oc |M|°
Magnetization: M oc (T, — T)?
in both cases: Specific heat: coc [T — T,|*
Specifically: Categorization in universality classes
according to: — Spatial dimension

— Symmetry of the order parameter
— Range of interactions

(will be explained in more detail later)

(5) Thermodynamic limit

From the above, one concludes:
Phase transitions are always associated with singularities
First order phase transition: Order parameter jumps

Continuous phase transition: Power laws or essential singularity

~+» Phase transitions can only exist in the thermodynamic limit!

Reason: Consider canonical or grand canonical ensemble
In finite systems: F = —% In % = —% In Y e PEM)
— Finite sum of analytical functions
— Analytical function, no singularity
Singularities can only emerge if the sum is infinite.
Exception: In the microcanonical ensemble,
singularities may be possible even in finite systems.

Second (related) aspect: In the thermodynamic limit, it is possible to
effectively break ergodicity in macroscopic times.

Assume that a system is ergodic: Almost every configuration can
be reached after sufficiently long time.

In finite systems: ”"Sufficiently long time” means finite time.

In infinite systems: ”"Sufficiently long time” may mean infinite time
~» System is effectively trapped in one phase
~» Ergodicity breaking

(one possible signature of a phase transition)



Chapter 3

The Ising Model

3.1 Introduction

3.1.1 Definition of the Ising model

Given some regular lattice in d dimensions (d=1,2,3,...)
(e.g., in 3 dimensions, cubic, fcc, bec, ...)

Ingredients:
(i) Each lattice site carries a "Spin” S; = =+1, i.e., a variable that can
take one out of two values (not a quantum mechanical spin)
(ii) Cooperativity: The value of one spin influences the neighbor spins
(iii) Possibly an external "field” H that favors a certain value of S;
kinetic degrees of freedom (momentum etc.)

i
o

= Energy function H{Si}] = —J Z SiS; — HZSi

<ij) )

(”Hamiltonian”) nearest n7eighbors ‘
Cooperativity (ii) Field (iii)

The most common choice is ("ferromagnetic”),

but J < 0 is also possible ("antiferromagnetic”).
Based on the energy function, one calculates

— The partition function Z = Z{Sizil} e AXISH

— The free energy F' = —kpTIn &

etc.

Extensions and generalizations are possible and have been studied,

e.g., additional interactions between spins that are further apart,
anisotropic or spatially varying interactions J;; or fields H;,
Ising models on irregular lattices or other graphs, etc.

19
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3.1.2 DMotivation

e Original motivation: Designed as simple model for magnetism, therefore
"magnetic”’ language (spins, field, etc.)
However, the Ising model is actually not a good model for a magnetic
system, since magnetic moments ("Spins”) are quantum objects and three
dimensional vectors (S)

e Can be a good model for certain binary alloys in the context of order-disorder
transitions (a "spin” S = +1 then indicates the occupation of a lattice site
with an atom of type A or B).

e The Ising model at H = 0 is one of the simplest model systems that exhibits
a phase transition
~» used to study fundamental properties of phase transitions

e Universality: Many practically important phase transitions are in the so-
called "Ising universality class”, e.g., the liquid-gas transition, binary mix-
tures, ... (— see sections 4 and 6 )

(e Historically: Has been studied extensively. Many techniques and arguments
that were developed in this context are simply fun!
First case, where a non-trivial phase transition has been calculated ex-
actly from first principles, i.e., starting from the partition function of a
microscopic model)

3.1.3 History

1925: Introduction by Ising (in his PhD thesis, supervised by Lenz)
Model for magnetism
Exact solution in one dimension, unfortunately no phase transition :-(
(Ising believed /argued, that there would be no phase transition in higher
dimensions either)

1934, 35: Bragg, Williams, Bethe
Took interest in Ising model as model for binary mixtures
— Developed approximate solution methods ("mean-field approximations”)
that gave a phase transition

1936: Peierls
Argument, why there should be a phase transition in 2 dimensions
(not entirely accurate, later completed in 1964 by Griffiths)

1941: Kramers, Wannier
Symmetry considerations — exact expression for T, in two dimensions

1944: Onsager
Exact solution in two dimensions for the case H = 0
(Solutions for H # 0 also became available later.)
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3.1.4 Remark: Identifying phase transitions in the Ising model
Problem: For symmetry reasons, one always has M = (3,,S;) = 0 at H = 0.

— How can one identify a phase transition then?

Possible approaches:

(i) Calculate free energy F' and search for singularities

(ii) Introduce a symmetry breaking infinitesimal field H — 0%
Symmetry breaking phase transition: lim+ M(T,H) # lim M(T,H)
H—-0 H—0—

(iii) Symmetry breaking boundary conditions

++++++ 0
I - -
HOooE = My(T) o = —Mo(T)
H - -
+FFFFF . mm====

(iv) Analyze histogram of M
P(M) P(M)

(disordered) (ordered)

M= MM,
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3.2 One-Dimensional Ising Model

We first consider the one dimensional Ising chain:

N—-1
oo+ -+ 4 - = H=—J >, SiSit1
1 N i=1

3.2.1 Why there cannot be a phase transition

e "Ground state” (State with lowest energy)

All Spins have the same sign, e.g., + + + + + + +
Energy: £ = —J(N —1) =: Ej

e Lowest excitation:

One "kink”: +++ |- - -
Energy: E=—J(N —2)+J =FEy+2J
~» Energy costs compared to ground state: AE = 2J
~» Boltzmann probability of such a kink
P oc e PAE — ¢=287. Finite number (0 < P < 1).
But: Every kink destroys the order
Probability, that no kink is present (i.e., order persists):
-Pno kink o (]- - ‘Pkink)J\[_1 ]V;)m 0

!

possible positions of kinks

= Ising chain is always disordered !

NB: Argument does not work in two dimensions,

+++++ +++++
. . . . +++++ +4+ 44+
since lowest excitation (one flipped spin) HOHEHIHY B IS
+4++++ +++++
does not yet destroy global order 4t FHEte

Global order is destroyed by an excitation of the form

+H-——
+H-——
+H=——
++H-—
++H——

However, the energy costs of this excitation are: AE > 2JL
= Poe L) L 0for L - w0

L (boundary line between domains)

o+t
+ 4+t
+4 4+
+4+++
+++++
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3.2.2 Solution of the one-dimensional Ising model

N
Consider one dimensional Ising chain ¢ = —J )} S;S;11 — H Y, S

with periodic boundary conditions: Syyq :=5; =}

* Free energy: Exact calculation via transfer matrix method

Starting point: Partition function 2 = Z{s,} e AHISH

Notation (motivated by quantum mechanical bras and kets):
S2S) with§=+12(5), S=-12()
—BH _ PIS152+BH (S1+82) BIS2Ss+B Y (S2+53) |
= (S1|V|S2) (S2|V[S3)- -

GBIHBH T B
with V = ( 0B eB‘]*BH) (check by inserting!)

= €

=2 = 3 (Si|VIS2) (SwIVISi) = X(Si|[VV[S1) = Te(VY)

Si- S S1
= (A +A2) = AV (1 + (e/a)N) =AY
|\ —
Eigenvalues, A1 >Xg
=F=—kpTIhZ =—kgTNln\
Specifically: Eigenvalues of V' are given by
A2 = e?7 cosh(BH) + /€287 sinh?(BH) + e—287
(at H=0: M2 = e?’ + ef/BJ)

= F=—kpT N In| # cosh(BH) + /27 sinh®(BH) + =27/ |

In particular, at H = 0: F' = —kgT N In [2 cosh(ﬁj)]

Analytical function for all temperatures ~» No phase transition!
* "Magnetization” : M = (3}, S;) = —g—g

(Since: F = —/cBTanef’e%J = —kBTln(ZeB‘]ZSiSJJrBHZS"'
= 2 = RIS P BN [T e = (TS )

= M=--.= Nsinh(ﬂH)/\/sinh2(ﬁH) + e—48J
M/N
BJ —-0 : M/N ~ tanh(SH) jC)H
N : ~ _Simh(BH) _
BT~ o M/N~ ZOLC =sign(B])  wi__
— " step function

~» "Phase transition” at T' = 07

* Correlations: Gj; = (S;5;) — (Si){S;)
Specifically H =0 ~ (S;) ={(S;) =0

Longer calculation (homework) = | G;j; o e~ li—3l/¢

Wlthg(H:(),T):mNGQBJHOOfOI'B—)w
~» Correlation length £ diverges at 7' — 0

~» Characteristic feature of critical behavior
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3.3 Two-Dimensional Ising Model: Exact Results

Now we discuss the two dimension Ising model at H = 0,
H = —J 3, 8;S; (with (ij): nearest neighbors)
G5y
In this section we will restrict ourselves to the square lattice. (Generalizations of
the arguments below to other lattices are sometimes possible, but not always.)

3.3.1 Peierl’s argument for the existence of a phase transition

(Peierls 1936, Griffiths 1964, Dobrushin 1965)

Idea of the argument:

N +++++ o

— Consider Ising system {2 Lt w44 fixed
with fixed boundary condition: M M
A+t

Surrounded by spins S = +1.

— Show, that for sufficiently low temperatures, there exists an a > 0 such
that, at H = 0, the magnetization per spin Mg/N = %<Zl Siy is
always larger than o, Mg/N > «, independent of system size
(i.e., this system has positive magnetization).

— At these temperatures, limy_,o, g_,o+ M/N > a holds generally, inde-
pendent of the boundary condition. (H — 07 is introduced to break
the S = +1 symmetry in the absence of the boundary condition.)

(Reason: Free energy F(T, H)
Magnetization at H — 0% : M = —(2—2) N
H—0
But: F is extensive (additive) at L — o0
~> Boundary only contributes with surface term to F', Fgurf oC L ot/ N

> general = Fﬁ + ﬁ(Nl/Q) = Hli,n;)l+ Mﬁ = Hh—g)IJr Mgeneral + ﬁ(Nl/Q) )

Goal therefore: Search for lower bound for % =1- 2<]\]fv‘> in the system O
where N_: Number of sites with S; = —1

» Consider some (arbitrary) configuration ¢
Draw domain wall lines between spins of different sign
~» Lines form closed polygons
e = ~» Every spin S = —1 lies inside at least one polygon
+++++++  Label all possible polygons (— label p)
Define variables X, — 1 polygorll p appears in configuration ¥
0 : otherwise

l, := contour length of polygon p

Polygon p contains at most (I,/4)? spins
. Ip\2
= Estimate: N_ <3}, X, (%)

* Also holds in the thermal average = (N_) < >, (X;) (%”)2

Z/ e BH configurations % that contain polygon p

ith (X)) ==
b < p> Ze_ﬁ% all configurations
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* Upper bound for (X,,) and (N_)

, ) ) e R Y
Trick: For each configuration ¢ (in ¥) e +i|§|++++
) A+ AHT

that contains polygon p, construct a  H==——= +—>=++F++++

; « ) FEHA=JF+ Attt

partner configuration €* by invert- HI+FH+ HI++H
FF+++F+ A+

ing all spins inside the polygon.
~» Energy difference: (¢*) = (%) — 21,J
= Estimate : Y e A7 > Y e B = 28I NV o=BH
ok

all confs

= (X,) = S e A¥ < o287

e
number of polygons of length [

—
= (N2 < B, e () = e ()" ()
* Upper bound for n(l) (number of polygons of length 1)
Construction of a polygon:
First line: 2N possibilities (+ border) -1
<
Second line: At most 3 possibilities = n(l) S2N3

x Combine everything:
(N_) < Y, e 287 (L)?aN3i-l — N5 (36-207)!12 _ N f(36-267)
with f(:r) = 3(31(1_—;;33) (since: Y, 22 = %Zl(meaﬂazo =...= fﬁ;fg)
f(z) becomes arbitrarily small at z — 0:
For Ac;[)fample, choose 3 large enough f(3e72%/) <1 = (N_) < &

= TQ =1-— 2<]]¥,’> >1-— 2—14 independent of system size v’

3.3.2 Kramers-Wannier method to determine 7T,

Consider Ising model, square lattice, H = 0 : 44
. +++++

Number of sites: IV thoos
Number of edges ("bonds”): K o+t

This subsection: Exact method to determine 7, (under certain assumptions)
based on a comparison of different series expansions of the partition function
~> Smart approach (fun), will also teach us about series expansions

(a) Series Expansions of the partition function: Two approaches

(i) Low temperature expansion

A +++++ * 6‘122 Sis'i ,BJK
fT=0 G 2= Ny et
+++++
+++++
. +++++ .
* T finite: ‘. Polygons P with total contour length [
+EFF+ Costs: A = 2J1
+++++
Py = Z{Si} B Dagy SiSi e,BJKZe—Z,BJl(i)
P

ummed over all polygons
all polygon
configurations

(NB: Uniqueness: Polygons do not cross each other: = )
* At low temperatures, the dominant contributions correspond to
polygons with short contour lengths.

= "Low temperature expansion” Expansion in powers of | e =267/
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» Construction of the coefficients (lowest order terms)
[ = 4: +=+ — N possibilities

=62 — 3N -4 possibilities
I=8gd IN(N - 5)
@E - 6N — LN(N + 9) possibilities
+N

~ Py = e,BJK(l + Ne—28J-4 + INe 2876 + %N(N + 9)e725J-8 N

= General result: | Zy = eﬁ‘]KZ Z e 2871
L {P}

Possible polygon configurations made of boundary lines
with total contour length [ (all polygons)

NB: Expansion is finite (I < 2N) for finite systems
Infinite series at N — o0, possibly with convergence radius

(ii) High temperature expansion

xT—wor f=0 = 2y=73,1=2"= Z

BT X¢ijy 5iS)
. . S.S. € J
* T finite: 2y = >, B Laigy 9iS5 = ZNo Z{SZ}Z T

{Si} {S;}

_ B 2 izy SiSj
= Py (e i 217 >0
#7515 = cosh(BJ) + S;S; sinh(B8.J)

= P (cosh(BJ)E (TT( 1+USS)>

Ggy

—average at f =0

with v = tanh(5J)
* At high temperatures, the dominant contributions correspond to

terms of low order in |v = tanh(8J) |.

= "High temperature expansion™ Expansion in powers of v
* Construction of the coefficients: Graphical approach
Every term "v.5;5;” corresponds to a line ;—; along the edge (ij).

~+ First Order: — ;  Second order: —— + | ete.
o For unequal indices i, j, one has (5] .S/* )0 = (S;" )o(S7* o
For odd powers n, one has (S]")o = 0
~+» Graphs with free line ends or graphs, where an odd num-
ber of lines meet at one vertex, do not contribute
(e.g., first order terms: - 2 (S;S5;)0 = (S;)o{(S;j)0 = 0).
~» Only graphs consisting of closed polygons contribute.
o Lowest nonvanishing order: v* (O)
Next orders: v5 (C)

(O D+:}+m+|:|)

— General result: | 2 = 2"V (cosh(8.J)) Z Z (tanh(B.J))!
L {P}
Il
I
Possible polygon configurations made of edges
with total length I (all polygons)
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(b) Duality
Compare (i) and (ii): Very similar expressions

% =2 in both cases a sum over polygon configurations,
however, different alignment with the underlying lattice

i) Low temperature expansion

i) Low t t i
o 0o . . . .
ofo e Polygon lines perpendicular to bonds between lattice sites

(ii) High temperature expansion
: I_: Polygon lines lie on to bonds between lattice sites

Formal relation: Dual lattice

Original lattice: Ny lattice sites (vertices) -.._
Ny edges (bonds) ========-- , | or

Ny faces (plaquettes) - caaa--? g

Dual lattice:
Plaquette centers — vertices (IN§ = Na)
Bonds — transverse bonds (N5 = Ny) ,
Vertices — plaquettes (N5 = No)

Euler relation: Nog — Ny + Ny = Ny — N{' + Ny =2
(NB: The outside of the graph counts as one face.)

Consequence for partition function

High temperature expansion: Polygon expansion on original lattice:

Znomr(8) /280 (cosh(BT))N = 3 3] (tanh(B.]))!
U {Ph
Low temperature expansion: Polygon expansion on dual lattice:

Fg 12(8)/IN = %) 5 (20
L {P}

~+» Consider now an Ising model on the dual lattice with partition
function 277.. Then the expansions of 2, 2™ can be mapped

0
onto each other: QpﬁgﬂT(B*) o« Lz 1r(B)
with tanh(8*J) = e~ < | sinh(26.]) sinh(26*J) = 1 |

~» Duality relation: High temperatures map onto low temperatures
Specifically, the square lattice is self dual: Z7*(5*) = Z(5*)

Consequence for phase transition

Phase transition < Singularity of F' = —kpT'In & at N — o
Here: F(8) = —kgTIn (Y Y (e72#/)!) +N- analytic terms
L {P}
F*(8*) = —kgTIn (Y, Y (tanh(B*J)!) +N- analytic terms
L A{Ph
= If F(B) is nonalytic at 3., then F*(3*) is nonalytic at 5}
Self dual lattice: F*(5*) = F(8*)

= F(f) is also nonanalytic at 8, singularities come in pairs

Assume only one singularity = 3. = 8% = (sinh(28.J))? = 1

1 1
= @J:?mmMU:QmQ+V®:0MW
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Summary and Conclusions

e We have used symmetry considerations to determine T, without actu-
ally "solving” the Ising model (i.e., calculating the partition function)

e On this occasion, we also introduced the method of series expansions
for  — 0 and § — oo. They generally play an important role
independent of this argument here.

Remarks

e Duality trick does not work in three dimensions, since the lattice and
the dual lattice are too different

e The trick can also be used for the triangular lattice / honeycomb lattice
~» "star-triangle transformation”

_ 2 ++/3 : triangular lattice
) 1_
Result: (tanh(fcJ))™" = { V3 honeycomb lattice

3.3.3 Exact solution of the Ising model on the square lattice

In his original solution of the 2D Ising model, Onsager (1944) used the transfer
matrix method (see Sec. 3.2.2).

Here, we present an alternative approach due to Samuel (1980), which is based
on the high temperature expansion (Sec. 3.3.2) and the mathematical
framework of "Grassmann variables”.

For a more detailed discussion see also the book by F. Wegner:
"Supermathematics and its Applications to Statistical Physics”

We consider an Ising model with N = L, x L, spins on a square lattice

(1) General properties of Grassmann variables

e Symbols ¢ with §&; = —¢§;& (= £ =0)
Application example: exp(&;) =1+ &
e Generate so-called "Grassmann algebra”
with elements A = a + Zl a;&; + Zl}j ai; &6 +
e Formally define "Integration” via §déndén_1---d& && - En = 1,
where integral becomes zero, if one of the &; is missing.
Sdﬁdf eXP (€ag) = §dEdE(1 + €ag) = a
Sd eXP(ZU §z mgj) det(A)
Wlth §d[¢] = (déndéndéy_1dén_1 - - - d&d&
e Change of variables: Given a Grassmann integral §d[£]f[¢]
Linear substitution & — 60; = Zk Jikk
Then, one has (no proof): {d[¢]f[¢] = Sd[@]f[{[ﬁ]]m
NB: For nonlinear substitution rules, the transformation rule may
be more complicated, but we will not need that here!
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(2) Strategy for solving the two dimensional Ising model (Samuel, 1980)

* Starting point: High temperature expansion (Sec. 3.3.2)

IN = 2N(cosh(5J))2N,,%/”}\v with Zy = Do v!'P v = tanh(B.J)
with ZSKP: Sum over all configurations of closed polygons
[p: Total length of polygons
Idea: Generate sum over all polygon configurations
via Grassmann integral

* Procedure

1
e Assign four Grassmann variables fffr)n 4 Xe x3
(1 = 1-- 4) to each lattice site (n,m) >
e Define linker f Pairs of Grassmann variables .
Local: enm = §nm§ fori<yjy = x X
Bond: bnm = fnm ‘f n+1 ° x . .
nm = gnmE(Qm-i-l) % ’ X o xOx e X

X o X
X
e Define "action” (quadratic in 5)

SIE] = S [0 (acblih + aybh) + X aizéin)] = 3 cala
with az, ay,a;; = £1 (sign to be determined below).
e Consider Grassmann integral I = {d[¢] exp(S [{])
(Order: {d[¢] = SdeT Ly" §L, Ly 5(Lt)—1,L1 d§1 Ly dé.LT Ly—1" déli)
~» I has additive contributions from all configurations, in which
2L, L, linkers fa are distributed such that every position
(n,m, 1) is occupied by precisely one Grassmann variable.

Example: Conﬁgurations contribute (additively)

Y with {d[¢ Hcal o« +olp

~
R

e N e Sign: Depends on the power of a,, ay, a;;
N ’} % in I and the number of transpomtlons
Fo Ny needed to sort [],, [, by ascending fnm

= - | sums automatically over all configurations with closed
polygons. Free ends are not possible :-)
- Contribution of each polygon configuration is oc v'r :-)
- But: Prefactor could be negative :-(

~» Goal: Choose az,ay,a;; = £1 such that every polygon configuration
has the weight v'P. Then we have Zy = I, and I can be calculated
following the integration rules described in (1).

(3) Determination of coefficients ay, ay, a;;

First consider configurations, in which polygons don’t touch, i.e., don’t
share corners (For touching polygons see step (iii) below). Calculate their
weight by rearranging, reorienting and reassigning linkers.
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Notation: kg, ky: Number of bonds in z,y direction (Ip = k; + ky)
Np: Number of polygons

NB: Linkers commute, since they are pairs of Grassmann variables.
k, and k, are even, since polygons are closed.

Steps:
(i) Calculate contribution of isolated lattice sites

Three possibilities, N X,
SURCIIRN

Factor: (aj2ass + agsais — ajszazy) per site.

~» Postulate (a12a34 + a23a14 — a13a24) L 1
(ii) Now consider polygons. Assemble all bonds |,
belonging to same polygons together in chains. '

(ila) Reorient bonds in polygons such that they
run counterclockwise.
Costs: Factor (—1)ke+hy)/2
(half of all bonds must be reoriented)

(iib) Shift linkers in polygon chains by one £ Cp L e o
~» New linkers are all local. N y Wa
n;; new linkers of the form é%. SONTE +
Costs: (—l)NP (one cyclic permutation S Y
of £ variables per polygon) —
(iic) Reorient new linkers é() such that i < j R RE S S
Costs: Factor (—1)Zi=s " G a3
(iid) Determine weight of polygon elements: . \:\ A

k
- Bonds: v'r a¥ ay¥ = vt (ky, k, even)
- Joints between bonds:

+ + /./ /:/ \:\ N (7ij = ngj + ni)

34 n12 14 n23 (_ N4 ([ n13
ayst azi® asyt ayi’ (—ais) (—a24)

(Sign: §dg®de®dg®dg™elin e for site with linkers &) ¢*1))

(iie) Summarize: Polygon configuration has weight Wv'P with
W = 0?54 agfa%‘*a?j:‘a%‘* agis (_ 1)Np+%(kz+ky)+zi>j N4 +724+M13
Exploit relations between k; , and n;;:
— Every straight polygon line has corners at both ends
= Lines up: ky/2 — n21 = naa 4 naz = na1 + na1
Lines down: ky/2 — ni2 = naz + ng2 = nia + nas
Lines right: kz/2 — 143 = n41 + naz = N1z + nas
Lines left: kz/2 — n3a = nia + nos = n31 + N3z
— If one runs through a polygon in a counterclockwise way, one has
four more left corners than right corners.
= no4 + n32 + ni13 + a1 = 4N, + Nuz + n1a + na1 + Nos
— Collect all this:
n24 = Np +n31, n13 = Np + naz, n32 = Np +n1a. na1 = Np + na3
Ni14 = N2z, N13 = N24, ky — N12 = ky — N34 = N1z + N4

=W = (a13a24)ﬁ13 (_a14a23)ﬁ14 (a12a34)—ﬁ13—ﬁ14



3.3. TWO-DIMENSIONAL ISING MODEL: EXACT RESULTS 31

(iii) Possible choices for as, ay, a;;
* Recall |az| = |ay| = |as| =1

* Further conditions from (i) and (ii)

- !
(i) a12a34 + ag3a1a — ajzas = 1

. _ _ o o
(ii) W = (a13a24)"® (—a1aa23)"* (a12a34) ™37 "4 = 1V g, Nig
= ’ aipazs = —1, aizags = —1, apa3 =1, az,y= =1 ‘

Consistency check: What happens, if polygons touch each other?

Corresponds to bond constellation — : *= ("cross”)
Steps in (ii) turn this into \:\ or 4- -~ (equivalent)

~ In W (iii), two "corners” are replaced by one "cross”

’\:\ \:\‘ 2 (—a3)(—az) = -1 - \\ =—1 Vv
“y o2 (au)(am) =1 —» =1 ¥

Conclusion: Conditions (iii) make sure that I corresponds to a sum
over all polygon configurations with weight vt

= I=%= Yiep v'? hence I can be used to calculate 2
In practice, we still have some freedom and choose

a =—1,ay =1, a12 =a24 = —1, a3 =au = a3 =azs =1

(4) Calculation of the partition function

+ Remaining task: Calculate Zy = §d[€] exp S[¢]

with S[E] = X, [0(asbbim +aybiim) + Y-, aijétm] (v = tanh(5.J))
and coefficients aw 1y Gij from (3)
(6850 = &inen, Bk = el €l 0 Bl = Elhe) 1)
* Fourier transform: Assume periodic boundary conditions (as in 3.2.2).
Then, configurations exist where domain interfaces span the whole
system, i.e., they do not form closed polygons. However, the sta-

tistical weight of such configurations decreases exponentially with
increasing system size, and we will thus neglect them.

Define p, = 2%, ¢, = QL”l with ke [—Le Le] e [-Lz Ly

‘ 7’7 2772
and C,Z) =

«/L];Ly Zmn 7Z(pkn+qlm)§”m (= ggl)f -1 = Sl(czl)*)

= 0 = /L. L, -1 ei(PanzM)Cg)
S 6 = S Cé C(’ =32 ('Y - C('i)c(fi,fz)
() 1 ~3) e~ — (1) —i (3) ~(1) i
D bnm = 251 G § e = 2 Zkl ( e M =Gy e ql)
—q 4 —4 4 2 i
En'm bgly"')‘l - Zk‘l Cl(c 7 ,7le Pk = 2 Ekl (Cl(c Ci ),719 1Pk _Clil)c(fk),flezpk)

1) 4 (kD) (Kl
QZMZUC()A ¢ 71 Zkl(ZU Iil)A )C])*> =:5[¢, ¢*],
where Y}, sums only over half of the (kl),
such that (kl) and (—Fk, —1) are both fully covered
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0o -1 — pe~ i 1 1
(kl) _ 1+ ve'tt 0 1 -1
and A ~1 ~1 0 1+ ve~iPk
-1 1 —1 — veiPk 0
(kl) _ (—k=1) _ (k)
(NB: A7 = —A;;™ —A;7)

= Partition function (usmg equations from (1))
Zy = §d[€] exp S[¢]
‘ (Jacobi determinant is one)
— fal¢rla[¢lexp SI¢, ¢*] = §al¢ldlcTexp (S (X, 60 A5 ¢H™) )
=[]}, det AV = H(:lll) det A(kl)
= [T v/ (1 +02)? = 20(1 — v?)(cos py, + cos i)

(5) Conclusion: Exact solution of the Ising model

Free energy: (From 2 = 2N(cosh(5J))2N§’?V)
F=—-kgThZ%
—NkBT{ In(2cosh? BJ) + 5% > In [ (1 + v?)? — 20(1 — v%)(cos py, + cos ql)]}
v = tanh 5J

—NkpT5L 3, In [4 cosh?(28.J) — 4sinh(28.J)(cos py, + cos ql)]

Thermodynamic limit: Y}, — # SS:T dp, dp,

= | F= —NkBT JJ dps dpy In [4 cosh?(23.J) — 4sinh(26.J)(cos p, + cospy)]

Corresponds to the result of Onsager!
Analysis:

A phase transition is expected, if the argument of In[- - -] is zero.

~» cosh?(23.J) = sinh(283.J)(cos p; + cospy) for one (ps,py)
~» Possible for (cosp, + cospy) = 2, i.e., (px,py) (0,0)
Then, one has: cosh?28.J = 1 + sinh?28.J = _ 9sinh 208cJ
= (1 —sinh?28.J) =0
= B.J = 3arsinhl = 11In(1 + +/2)
~» Same result as in Sec. 3.3.2!
But: from the exact solution, one can also calculate other quantities,
such as, e.g., the specific heat — Exercise
(One obtains ¢ ~ In(T — T,): Logarithmic divergence)
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3.4 Series Expansions: General Remarks

Last subsection (3.3.2): Introduction of the concept of series expansions — an
important technique when studying phase transitions analytically

In particular, the high temperature expansion turns out to be a powerful and
highly versatile tool in statistical physics.

Basic idea (in quantum mechanics notation)

e For arbitrary statistical averages (canonical ensemble), we have
Tr( Ae—BH ) (Classically, "Tr” refers to the suitable phase
<A>ﬁ = o BH) space integral or sum, e.g. in the Ising model,
Tr(e ) ”Z{Si} -7 and H & 5 to the Hamiltonian.)
e Define 2p = Tr(1) and rewrite:
Numerator of (A)g: Tr(Ae PH) = %<Ae_ﬂH>0
Denominator of (A)s:  Tr(e #H) = %b<e_5H>o,
where (- - )o: Statistical average at 5 =0 (T' — o)

e Then expand (A)z = % in powers of 3
(e P =1-BH+L1p°H*+--)
Leading terms:
<A> _ (Ayo—B(AH Yo+ 2 B2(AH? Yo+
1=BHy0+ L0+
= (Ao — B((AH yo — (A)o(H o)
+ 387 (CAH®)0 = 2 AH)o(H)o — (ApoCH2)0 + 2 AyoCHD3 )
+0(5°)

Free energy (BF = —In(Tr(e ?))) can be expanded analogeously.

Very general approach

Low temperature expansions are also possible (see, e.g., Sec. 3.3.2), but the
design principles are less generic (Setting up such an expansion requires
the knowledge of the elementary excitations in the system).

General remarks on series expansions

e In general, graphical methods are useful for the construction, see, e.g.,
the graphical expansions in Sec. 3.3.2 in polygon configurations
(The "diagrams” of the expansion are the polygon configurations.)

e Simplifications can often be identified beforehand based on general
considerations (e.g., symmetry considerations).

e Important example: Linked Cluster Theorem: Only connected dia-
grams (configurations with connected polygons) contribute to FocIn 2,
diagrams with unconnected components cancel out.

(Heuristic "proof”: Every unconnected component comes with a com-
binatorial factor oc N. However, F' is extensive, therefore, they must
all cancel each other!)
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Analysis of series expansions

Starting point: Series f(z) = Y, anz"
Only a finite number of coefficients are known.

Question: Assume that f(z) has a singularity, f(z) ~ (z — z.) ™7
What can we learn from the series about the singularity?

Example: Consider simple function f(z) = (1 — z/z.)”7 (with 7 > 1)

= Expansion f(z) =, (;V)(%)nzn
= an = (H)"(-D" (7)) = (;)nw
an  _ 1 ytn—1 _ L(l—i—'y—*l)

Ay — Ze n
= Possiblé strategies for determining z.:

e Simply plot r, = aZ’_l - versus % ~» Axis intercept gives 1/z.!
(Generally, lim,,_,q az: gives the radius of convergence of
the series. Therefore, this method works, if the convergence
radius is determined by the singularity at z.)

e More efficient method: Eliminate term VT_I in our example
by choosing r, = n % — (n — 1);;‘:;

(Gives 1, = i in our example.
In general, corrections apply.)

e There exist numerous other, much more sophisticated ap-

proaches, e.g., Padé approximants.
Analyzing series expansions is an art in itself
If z. is known, similar techniques can be applied to determine ~.

For example, a simple estimator is Sp, =1+ n(22-2z. — 1)
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3.5 Mean-Field Approximation
Often less involved than series expansions, more general approach, not restricted

to regions without singularities. "Sufficient” for many purposes.

But: Uncontrolled approximation

3.5.1 Simplest approach: Spins in mean fields

3.5.1.1 Approach via effective field (intuitive approach)
+ + + H = —=J >, SiSj— H 3 Si
<igy
-+ + nearest n]eighbors
+—-=— Interactions < Effective field HY; = —% =H+J},S;

Mean-field approximation: Replace S; by (S) = m.
H.s = H + Jgm, with ¢: coordination number (cubic lattice: 2 - D)

Consider single spin in the external field H.g : %@ﬁf ) —Hg S
~» Partition function % = efHetr 4 o=FHes

Sty = tanh(6H.q)

Magnetlzatlon: m = m

= Implicit, self consistent equation for m: | m = tanh (,6’ (Jgm + H ))

At H = 0, the equation can be solved graphically:

B=F,
m m
s

Three crossings Only one crossing Tangent crossing

At the critical point 5 = S,
= Only one crossing point, but slopes are equal

= %tanh(ﬁchm)‘ =d ’ m =1
m=0

e
- )

Close to the critical point, tanh(---) can be expanded in powers of m.
= m = tanh(BqJm) ~ BqgJm — %(ﬁqJ)3m3 + -

= m(T) ~ \/3(BqJ —1)/(BaJ)? = V374 /1 — £y o (T = T)'/?

= Critical exponent g: f =1/2

Within this approach, one can calculate the spontaneous magnetization and
the susceptibility, but not the entropy or the free energy.
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3.5.1.2 Approach via free energy (Bragg-Williams approximation)

Starting point: Free energy F'=U — T

"Mean-field” approximation: Spins are not correlated:
~» Joint probability function factorizes: P(Si, Se,-,SN) ~ Hé\lep(l)(sj)
with p(l)(S ): probability distribution for single spin

(@) Energy: 1V = 3 = 3 =T B 5.8~ HES,)
<4 (=7 S - H5S)) = 4sam? —

(b) Entropy: . = —kp 2 g, . sy3 P(S1,-,SN8) In(P(S1,-, Sn))
~ —kp X5, PO (S1) -+ N, #D(Sw)| Z; mp0(S))]

= —kp X, S, pO(S) WV (8) [T (S, 0(S0)
~~ > \ J/
independent of j 1

= —kgN Yo pM(S) InpM(S)

Given magnetization m, uncorrelated spins S;
~» Construct probability function p*(S) such that (S) = m

Notation: p(j) = pM(+1), pM = pM(-1)
= <S>=p$) —p(_l) =mandp$)+p(_1) =1
= = rmy2, oY =1-m)2

= %5/ = —kpg (p(f) lnpgrl) +p(_1) lnp(_l))

_ _ 1+m 1+m _ 1-m 1—m
—kB[ 5 In =5 5 In 5 ]

F
= Free energy: N —%quQ — Hm + k:BT[HQm In 12’” + 1?" In 13’”]
Minimization: 2£ = —g.Jm — H + kgTiIn (1m) Lo
1+
= ln(1 m) =28(¢gJm+H) | = ’ m = tanh B(¢Jm + H) ‘
—-m

~» Approximation equivalent to the approximation of 3.5.1

3.5.1.3 Problems with this mean-field aproximation

— Geometry enters only via coordination number ¢
~» no dependence on dimension, local structure etc.

— Predicts a phase transition for the one dimensional Ising model (wrong !)

— Wrong critical point T, wrong critical exponents
Example: Two dimensional Ising model on the square lattice:
Mean-field —» f£.J = %, Critical exponent 5 = 1/2
Exact — Bed = %211&(1 ++2)=1.176
Critical exponent 3 = 1/8
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3.5.2 Improved theory: Clusters in mean fields

3.5.2.1 Approach via effective field (Bethe approximation)

. Cluster with central particle ”0”
h—%—do = t}fCluster = _J SO 23:1 S] - Heff 23:1 Sj
(Effective field H.g acts on outer spins only
Central spin is treated exactly)

= Z = (eﬁ(J+Heff) + e*B(J+Heﬂ))q : Contribution of Sy = +1

Cluster

+ (ef (=T +Hem) e—ﬁ(—J+Heff))q : Contribution of Sy = —1

<SO> =5 1 [(eB(JJrHeE) + e*B(J+Heff))q _ (eB(*JJFHeH) + e*ﬁ(*J+HeH))q:|
Cluster

(Siy = 52 [(eﬁuwem N e*B(J+Heff)>q71 (Pt — ot )
Cluster

n (e@(—HHeff) i e—ﬂ(—J+HeH))q’1 . (eﬂ(—J+Heff) _ e—B(—J+Heﬁ>)]

~> Condition for Heg:  {Sp) < (Sj) (=m)

cosh B(J + Hew) _ 2pH.4/(q—1)
cosh B(—J + H.g)

Solutions:

(i) Heg = 0: Disordered state
(ii) Hog # 0 (if B is not too small): Ordered state

Transition point: Expand about small H g

cosh B(J+Hegr) 1 o -1) H,
o | AL~ 1428 H g tanh BT | £ | 2Henl0=D) 5 1425 Mg |

= ’coth(ﬁcJ)zq—l‘ = 2/BCJ=1n(q32)

Remarks:

— In one dimensions, one has ¢ =2 ~» no phase transition v’

— Two dimensional Ising model on the square lattice:
Exact: (.J = 0.44
Bragg-Williams: f.J = 1/4 = 0.25
Bethe: f.J = In(2) = 0.35: Significant improvement!

— Higher coordination numbers:
Bragg-Williams: 26.J = 2/q
Bethe: 28.J =1In 45 = —In(1—2/q) = 2/q + -
~» Bragg-Williams and Bethe approximation agree at lowest order
of 1/q. Results are never identical!

— Critical exponents in Bethe and Bragg-Williams approximation are
the same: No improvement in this respect.
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3.5.2.2 Approach via free energy (Guggenheim approximation)

Main approximation in Bragg-Williams theory: Independent spins

Guggenheim approximation: Independent clusters, neglect cluster correlations

~+ Improved treatment of pairs of neighbor spins

e Probability for one bingle cluster:

pcluster(sch {S }) (SO) Hq (SOS]|SO)
conditional probability for (So0.S;) given So
S
3 P(S08;150) = p®(5657)/pM (S0)
with p(?)(SS;): Pair probability

() (S0
= (So) [T 1%(2‘0))

e Two neighbor clusters: Must correct for double counting of bonds

s pcluster(SO7 {S }) cluster(S()7 {S }’(SOSO )

S Sy
= pcluster (SO7 {Sj})pcluster (S07 {Sj})/p(2) (SOS(/)) .3%%—2

~> Whole system: P(S1,-,SN) ~ Hp 55 /le)
G5y

Construct probability functions such that (S) =m

Notation: p(il) = p(D(+1), p(ﬁ_r = pP(+1, il),pf)_ = p(_zzr =:qa
) 2) (2 _ 1+m O _ @ 4 @ _ 1-m

=>p?_2)=p+++p+_=(2)7, P =Pyt = o
=piy =1 —a, pl=15"—a

= Entropy: . = Z{Sl; ,SN}P(Sb" ,SN) IDP(Sl,' 7SN)

= 47 = ~kn( S pP(SS) p(S8) (g~ 1) TpO(S) mp(S))

= —kp { [(H2 —a)In(H2 —a) + (352 — a) In(52 - a)
+2alna] - (g = D[(32) In(152) + 152) m(52)]}

Energy: U = £y = —J4[07) +p®)) — 02 +p%))] = 74 (da—1)
Free energy: F =U — %Y

oF 1 oF

Minimize free energy: 5. s Bm L0
. %%—5=2qJ+%%[2ln(2a)—ln((1+m—2a)(1— —2(1))] Lo
(I+m —2a)(1+m+ 2a) _
= |48 =1n S0 ) (i)




3.5. MEAN-FIELD APPROXIMATION 39

e LOF 1[%111 1+m—2a 7q;11n 1+m] =0

N om B 1-m—2a 2 1-m
1 -2 1
- gln<w>:(q—l)ln< *m) (ii)
2 1—m—2a 1—m

Critical point: m — 0
(i) = | 0+ 22) ~ 22 | £ | (@= DI +2m) ~ (¢ - 1)2m |

2
= 20= gy, 1-20=50

4. _ 1-2a _ _ q
(i) = 4B J =2In 53¢ =2In L5 = Q,BCJ—ln(q_2)

Remarks:

— Same result as in Bethe approximation v’

— Systematic generalization to larger clusters is possible
~» Cluster variation method
Popular method in the context of order/disorder phase transitions
For large clusters: Very good phase diagrams
But still: wrong critical behavior (see next chapter)

3.5.3 Critical behavior in mean-field theory

As already mentioned earlier, one often observes critical behavior at continuous
transitions: Many properties exhibit singularities when plotted against
intensive variables such as temperature and magnetic field, which are often
characterized by power laws.

At a qualitative level, the same behavior can already be seen in mean-field
approximation. This will be shown in the present section.

Preview:  Defining ¢t = (T' — T..)/T. and d: Spatial dimension

Quantity Expo- Power law Value
nent Mean-field | Ising exact
2D 3D
6 m ~ (—t)P g =1/2 1/8 [0.33
Magnetization m ) m® ~ H §=3 15 4.8
att =0
Susceptibility x = g—g vy X ~ [t v=1 7/4 | 1.24
Specific heat
cy = T(%)H = (%)H a cg ~ [t a=0 O(log) | 0.1
Correlations
Gy =SSy =SSy | m | G@A~r | =0 | 14 |00
=: G(1; — 7) att =0
Correlation length
G(7) ~ e "¢ v £~ |t v=1/2 1 |0.63
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Calculation: In Bragg-Williams approximation

Bethe-Guggenheim calculation shall not be shown here, but the results
are the same. In the next section we will see, why.

Define and ’t:(T—Tc)/Tc:BC/B—l‘

with 8. = 1/¢qJ (¢: Coordination number)

3.5.3.1 Magnetization

Starting point: (see Sec. 3.5.1.2): m = tanh S(¢Jm + H) = tanh(%m + h)

At |t],|h| « 1, one has |m| « 1 and hence m ~ %m +h— %(%m + h)3

Consider limit t - 07, h =0

= m= %m - %(%m)‘g

= Zm=\B(-)"" = m~(-)? =
Consider limit t =0, h >0 (i.e., 8/8. =1)

= m~a~m+h—i(m+h)?

:hk%m?’—l—ﬁ(mQh,th) = h~m?

Il
o

= 1

3.5.3.2 Susceptibility

Starting point: Same as before in Section 3.5.3.1

Consider limit t - 0, h — 0

Define g(m, h) := tanh(%m +h)—m~ m(é —1)+h— %(%m)?’
— om 0 0
= g(m,h)=0 = mtz—ﬁ 52
with % =1, 28— (8 1)~ L(EmE =L+ (Gm)?)
om % Be t1 :t>0(m=0)
- - = — = — _
ol i (fmyz) B (2207 <0 ((5m)? = —31)
= vy=1
3.5.3.3 Specific heat
Starting point: U = (A7) = —J 2,,5(5i)(5;) = ~NJim? = _NQEC m?
- 0 T>T,
W1 m- = . T—T,.
(—t)3% = T (L) T <,

ou { 0 T > 1T,

= C = — = . _
=T, Nk (T <T. with (T —T,)

Consider limit ¢ — 0: Finite jump =
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3.5.3.4 Correlation functions
Less straightforward, since correlations are ignored in mean-field theory.

Starting point: Consider Ising model at H = 0, regular lattice with simple unit
cell and lattice vectors 7;, d dimensions, periodic boundary conditions.
The interaction range is characterized by a set of neighbor vectors {7},
i.e., spins S;,S; interact if 7j; := (¥; — 7;) € {T}). NB: If 7 is a neighbor
vector, then (- 7) is a neighbor vector as well.

Goal: Calculate G(7;) = (SiS;) — (Si) {S;)
Trick: Use general relation between fluctuations and susceptibilities

Consider generally an energy function of the form B: 5 = 5% — HgB

Then we have the general relation (AB) — (A){(B) = %72%5
B o—BHo+BHR B
(Proof: (A) = éc ﬁz . e P A= %
onfigurations

A yZe—[3%0+[fHBBBBAi(Ze—ﬁﬁfg+[3HBBBB>(ZG—[3%0+HHBBA)
=

H

"= BAB) - B (B) V)
Of course also valid in the case Hg = 0
Here: Consider 57 = _J2<ij> SiS; — > HilS;
~> Inhomogeneous system with {(S;) = m; different for all
Solution as before: m; = tanh (B(J X, upore 5 ors M + Hi))

Can be evaluated = Gy, = (5;S;) — {(Si){S;) = L om;

=

D

BOoH; |y, _ovk
. 1 1 —
Solution for T' = T, : G(r) = on)? dek 7 etk T
T — N .7
1st Brillouin 1 /BJZT COS( T))
(Calculation:
First linearize: m; = tanh (8(J Y, m; + Hi)) ~ (J Y, m; + H;)
neighbors neighbors
= Z]. Bijmj = Hj with Bij = %5” _ { ‘g T:l S {7'}
= m; =Y. (B Y)i;H; = G(F) = %Z?}J = 4By

Then diagonalize and invert B by Fourier transform. Define B;; =: B(7i;)
= B(k)= Y e "B(7) = 3 — J Y cos(k - 7)

lattice
vectors 7

- %(B_l)i]‘ — ﬁ dek (,BB(E))_I ei(Fi—F’j)'E v )

(2w

1 } o
Simplification for ¢t — 0+: | G(7) = f dek __ BB etk
(2m)d )y

with é’,; = % and v(€) = Z—IqZF(é’- 7‘-')2

(Calculation:
Rewrite B(k) = i(t - éZ;(l + cos(k - 7))
t — 0: Main contribution to iI}_tegral stems from small k!
= Bxpand [+ 3.(1 = cos(h - 7)] ~ [t+ 4 0(ep)] )
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Consider ¢t = 0 (€r=T7/r)
d

_ 1 Be d 1 ik k=kr 1 B dj, 1 iker 22—
= G(r) = T 1, d% oy © = §.,d% o © r

(2m)d (2md B

independent of r

= | G(7) ~r¥ = | n=0

Now consider case t — 0
— ﬁC d
= G(F) = = ¥ §,d%

@ma

1 ik k=kr 1 Bo dj, 1 ikéx 2—d
tHRZu(gg) © = @nis §,0 A% 2 i+k2u(E;) r

e ’t«l = r’tax0 = G(F) ~ r’~? as before

e 72t > 1 : Choose z direction in direction of 7. Other directions: kL
1 (7 irky 1 d—1
= G(7) = 5= §7 dkg e 2 dr §d4 7y

1
Be (2m)d=T (k2+k7)v(Ep)

=:g(kz)
Use theorem of residues, search for poles p; of g(ks) in the upper complex plane.

= 3x §o dhae™g(ha) = i3, lim [z = ky)f(2) €] = const e
where p is the pole that is closest to the real axis.

Main contribution to the integral stems from k; ~ 0

= Pole at t = —k2v(€;) = ky = in/t/v(€:) =: i/£(Ex)

= [ G ~ e | i [e~ /v =

3.5.4 Validity of mean-field theory, Ginzburg criterion

3.5.4.1 Compare two methods for determining specific heat

Consider specifically the case t >0, t— 0"

Recall Sec. 3.5.3.3: ¢y = const = 0
Calculated from U = —J >3;,,(Si) {S;)

Now: Alternative calculation from U = —J 3, (SiS;j) = —J > ;1 Gij
using the results from Sec. 3.5.3.4

U=—-N;t A — 1 I kT
(27()?5': BrSillouin 17’8‘]2‘? COS(k.T)) 2 ;

Expansion about k =0

NkpT 1 dp. 1-K*v(ep)
QB (2m)d SOOd k t+k:2v(é'k)

l~€=E/\/i, t— 0t

NEpT ,d/2—1 1 dy. 1
o 2B tY (2m)d SOO d%k 1+v(€},)

= cpg = %% (ITC td/272 =+ Ttd/2fl o td/Q*Q at t — 0+

2 2

oc T t4/2-1

. finite for d > 4 : consistent with Sec. 3.5.3.3
H divergent for d <4 :not consistent with Sec. 3.5.3.3

= Apparently, mean-field approximation breaks down for dimensions d < 4.

~» "Upper critical dimension”
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3.5.4.2 Alternative argument: Ginzburg criterion

Mean-field theory neglects correlations.

~» should be oK, if the fluctuations within the correlation length £ are small
compared to the magnetization!

Consider V(§): Volume with diameter &

DN (CERRCATCH] RS WO NCHIED
V) V(E) Ve Ve y

-

~~

Zz‘eV(g) Zj Gij ~ ng (Ziev(g)<5i>)2 ~ (‘gd m)2

Note: Here we have used 3,1, Gij & 2,y (¢) Gij for Gij = (SiS;) — (Si){S;)
and x = 5 (3, 50)%) — &, 80)°) = B(x X)), G
. m 2
which follows from y = 22 = L 2.(3) Sy = £ 2 In 2y
(example of the relation between fluctations and response functions
probably shown in the theory 4 class; else prove it as an exercise).

X
= {dm2
= R|t|77F =28 « 1

R : System dependent factor (range of interactions etc.)

«1 with € ~ [t|7%, m ~ [t|?, x ~ [t|™7

At the critical point ¢ — 0

= Condition dv — 20—y >0 withy=1, f=v=1/2
= Fulfilled for%—2>0 =

~» Mean-field approximation captures correct critical behavior at d > 4.
However: Fails for t — 0% at d < 4
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3.6 The Monte Carlo method

Problem: Calculate partition functions, statistical expectation values, phase
transitions in the Ising model or other “microscopic” models

Looking back: Approaches we have discussed so far

3.3: Exact techniques
~» Exact solutions for special cases (1D, 2D Ising)

3.4: Series expansions
~> Also exact, but limited applicability (convergence radius)

3.5: Mean-field approximation
~» More generally applicable, but uncontrolled approximation

Question: How can one obtain an "exact” solution in the general case?

Answer: Up to now - Only numerically
"Sledgehammer approach’
—BI
Calculate (A) = % directly for finite systems
But: Use "smart” sledgehammer ~» Monte Carlo Simulations

Very general method
Broad applications in all areas of statistical physics and beyond. Also
heavily used in Mainz. Shall therefore be briefly illustrated here at the
example of the Ising model. (For more details see class "Computer simu-
lations in statistical physics”).

3.6.1 Main idea of Monte Carlo integration

—BA
Task: Calculate statistical expectation values (A) = %

Solution strategies

(a) Exact enumeration : Full Sum over all configurations

Pros: Exact

Cons: very time consuming, only possible for tiny systems
Inefficient at small temperatures, since most configurations don’t
contribute much to the sum

Way out: Monte Carlo Integration
Sum only over a random sample of configurations, not all!

(b) Simple sampling Entirely random sample (every configuration has
equal probability)
(e.g.: Sample j < N random numbers r9 e [0:1],

i
U _ +1 :ngj) > 1/2
‘ -1 <12

D
j= i

Analysis: (A) = lim, - A[{Si}]e_ﬁ%[{slw}]



3.6. THE MONTE CARLO METHOD 45

Pro: Results can already be obtained with small samples
Can be improved systematically by increasing sample size
~» One is less restricted with respect to system size
Cons: — No longer exact
(however, accuracy can be controlled via sample size)
— Still inefficient at low temperatures
(c) Importance sampling Draw sample according to the distribution
P{S;} oc e BX 1S}
Analysis: (A) = limy, o = P A[{Si(])]
Pros: — First results can already be obtained with small samples
Can be improved systematically by increasing sample size
(as in (b))
— Efficient: Configurations that contribute to the sum with
higher weight are drawn more often
(Cons: Not fully exact, but that’s life!)

= Importance sampling seems to be the method of choice, but ...

Question: How generate a sample with a prescribed probability distribution?

Solution: Generate a Markov Chain

* Stochastic process without memory defined by
— State space (Here: Configuration space I' = {5;}
— Transition probability Wp_,
~» generates chain of states I'g L Iy L I'y---
or, respectively, chain of probabilities P, (T")
Master equation: Py, 41(I) = Po(D)+Y . { W Pa(I) — YVF_,F/Pn(F)}
ﬂov: in ﬂov;( out

* For Markov chains with finite state space, one has a central limit theorem
(stated without proof)

If the Markov chain is irreducible, i.e., every state can be reached from
every other states (possibly by more than one step), then there exists
a unique stationary limit distribution P(I') with lim,, o P,(I') =
P(I'), independent of the initial distribution Py(T")

* The stationary limit distribution fulfills Z Wr_rP(I') = Z Wr_rP(T)
I"#D I
» = Trick: (Metropolis, Rosenbluth, Teller)

Construct the transition function Wpr_,v such that the limit distri-
bution is just the target distribution function. This can be achieved
with the following sufficient (but not necessary) conditions:

(i) irreducible (every state can be reached from every other state)

P
(ii) detailed balance Wror _ ,( )
Wr P(T)
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One example of a popular implementation is the Metropolis algorithm

WFHF’ = NFF’ min(l, 1];((11:/))) with NFF’ = NF’I‘
* In particular, to obtain the Boltzmann distribution, one requires
Wror _ —srm)-2() _ o-8AE
Wr_r
which in the Metropolis algorithm results in

WI‘HF’ = NFF’ min(l,e_'BAE) with NIT’ = NF’F

Remarks:

e The Metropolis algorithm is the most popular algorithm, but every
other algorithm works too, as long as it fulfills the conditions (i)
and (ii) or, instead of (ii), at least the condition of “global balance”
2 Wrop P(IY) = 3 5p Wrop P(T)

e It is not strictly necessary to target the Boltzmann distribution in
the Markov chain (i.e., choose P(T') ~ e ## . In some cases, it may
be more convenient to choose another target distributions and then
“reweight” the data when calculating the expectation values.

(~ "Reweighting” methods such as "multicanonical” sampling,
"Wang/Landau” sampling, "Metadynamics” etc.)

3.6.2 Examples of Monte Carlo algorithms
3.6.2.1 Simple ”Single Flip” Metropolis algorithm

Algorithm
(0) Initial configuration I' = {S;}
l
(i) Choose randomly a spin site j
l

(ii) Calculate energy difference AE between configuration T'
and a configuration I'* where S; — —S;
(2D cubic: AE =0, +2J, +4J)

(iii) Pick a random number r € [0: 1]

l
(iv) Adopt IV = T'* if r < e #2F  otherwise keep I'" =T’

l

(v) New configuration T

Remarks:

— Similar algorithms can be designed easily also for other systems.

— Close to the critical point, spin clusters become very large
~> Dynamics become very slow (critical slowing down)
~» Sampling becomes inefficient!
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3.6.2.2 Ising model: Cluster algorithm (Wolff algorithm)

Algorithm
(0) Initial configuration I'
l
(i) Choose randomly a spin site j
l

(ii) Identify neighbors k of j with same spin direction Sj, = S;
and bonds (jk) that connect them

(iii) Assign bond variables uj;, to these bonds,
choosing u;; = —1 with probability e 287,
Spins connected by bonds with u;; = 1 form a "cluster”

(iv) Identify neighbors of cluster with the same spin value.
Assign bond variables to unoccupied connecting bonds.
Extend cluster accordingly.

(v) Continue until cluster can no longer grow.

(vi) Change sign of all spins in the cluster (S — —Si)

(vi) New configuration T

Proof that this algorithm fulfills detailed balance

I',T: Configurations, in which light pink cluster
contains spins +1 or —1, respectively
Cluster is bounded by the countour L = It + [~
with {*: Boundary to spins +1 (dashed line)
[~: Boundary to spins -1 (solid line)
Transition I' — I': Energy difference AE = 2J(IT —17)
Wrop = Winsiae : e 28I
—=

&\,__/
Probability of having Probability that cluster

selected pink cluster ~ does not grow further
— e

—— —
WF’—)F = IA/insidc e_zﬁJl

Note: Wi,gae includes the probability of selecting all possible ways
to distribute bond variables u;; = +1 on the bonds inside the
cluster, as long as the cluster remains connected.

= WF—)F’/WF’_J‘ = e*25J(l+*l_) — efZBAE v

Remark: Global dynamics, totally 'unrealistic’,
but correlations break up much faster. ~» more efficient sampling!
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3.6.3 Problems” with the Monte Carlo method

If one could invest an infinite amount of computing time, the Monte Carlo
method would be exact, on principle. Nevertheless, one has to apply caution
when analyzing the data.

* In fact, the computing time is never infinite
~» Statistical error

x The systems have finite sie
~» Systematic error

Causes problems in particular in the vicinity of critical points, where the
corrrelation length diverges.

Way out: Finite size scaling (Chapter 5)

* When using importance sampling, the entropy and free energy cannot be
calculated directly. (NB: Similar to experiments: Only observables can be
calculated!)

~+» Special methods must be developed, e.g., "thermodynamic integration”,
determination of free energy differences from histograms etc.
(See textbooks on simulation methods)



Chapter 4

The Ginzburg-Landau Theory

Recall Chapter 3:
— Extensive discussion of the Ising model as one of the simplest “micro-
scopic” models with a phase transition

— Introduction of several methods than can also be applied to other systems
(e.g., transfer matrix method, series expansions, mean-field approxima-
tion, Monte Carlo simulations, others like renormalization will follow).

— Still, the Ising model is rather very special. It is not clear, to which extent
our findings can be generalized to phase transitions in general.

In this chapter: General approach, based on symmetry considerations, which
highlights the relation between phase transitions “of same type”. The
derivation is based on a mean-field point of view, but this can be relieved
later on.

Ginzburg-Landau theories are popular starting point for developing field theories
in statistical physics.

4.1 Landau expansion for scalar order parameter

4.1.1 Ising symmetry

Recall: Bragg-Williams approximation for Ising model

Close to T'=T., m = M /N is small = expand in powers of m.

= % = _LmQ + %[1+2m 1n(145m) + lfzm ln(lam)]

Be 2 1 4

The same form can already be inferred from general symmetry considerations
Requirement: & = f(m) symmetric with respect to m <> (—m).
F

1 1 1
— = a(T) + =b(T)m%+ =c(T) m* + Zd(T)mb + - .-
= N a( )+2b( )m +4c( )ym +6d( )ym® +

~» Landau expansion: Generally valid for systems with this symmetry!

49
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Remark and Caveat: Strictly speaking, the expansion in powers of m is only al-
lowed if F'/N is analytic as a function of m. At phase transition points, this

is not valid in the thermodynamic limit. Therefore, the Landau Ansatz
represents an approximation and cannot be exact.

(Way out: Corresponding expansion for small subsystems

~» Ginzburg-Landau theory)

4.1.1.1 Case ¢(T) >0

In that case, neglect d(T)

~» Graphical representation (vary b at fixed ¢ > 0): m

~» Continuous phase transition at b<0

In the vicinity of T¢, one approximates ’ b(T) =0b. (T —1T¢) ‘

|
Order parameter: g—f; =bm +cm? =0

= m=+4/b /eI, - T (T<T,)

= m ~ (T, — T)? with critical exponent | § = 1/2 |as in Section 3.5

Specific heat cgy:

&y = X% = —d(T) = 3V(T)m*— 1 (T)m* — 5b(T)(m?)' — 1c(T) (m*)’
CHZ%% ForT -T.: b=0, b = b, mzz%(TC T) - 0orm? =
2 _

~» Finite jump!

= "cg ~ |T — T.|*” with Critical exponent as in Section 3.5

Other exponents also the same as in Section 3.5

Reason: Results from the analytic expansion of F/N in powers of m. =
characteristic for mean-field exponents!

4.1.1.2 Case ¢(T) <0

If ¢(T) <0, d(T') cannot be neglected. Assume d(7") > 0
~» Graphical representation (vary b at fixed ¢ < 0,d > 0):
b1 = %: External minima form 3
by = %: First order phase transition
(with m3 = 3|c|/4d)
b = 0: Middle minimum at m = 0 disappears

Spinodals:

At b e [0: by]: metastable disordered states, "undercooling” is possible.

b € [bg : b1]: metastable ordered states, "overheating” is possible.
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The spinodals b = by, b = by mark the points where metastable states
become unstable.

Example: M,,0, antiferromagnet
Before b changes sign, one already has a first order phase transition

4.1.1.3 Special case b=c=0

~» Tricritical point

2
"Phase diagram” in the vicinity 39_‘ 1ed b
Practical relevance , "‘o, Disordered phase
First order "'a, c
If one has two intensive quantities Ty,
that do not directly couple to the Tricritical point Continuous
order parameter, a tricritical point Ordered phase

may occur.

Example: Uniaxial antiferromagnet
in a magnetic field

b=b(T,H), c=c(T,H)

Possible phase diagram:

4.1.2 No Ising symmetry
Example: Liquid-gas transition, liquid crystals,
Consider cases, where free energy F' does not have to be symmetric with respect
to an exchange m < —m
F

Known: £ — oo for large |m| = At least one turning point m in between.
Choose m axis such that m = 0, hence F'(m) = 0.

F 1 1 1
~ | = =a(T)+ =b(T) m? — () m> + ) mt

2 .
=b = ﬁ: Second minimum forms

b=1by= %: First order phase transition
(with mg = 2¢/3d)
b = 0: First minimum disappears

~» Similar scenario as in Ising symmetric case 4.1.1.2
— First order phase transition,
— Spinodals at b = 0 and b = by,
— Metastable states in between

Conclusion: If Landau expansion contains a third order cubic term due to lack
of symmetry, then the transition is first order!
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NB: Consider as an example the liquid-gas transition.

Generically first order — consistent with argument! b 552 c294d

Special point: b = ¢ = 0: If one has two control parameters sf First order
(T, P), a point (P,,T,.) with ¢(T,, P.) = b(T., P.) = 0 may c
exist. Here, the transition is continuous and Ising like! Ising C',Ii,,-ca, point

4.2 Landau theory in systems with multicomponent
order parameter

In this section, some examples are given how to construct Landau expansions
from symmetry arguments for more complex systems with multicomponent or-
der parameter.

4.2.1 Heisenberg model

System: Three dimensional spins on a lattice,
Interact with "Hamiltonian” 7 = —J >;s Si - S;

— Invariant under simultaneous rotation of all spins S5;

— Invariants: m2, (m2)2, ---

where m = <§> Order parameter per site
= Landau expansion: £ = a + £bm? + +c(m?)?

4.2.2 Heisenberg model with cubic anisotropy

Example: A real magnetic system on a cubic lattice.
Spins preferably orient along the main lattice directions.

Symmetry: mq < —mg for all pairs (a, )
— Invariants: m?, (m?)?, (mj + my, +m?)

= Landau expansion: % =a+ 3bm? + fc(m?)? + 1d (ml + mg +m?)

4.2.3 Three component order parameter with uniaxial anisotropy

Symmetries: m, < —m, (mg, my) invariant under (2D) rotation
2 4

— Invariants: m2, m2 +mZ, m3, (m2 +m2)?, m2(m3 + m3)

= £ _ a+zbm?+ Sc(m2+m2)+ 1dmi + e (m2 +m2)? + 1 f m2(m2 +m2)

N
Discussion:
b=0,c>0: Ising-type transition b
c=0, b>0:"XY"-symmetry XY-type

Ordered

(Mg, my) order in (m,,m ) |  Disordered phase

b = c = 0: Ising- and XY-lines meet:
Bicritical point .

b < ¢ < 0: Different types of order compete < First order
~» First order phase transition

Ising—type ¢
Ordered
inm,
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T

. . Bicritical poi
Example: Antiferromagnet with weak icritical point

uniaxial anisotropy in a homogeneous
external magnetic field H

Flipgflop phase
- =} H

"i

4.2.4 Two component order parameter with trigonal symmetry
Symmetry: Invariance under a rotation of 27/3
Examples: Some adsorbate systems /L\
Three-state Potts model:
H = _J2<ZJ> 5(]7;,(1]' with q; = 1, 2,3
Possible way to determine invariants:

Rotation by 27/3 2 rotation matrix = <

—1/2  /3/2
N

For any f (1), the function g(m) = f(m) + f(2m) + f(2*m) is invariant.

Apply this to polynomials f () to get invariants of ...

2nd order:  f(m) = m2, m — g(m) ocm2 +m.
f(m) = mgymy, — g(m) = 0 (trivial)

3d order:  f(m) =m3, my mg! — g(1m) oc my(3m2 — mg)
fim) = mg, My M — g(m) o mx(3m§ —m3)

4th order:  f(m) = my, my, mimi  — g(m) o (m3 +mg)?
FOR) = mgmi, mymi - g() =0

= % = a+%b(m§+m§)+%cmx(mi—3m§)+%dmy(m§—3mg)+%e(mg+m§)2

Remarks:

e Cubic term ~» phase transition is first order!

e Six-fold symmetry: Trigonal symmetry and mirror symmetry
~» Cubic term disappears, phase transition may be continuous

e Exception: 3-State Potts model in two dimensions: Trigonal symme-
try, but nevertheless continuous transition due to fluctuations !
(So this may occasionally happen, but as a rule, phase transitions in
systems with trigonal symmetry should be first order! For example,
the phase transition in the 3-state Potts model in higher dimensions
is first order)

4.2.5 Liquid crystals

Example of a more ‘ \ , —> . .
complex order parameter , N\ / - . . . .
Orientational order, - , .
but no positional order Isotropic phase Nematic phase
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Order parameter:

e Assume, there exists one preferred orientation _\

9
~» Suitable order parameter is S = 3(3cos? 6 — 1):
Disordered fluid: {cos?#)=1/3 — S=0
Ordered fluid: (cos? ) = 1 - S=1

e No preferred orientation ~» Natural generalization

Tensor: Qug = 3(0a0s — dup)
where &; points along the main axis of molecule ¢
Note: @ is symmetric with Tr(Q) = 0.

Landau expansion

e With preferred orientation: "Maier-Saupé model”
E=a+1b5%+ 1cS3 + 1dSt + - -
Due to the cubic term, the phase transition is first order.

e Without preferred orientation:

Invariants under rotation: Tr(Q?), Tr(Q?), Tr(Q*) = %(Tr(QQ))Q.
(Last identity holds because @ is symmetric and traceless)

= % =a+ 3b Tr(Q?%) + 3¢ Tr(Q3) + 1d Tr(Q*)
~+» Again first order transition due to cubic term!

4.3 Ginzburg-Landau theory

Extension of Landau theory for inhomogeneous systems
Here: Discuss only systems with one-component order parameter

4.3.1 Ansatz

Homogeneous system ~» Landau expansion
Different from previous section: Normalize with 1/V instead of 1/N,
ie, m=M/V, f:=F/V etc. Expansion still has the same form.

= F/V=a+3bm?>+Licm*—hm

Inhomogeneous system ~» Search for generalization

Naive Ansatz: F' = {d% f(m(7)) with f(m) =a+ 3bm? + zcm* —hm
Problematic, since the order parameter profile has no ”stiffness”,
i.e., it adjusts instantaneously to h(7)

~» Spatial variations of m(7) should be penalized

New Ansatz: Fm(r)] = Jddr (f(m) + %9 (Vm)Q)

Corresponds to lowest order expansion in m and Vm, taking into
account the symmetry m < (—m) and cubic symmetry in space!
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4.3.2 Interpretation
Question: What is the meaning of .%[m/(7)]? What does it describe?

(a) Not the free energy

e Not necessarily convex

e The free energy is a thermodynamic potential. It cannot depend
on a microscopic order parameter field m(7): Microscopic degrees of
freedom must be integrated out!

Instead: A functional (a function from function space to R), where the
partition function has been partially evaluated (but not fully)!

(b) "Derivation” of the Ginzburg-Landau functional

(Not a rigorous derivation, rather a description of the object that .#[m/(7)]
is supposed to represent)
Starting point, e.g., Ising model
Discrete spins S;
"Coarse-graining”: Averaging over blocks of size [y, where [y
has roughly the size of the correlation length far from T,
(but: chosen fixed, independent of T', not singular)
Slowly varying order parameter m(7)
No longer fluctuates on the scale of the lattice constant.
Fourier components with k > 1/ly have been integrated out.

Important: Block size Iy must be chosen with care
Too large ~» uncorrelated blocks, can be equilibrated independent
of each other, nothing gained!
Too small ~» correlations too strong and nonlocal, defining a "local”
quantity m(7) does not make sense!

Formal description: partial trace

Define m(7): Average over block vz: ~ m(7) = L 3.5

Now assume that m(7) be given, then we have
exp (= BZ[m(M]) = 3 e B TTL6(L 38— m(?)
{Si} " v

~» Calculate trace over all configurations which would yield the
order parameter landscape m(7) upon coarse-graining.

= Z|m(7)] has both energetic and entropic contributions!

Full Partition function:
% = { 2[m(7)] e BFIm(M)] = ¢—BF

~» Functional integral over all smoothly varying functions!
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(c) Comparison with density functional (for the experts)

Construction of density functional F[m(7)]

e Definition of a microscopic order parameter field m(7),
e.g. as in (b): m(7) = %Z S;

e Introduction of a conjugate field h(7) that couples to m(f‘)
= Modified "Hamiltonian” sZ[h] = 5 — {d% m(7) h(F)

~> Thermodynamic potential: G[h(7)] = —kpT In (Z{Si} e 5‘%2[}‘])
m(r) = (m(F)) = é 52¢ is almost always a unique function of h(7)

o Legendre transform: F[m(7)] = G[h(7)] — {d% m(7) h(F)
Then we have (exactly): F|p=o = {m(m F[ ()] (since £ = h = 0)

But: F[m(7)] and Z[m(r)] are not the same functional!
In particular, F[m()] is generally nonlocall

Moreover, m(7) (average local order parameter) does not refer to the
same field as m(7) (actual microscopic local order parameter)!

4.3.3 Brief digression: Dealing with functionals

I) Functional integral

f@[m(?)] o= lim [E[jo dmﬁ] o

lattice constant

e.g., in one dimension:
§2[m(z)] - = §dmo dm, dmag - -
—  Path integral

IT) Functional derivatives

Lo 0F[m()] L
Definition: “om) El_l,%lJr - [J [m(
Examples:
« Flm(o)] = [ dz f(m(z)
0.7 .1
= ) 213405 (000 e )~ St )
P lim —[Jde (f(m(2)) + €d(@ —y) ['(m(x)) = f(m(2)) )]
= §daé(z —y) f'(m(x)) = f'(m(y))
o Fm(z)] = fdac (dim(nlc))2
0F :
= 5] = tim = [ fda (& (m(@) +ed(e—y)) ) = (Em(@)*)]
=2 e () (e )

intcg;ltion _2Sd$ 5($ — y) dTQQm( ) 2d Qm( )
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N e m(F) =
Rules: 5m(mfd (M) =1
75m5(77’) T(T) =0(r—171)
— 1 d% (Vm(7)? = —Am
dm(r) 2Jd (Vim(r) A

Product rule, chain rule, etc.

IIT) Functional derivatives in the Ginzburg-Landau theory

Construct "Generating functional”

J P[m(F)] e PLPoImEA=§ % he m() | . 8P I)]

= Order parameter: (m(7)) = ( - 62%)

h(7)—07t

"Local” susceptibility: (meaning will become clear later)

:[6<m(F‘)>] _ 52F
Sh() 1, o+ 6h(77)6h(r) s

= = B ((mF)m (7)) — (m(7 >>< (7))

Same in Fourier space with m( _‘) = der e Tm(7)
h(R)] J@ Bl Folm(Fl— i [tk h(=F) m®) | _ _ o BFAR)]

x (7, 7)

h—0t

— Order parameter: (m(k)) = _(2+)d5h(§i:k) ’}Hw
Susceptibility:
(R R = [Smr]
= Gy ((m(Fym(=FK)) = (m(R)m(=F))
= ﬁ §ddr ddr’ R TR (7 )
Specifically, if x(7,7) = x(¥ — 7) (homogeneous system):
= X F) =50 o - )% - (NB: 5(0) = 57

Sk —
with v(k) = y(k, k) = e § dtre TR (P)
. . e ey 7. _ am

NB: Relation to global susceptibility x = §:
Choose h(F) = H = const., m = - { d% m(7)

= x =& §addr§at gm D = fddr x(7) = x(k = 0) )

MG

== DM —(M)?)  with M = {d% m(7).
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4.3.4 Mean-field approximation and transition to the Landau
theory

Preliminary remark: If the functional .%[m(7)] were known, the expression for
the partition function would be exact: 2 = § Z[m(F)]e 7 Im("

(a) Mean-field approximation

Ansatz: Main contribution to the integral 2 = { Z[m()]e” 37" = ¢=AF
comes from the minimum of .# = F = min .#[m(7)]

{m(m)}
Specifically: Consider .Z[m(7)] = §d%r [39(Vm)? + f(m) — h(F) m(7)]
Minimum £ =0 = _gAm—i-f’( )—h=0
Homogeneous system in the bulk (h(7) = 0, free boundaries)
~» m(r) =m = const., f'(m) =0, F=Vf(m)
~» Effectively a Landau theory
0 :b>0
|bl/c =: £mo :b<0 )
But: Ginzburg-Landau theory also allows to calculate mean-field profiles
m(7) in inhomogeneous systems! (see Sec. 4.3.6)

Specifically: f(m) = 2bm?+<m* = m =
( Y 2 1

(b) Next step: Gaussian approximation

”Saddle point integration™
Main contribution to the integral & = { Z2[m(7)]e ?7l"l = ¢=FF
stems from the minimum of .# and small fluctuations around the
minimum
Given .Z[m(7)] = min. for m(r) = m(7)
~» Consider m(7) = m(7) + n(7), assume 7 is small,

expand .Z|m + 17] up to second order in 7
d 0F d.d N -
F[m(r)] = Z[m(r)]+§dr S| n(7)+% §dird Tlém(f‘)ém(?’) mn(r)n(f’)
~———
0:m minimizes &
5 — B fddr adrt 27| () ()
= g — e_6</min S‘@[T](F)] e 2 om(7) m(7) . = e_BF
Gaussia:integral
Gaussian mtegral can be solved analytically.
~ Qﬂ- / det B(Sm('r) ém(r’)
Use . =TI, A e ZilnAi — o= TrnA) (with );: Eigenvalues)
2 g
= =%+ %Tr( IHW 7) + const
m
—B fade ade D27 (i) ()
Furthermore: (n(¥))oc § 2[n(M]n(F)e * o) om ™ | =0

i _ HKm(T om (7
= (m(F) = m(7), G = G

~» Basically same results than in mean-field theory.
Non-mean field behavior only emerges if fluctuations are large!
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(c¢) Application: Correlation functions in mean-field approximation

Consider homogeneous system with m(7) = m = const.

e ooy Smk) __B i 7
Trick: Exploit x(k) = e M (27r.)d<.m(k:)m(—k)? o
~» Response of the system to a periodic perturbation with
amplitude h(k) gives correlation functions in Fourier space
C(7) = (m(Fym(7)) — m* — C(k) ~ (m(k)m(~k))
Specifically: Consider again expansion m(7) = m + n(7)
Euler-Lagrange equation: bm — gAm = h = by + 3cm’n — gAn + O0(n*) = h
T>T. (m=0) : bn —gAn éh(F) 9
' o
T<T. (m=4/=2) : —2bp—gAn =h(P }Jr o)

In Fourier space

T>T., :bn+gk’n=~hk) = n(k) = h(E)/(b+ gk?)
T<Te : —2bn+gk’n=nh(k) = nk)=nhk)/2lb +gk?)
() (T KB SR OV
= Lorentz curve: C(k) ~ x(k) Sh(E)) Sh(R) C(k) K242
_ g/b T >T,
with =
¢ { o/ T <T.

Back transformation in real space ( for calculation see below or 3.5.3.4)

. e e e /e > 1
= | O™~ f Ak TC (k) ~{ 24 :ﬁ ol

Interpretation:
¢ is the correlation length, diverges at the critical point (b = 0).
At the critical point with £ — oo, C'(7) decays algebraically!
Critical behavior: Exponents v and 7 (Recall b = b.(T — T.))

e Correlation length: | { ~|T —T,|7" || v =1/2 (€~ 1/3/]])
e "Anomalous dimension™ | C(r) ~ 27 | | =0 |at T = T,
(exact: 2D Ising: v =1,7n=1/4 3D Ising: v = 0.63, n = 0.04)

(Addendum: Back transformation C(k) — C(7) (similar to Sec. 3.5.3.4)
CF) = premss O ~ [tk e oy
Use: (%) Sioao dp e "P¥ inag = %ef‘zl/a (derived, e.g., via theorem of residues)

d=1: [dkgpie= = née17/¢

d dimensions

. dy, ik 1 k=Fr o d( di —iken 1
| Choose z axis along €5, Set k=: (p, Q)

2—d (0 —1 d—1 1
= e dpe™ fd EFEESLENESE

X p2—d SSO dg ¢%? e VEHE)? 1

JeH(F)?

=:1(r/€)
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Consider asymptotic behavior of I(x):

. 2 2 ~ 1rg9\2 _ 12, 1
oo B k@~ el 5(1) =2+ 50 Veraatao
= I(z) ~ e 1 ( dg qd—2e—ﬁq2(1 L O(1)) ~ e gldD)2
—_—
r(i5%)z(d-1)/2

x—0,d>2 I(z)~ {dgq" e =T(d - 2).

d = 2: Exact solution {dge™V q2+12\/% = Ko(z) 3% —In(x)
g%tz

Apply this to C(F) ~ r*~91(r/€)
= /6> 1: Cr) ~ - @D/2e=r/e _ p(1-d)/2gr/e
p2—d ford > 2
r/E<1l: C(r) ~ { —In(r/a) ford=2 )

4.3.5 Validity region of the mean-field approximation

Mean-field approximation neglects fluctuations.
Question: When is this acceptable?

Estimate: Ginzburg criterion (see also Section 3.5.4.2)
Fluctuations of the order parameter in the range of the correlation length
must be small compared to the order parameter!
Specifically: Compare M = Sgd d% m(7) at t oc (T —T,)
Request: (M?) — (M) « (M)?
| I
x&? (m)*¢*

= x&Umy 2«1 = | Rt «1

Specifically for [t| - 0: (—y+wvd—28)>0
= Mean-field approximation describes critical behavior correctly for

2By0 + Vs d. : "Upper critical dimension”
(Bagps Yarps Vare: Mean-field exponents)

d>d. =

V]VI F

For d < d.: Fluctuations dominate, mean-field approximation fails
For d = d.: Logarithmic corrections
For d > d.: Mean-field approximation captures critical behavior

Ising-type transitions: yyr = 1, Syr = vyr = 1/2 =

Significance of prefactor R

Mean-field approximation may oK even for d < d.,
i1 » RYOH28-d) _ RI/vlde=d). oo feld range

if t « RY/(y+2B-dv) _ Rl/”(dc_d): critical range

(Example: Superconductivity - Critical range ~ 10714 K
One practically always sees mean-field behavior.

Remark: Argument applies only if the direct interactions decay fast enough
(faster than 1/r%)!
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4.3.6 Conclusion: Relevance of Ginzburg-Landau theory

* Ginzburg-Landau functional

e In principle “exact” starting point for perturbation expansions, field
theoretic renormalization etc.
Contruction from symmetry considerations — Universality

e Allows assessment of validity of mean-field approximation (previous
section)

* Treatment of inhomogeneous systems

e.g., surfaces, thin films, interfaces

Interface Mol , i """ Problem: Minimize .% [m(r)] with bound-
ary condition lim = +my
T—+00
: ; ,,,,,,,,, Mo (with mg: Bulk order parameter)

Fm(r)] = der[%g(Vm)Q + 3bm? + %cm‘l]
= Equation: bm + em? — gAm =0, mg = +/|b|/c, & = ﬁ
= Solution: m = mg tanh(z/2§) (Check by insertion)

* Allows description of modulated phases

("incommensurable phases”, magnetic screw structures, lamellar phases in
microemulsions or block copolymers)

Special case . In this case, .#[m(7)] must include a stabilizing
term of higher order
eg., F ={dr [f(m) +29(Vm)? + %k(Am)‘l]
(or 1K' (Vm)*)
If g is sufficiently small, .%# is minimized by a
modulated order parameter.

4.4 Multicritical phenomena

4.4.1 Examples

(a) Tricritical point

Example: Strongly anisotropic uniaxial antiferromagnet in a homoge-
neous external field (discussed earlier in Sec. 4.4.2)

T Red dashed: First order transition

\ Tricritical point Blue solid: Second order transition

T l —= ., Black point: Tricritical point
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Why is this point called "tricritical”?

In an extended phase space, three

.. . T
critical lines meet there.

Tricritical point

E.g., antiferromagnet: Choose as  seas of first grier Yy h,
additional intensive variable the = phase transi fopy KeFible point line
field h that couples to the order . H

parameter (a staggered field)
Additional characteristics:

— In mean-field approximation different critical exponents than in
the Ising model (see Sec. 4.4.2).
One obtains: o =1/2, f=1/4, v =1, but still v = 1/2, n = 0.
= Different upper critical dimension according to the Ginzburg cri-
terion: d. = (y +24)/v = 3!

(b) Bicritical point

Two critical lines meet each other Bicritical point

Example: Weakly anisotropic uniaxial antifer-
romagnet in a homogeneous external field
(discussed earlier in Sec. 4.2.3)

(c) Critical end point

Critical line ends at a line of first order phase T
.. Tricritical point
transitions \ Critical end point
Example: Uniaxial antiferromagnet with inter-

mediate anisotropy in a homogeneous ex-
ternal field

(d) Multicritical points of higher order

Example: Tetracritical point - four critical lines meet.

(e) Lifshitz point

Modulated phases compete with regular phases

(f) and many others ...

We will now illustrate the treatment of multicritical phenomena with the Ginzburg-
Landau theory at two examples: The tricritical point and the Lifshitz point.
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4.4.2 Tricritical point

(a) Landau expansion (already discussed in Sec. 4.4.2)

% =a+ %bm2 + temt + %de — hm

Tricritical point corresponds to b=c =0
In order for this to happen, b and ¢ should depend on two intensive
parameters A, T.
~» b =c =0 defines a point (A, T;) in the (A, T)-plane

We already showed:

3cied 1P

W

At ¢ < 0, one has a first order phase
transition at b = 3¢%/16d.

o\
W
)
W

Disordered phase

Q

. <,
First order “,
e,

Now we discuss the critical behavior ny, N
directly at the critical point. Tricritical poift Continuous
Ordered phase
(b) Critical behavior in the Landau theory
Preliminary remark: From g—f; = 0, one concludes at h = 0:
3 5 (<0 o _ e 4bd
bm +cm® +dm’ =0 ="m =%(1+ 1—0—2)
~+ Behavior different for the cases |4bd/c?| « 1 and [4bd/c?| » 1
“critical” and “tricritical” regime!
Graphical illustration: 3d/6d
I: "Tricritical regime” R / Flad
Lo . -, Regimel /
IT: "Critical regime” %, "
Approaches to the tricritical point: KD c
inl: b (T — Tt), caoC (T — Tt) Regime Il

inIL: b « (T —Ty)?, coc (T —Ty)

/ Regme I

e Order parameter

(I) Approach tricritical point with a finite angle to the phase tran-
sition line — in the tricritical region

= % » 1 (since b, ¢ approach zero linearly)
= m~ (@) -
(IT) Approach tricritical point in the critical regime such that 1 « 40—5’2‘1
N :
e Specific heat cy: g =a+ %me + %cm4 and cg = —TSQTE
(I) In the tricritical regime: m oc (Ty — T)Y* and b oc (T — T})
= ey~ 5 (T, — TP ~ (T, - T) 712 = |a=1/2
(IT) In the critical regime: m oc (Ty — T)Y2, b « |T — Ti|?, c oc (T — Ty)
= ¢ ~ 2o(Ty = T)? ~ (T, = T)! = [a,=-1
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* Susceptibility
From bm + cm® + dm® — h = 0, one gets %[, _ 0 = 5z lno-

(I) In the tricritical regime:
B pa T .
(IT) In the critical regime: b « |T' — T3|?, ¢ oc (T —Ty)
1 cm2~(T T‘t)2

F~ e~ (T =

e Correlation functions

The exponents v,n do not change at the tricritical point, since the
mean-field correlations do not depend on ¢ (e.g., & ~ +/|g/b|)

= ’1/,521/2,7%:0‘

Summary: Mean-field exponents in the tricritical regime:
,815 = 1/4, Yt = 1, oy = 1/2, V¢ = 1/2, M = 0

(c) Application: Ginzburg criterion

Recall Sec. 4.3.5: The Landau theory is good, if dv — 28 —« > 0 for the
mean-field exponents v, 3, y. Inserting the values for the critical exponents

at the tricritical point, one obtains d > d; with

Thus the upper critical dimension at the tricritical point is only 3!
In three dimensions, critical fluctuations only lead to logarithmic correc-
tions to the behavior predicted by the Landau theory.

4.4.3 Lifshitz point
(a) Ginzburg-Landau theory for modulated phases

Practical relevance: Often used to describe materials that spontaneously
form modulated nanostructures, e.g.,
— Modulated magnetic superstructures in crystals
(Hornreich et al 1975 — lattice spin model: ANNNI model)
— Amphiphilic systems and microemulsions
— Block copolymer nanostructures
— Domains in lipid membranes

Also postulated to exist in the QCD phase diagram by some models
Ginzburg Landau theory

Modulated phases are possible, if the coefficient g of the square gra-

dient term in the Ginzburg-Landau functional becomes negative. In

this case, a stabilizing term of higher order must be included, e.g.,

tv(Am)?

~  F =§d% [1bm? + em? — hm + L9(Vm)? + Sv(Am)?]
Phase behavior: To find the transition to a modulated phase, we calcu-

late the structure factor S(k) o (k) (k-dependent susceptibility)

Minimize .% — Euler-Lagrange equations
= bm+cm®—gAm+vA>m=nh
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Fourier transform 7 — & and linearization in m

= bm(k) + g 2m(k) + v k* m(k) = h(k)
_ 1
oh(k) ~ b+gkZ+uk?
=V —9/21},

om(k)

= x(k) o«
If g <0, then y(k) has a maximum at k*

Analysis
_ 1
= X(k*) T b—g2%/4v
In that case, x(k*) diverges at b = ¢%/4v
~» Homogeneous phase is unstable, transition to a modulated
structure with characteristic wave vector k*

b
Disordered phase

g

Phase diagram
Lifshitz point

Brazovi type
Continuous, Ising—type

Modulated phas g“

- §

Figgt order
s .
S Homogeneous, two phase region

Discussion
— In mean-field approximation: Two types of continuous transitions

meet at the multicritical Lifshitz point: A regular Ising-type
transition at ¢ > 0, b = 0 and and a "Brazovskii”-type transi-

tion at g < 0, b = 4/g?/4v between a disordered phase and a

modulated structure.
— At the Lifshitz point, the wave vector £* of the modulated struc-
ture becomes zero - i.e., the wave length diverges.

b(1+k%ET)

(c) Critical behavior at Lifshitz points
oo 1 1
b+vk*

e Exponents «, 3,7, d are the same as in the Ising model, as they do not

depend on g.
e At the Lifshitz point (g = 0), we have x(k)
~» Not a Lorentz curve, but & = (v/b)'/* is clearly the characteristic

length scale in the system! Diverges as b oc (T — 1) — 0.
ot -

= n = —2
e Upper critical dimension: d.vp — 28, — v, >0 =

’aLZOa BrL=1/2, 7L = q, 5L:3‘

At b =0, we have X(E) oc k=4 = p—(2-m1)
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(d) Fluctuation effects

— Upper critical dimension is very large ~» Fluctuation effects are strong!

— In fact, the lower critical dimension (the minimum dimension where a
Lifshitz point exists), is believed to be d; = 4.

— In three dimensions or less, the Lifshitz point becomes unstable and
probably turns into a regular tricritical point
(Numerical evidence for the case of a block copolymer melt: Vorse-
laars, Spencer, Matsen, PRL 2020).

— Also, the Brazovskii transition becomes first order due to fluctuations
by a mechanism called "Brazovskii mechanism” (ordered modulated
domains break up).

b b

o4y ) > Disordered phase
B Disordered phase Weaki firs?arder
Brazovii type y Y
Lifshitz point g %, T”."’ itical point g
N ’; K i
Modulated phase & Continuous, Ising—type Modulated phase ':s‘ Continuous, Ising-type

n,

Homogeneous, two phase region

S

5
"

Figgt order First orderd
3

& Homogeneous, two phase region

My,

Mean-field phase behavior Real phase behavior in 3D

4.5 Concepts to describe the kinetics of first order
phase transitions

4.5.1 Classification of dynamical systems

We focus on a model with a one-component (scalar) order parameter, as in
Section 4.1. The dynamic behavior of a system depends crucially on the rele-
vant conserved quantities. The classification below goes back to Hohenberg and
Halperin (1977). The simplest cases are:

— Model A: Order parameter is not conserved
(examples: magnetism)

— Model B: Order parameter is conserved
(example: demixing)

— Model C: Order parameter is not conserved, but another extensive quantity
is conserved which couples to the order parameter.
(example: order-disorder transition: The overall composition is conserved.)

— Model H (in fluids): Additionally, energy and momentum conservation are
important and influence the order parameter kinetics.
— hydrodynamic modes

— etc.
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4.5.2 Field theoretic descriptions

In this chapter, we introduce stochastic partial differential equations that model
specifically model A and model B dynamics (the other models are omitted here).
This will be done using a sloppy “physicist” approach. The mathematics of
stochastic differential equations (SDEs) is actually quite involved and will be
discussed in somewhat more depth in chapter 9.

* Starting point: Ginzburg-Landau functional as before:
Flm(r)] = [t (Fm) + 59 (Tm)?)
We define the effective field” h.q(7) = —% =gAm— 2L
Note: If heg(7) = 0, Z[m(F)] is extremal.
x Two classes of dynamical models:

(a) Mean-field dynamics: The system is deterministically driven towards
a state with h.g(7) = 0 according to dynamical equations that respect
the relevant local conservation laws (e.g., in model B, a continuity
equation for the order parameter field).

(b) Stochastic dynamics: Fluctuating noise is added to the dynamical
equations. The noise is chosen to be Gaussian distributed with cor-
relations such that there exists an equilibrium steady-state solution
where the field {m(7)} is distributed according to a Boltzmann distri-
bution, P[m(7)]ocexp (— 8.7 [m(]. The latter is ensured by impos-
ing a so-called "fluctuation-dissipation relation” on the correlations
of the noise.

* Specifically:

Model A: No local conservation law, relaxational dynamics.
(a) Deterministic (mean-field) Ansatz: %—T = Lh.4(7,t).
with L: relaxation coefficient
(b) Stochastic Ansatz: ”"Langevin equation”

om 0F

ar_ 27 >

ot sm@ T
with (7, t): Gaussian distributed, uncorrelated white noise with
mean Zzero.

e Mean: (((7,t)) = 0 (mean zero)
e Fluctuation-dissipation relation:
CEDCF ) = 2k, TL3(F— ) ot — ¢)
~» White: (((7,t)((#,t")) ocd(t — ')
Spatially correlated: {(¢(7,t)C(7,t")) oc 6(F — )
Prefactor: Ensures that the steady-state solution has the
desired temperature (see Chapter 9).




68 CHAPTER 4. THE GINZBURG-LANDAU THEORY

e Gaussian distributed: Higher order moments (correlations)
of ¢ can be derived from the second moment (the fluctuation-
dissipation relation) according to the Gaussian distribution.

Model B: Order parameter is conserved, diffusive dynamics.

om -
~» m(7) must obey a continuity equation | — = —Vj

ot

with some current density j(7,t).
(a) Deterministic (mean-field) Ansatz: j(7,t) oc — Vhea(7,1)
om 0F

hn-Hilli ion: — = LA— .
= Cahn-Hilliard equation pn 5 + (7, 1)

with L: "Onsager coefficient”
Note: The Cahn-Hilliard equation is also intensely studied in
the applied mathematics community.

—

(b) Stochastic Ansatz: Fluctuating current j = —LV =22 + ()

om(7,t)
om 0F
— = LA— b
with ((7,t) = =V - 7: Gaussian distributed, A-correlated
white noise with mean zero.
e Mean: {(((7,t)) = 0 (mean zero)

e Fluctuation-dissipation relation:
KPR )y = =2k, TL AS(F—7) 6(t — t')

~» White: (((7,t)C(#,t")) ocd(t — ')
A-correlated: {(((7,t)((7,t")) oc A§(F —7)
NB: Corresponds to uncorrelated white current noise
with (n;(7, t)n; (7, t') = 2Lk.T 6;; 6(F — ) 6(t — t').
(Check: (C(7, S, ¢)) = 5, (@i (7, 1) (&5 (7,£)))
= 3%, G Om (7))
= 2Mk,T 3, ; 0:0;0:5 6(F — 1) 6(t —t')
= —2ME,TY), . 0:0;055 6(F —17) 6(t — t')
= —2ME,TASF— 1) 5(t—t') V)
Prefactor: Ensures that the steady-state solution has the
desired temperature (see Chapter 9).

o Gaussian distributed: Same as model A.

* Physical motivation: Distinction between "fast” and ”slow” degrees of free-
dom, e.g., phonons versus diffusive modes

"Fast” degrees of freedom are projected out
— Omnsager coefficients and noise

The Ansatz is obviously problematic, if one does not really know, which
degrees of freedom are "fast” or "slow”, or if the time scales are not well
separated. Possible strategies to deal with such cases is to either include
further fields (as in model C and H) or allow for memory effects ("gener-
alized Langevin equation”, not covered in this lecture).
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4.5.3 Early-stage phase separation in model B dynamics

Starting point: We consider a system that is suddenly
quenched from the disordered phase into the two-phase
region. Initially, it is homogeneous with order param-
eter m = m and disordered.

Question: How does phase separation proceed?

% General considerations

Even in the two-phase region, the system may remain trapped in the
disordered state for a while. The reason is that most small deviations m(7)
from the homogeneous state are driven back towards m = m — primarily
due to the interfacial term (Vm)? in the free energy, but sometimes also
because f(m) is convex in the vicinity of m, see below.

* Stability analysis

Due to the square gradient term (Vm)? in the Ginzburg-Landau energy,
the fluctuations that become unstable first are the ones with long
wavelength.

Consider a "homogeneous” fluctuation where m is enhanced by dm; in a
volume fraction a; of the system and reduced by dms in a fraction
ay (m; = m + dm;). Since the overall composition does not change,
we have Y}, a;om; =0 . f

= Change of (Ginzburg-Landau) free energy:
VAT = ¥, ai(f(m + my) — f(m))
= f/(m) Y, aidm; +3 f" (M) ¥; a;om?
[ = 2

3|
Ef| e

0 >0
~» For f"(m) > 0, fluctuations are driven back.
For f”(m) < 0, fluctuations grow, unstable
= Crossover between regimes at f”(m) = 0: Spinodal.

* Discussion:

In mean field theory, the spinodal line separates a region where phase
separation occurs spontaneously from a region where it can only pro-
ceed by an activated nucleation process.

In reality, the separation between metastable and stable regions is not
sharp. However, the mean-field concepts can still qualitatively ex-
plain differences in the observed phase separation behavior for deep
and shallow quenches.

4.5.3.1 Unstable regime:
Cahn-Hilliard theory of spinodal decomposition

We first consider quenches in regions with f”(m) < 0. In this case, the homo-
geneous phase is unstable after the quench. The process of phase separation
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is a driven process which also takes place in the absence of noise, provided the
initial configuration is slightly noisy. The Cahn-Hilliard theory describes how
this process is initiated.

* Approximations:

(i) Linearize hos(F) = —%= ~ gAm — f'(m) — f"(m)(m(F) — m)
(ii) Neglect noise (OK smce the transition is driven).

* Jolution of the linearized equation:

-,

Fourier transform m(7) — m(k) ( ) ) B
omE) _ —ME*(gk® + f"(m)) m(k) = —w(k) m(k)
_ with w(_’k) w(k) = Mk?(gq + f"(m)).

= m(k,t) = m(k,0) exp(—w(k)t)

x Analysis of the result:

Consider the time evolution of a small fluctuation m (%, 0)

w(k) > 0 = m(k, t) shrinks, the mode k is stable.
w(k) < 0 = m(k,t) grows, the mode k is unstable.

Instability condition: w(E) < 0 for at least one k.
= gk + f"(m) < 0: Possible for f”(m) <0
~» Recover spinodal.
Expected time evolution in the unstable regime:
Consider w(k) at f”(m) <0
~» Long wave-length modes become unstable first,

but they grow most slowly. (Reason: Diffusion ~w(k)

— Restructuring on large scales takes time ...) K
~» Fastest growing modes: k. = +/—f"(m)/2g ”
C

(maximum of w(k)).

* Discussion:

Cahn-Hilliard theory prediction: After the quench into the unstable
regime, modes with wave vector k. oc 4/— f" () grow fastest.

~» A network structure with a characteristic wave length 27 /k. emerges.
This is indeed observed in experiments and simulations.

~» However, different from the prediction of the linearized theory, the
modes do not grow independently, instead, the pattern coarsens. —
the characteristic wave vector decreases with time. The coarsening
sets in immediately after the quench.

~» The linearized Cahn-Hilliard theory provides a qualitative picture of
the patterns forming during demixing in the spinodal regime, but
it fails quantitatively. Including Gaussian noise in the linear theory
does not help (not shown here). The coarsening is a nonlinear effect.
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4.5.3.2 Metastable regime:
Nucleation and classical nucleation theory

In the metastable regime, the transition from a homogeneous state into an
inhomogeneous state is a thermally activated process which involves overcoming
a free energy barrier. This requires thermal noise.

Typically, the transition is initiated by the (thermally activated) spontaneous
nucleation of small domains of the competing phase, which then grow with time.
Here, we discuss the simplest theoretical description of this process, the classical
nucleation theory.

* Starting point and setup:

Ginzburg-Landau functional Zx[m(7)] = §d% (f(m)+ 39 (Vm)? —Am),
with f(m): Double well potential with minima at m = +m*
(e. g, f(m) = a+ &m? + $m* with b < 0, and m* = /[b]/c)
Mean order parameter m chosen in the phase separating, but metastable
regime with f”(m) > 0.
(our example: |b|/3c < |m| < |b|/c)
Geometry: To study droplets, we consider idealized finite, but spherically

symmetric systems, which may contain one droplet centered at the
origin.

* Constrained Ginzburg Landau free functional:

We consider systems where the spatial average of m(7), M = {d% m(7),
is constrained at M /V = m. To account for this in the Ginzburg-Landau
functional, we introduce a Lagrange parameter A,

FAlm()] = §dr (f(m) + 59 (Vm)? — Am),

6.F
PG

M/V=m

where ) is chosen such that

In homogeneous systems, A = f/(m). In inhomogeneous systems contain-
ing droplets, |A| will be smaller, |A| < |f/(m)|

* Calculation procedure:

Introducing the Lagrange-parameter amounts to replacing f(m) by
feri(m) = f(m) — Am in the Ginzburg-Landau functional.
~» Tilted potential with two minima:
One minimum at m; = A
A second, lower one at ms

= Solutions of the Euler-Lagrange equation with M/V =m

— Homogeneous solution m(7) = m

— Spherical droplet solution: m(7) = mg(r) with mg(0) = my,
mq(0) ~ mg, and an interface at some r = R.
Note: Since A depends on R, m; and mo also depend on R.
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* Free energy considerations:

Rewrite mean-field free energy of droplet
as Fd(R) =V f(ml) - %TRSAN + Fexcess(R)
with Ap := f(mq1) — f(mg) > 0. This defines Fexcess-

Assume, that the dominant contribution to Feycess comes from the droplet
surface, and that it is hence roughly proportional to the surface area
Ag = 47 R? of the droplet.

~> define surface tension o = Fycess/Agq ~ const.

4
~ | Fy(R) = const. + 4o R* — ?WRSAM

= Fy(R) grows as R? for small R, decays as —R3 for large R, and

has a maximum at | R, = 20/Ap | (critical nucleus size).

* Central assumption of Classical nucleation theory:

Nucleation is described as an (overdamped) Kramers escape process, see
Section 9.3.3: The dynamic evolution of R(t) corresponds to overdamped
Brownian motion in the potential Fy(R).

F(R
— Droplets with R < R, are driven back to R = 0 "

and shrink. R

— Droplets with R > R, grow. R

— A nucleation events takes place if R(#) manages to reach R, due to
thermal fluctuations. According to the Kramers theory, the average
time required for this to happen is 7 oc exp(SAF(R))
with AF = F(R.) — R(0) = 2R3,

Note: As the droplet keeps growing, m1 and my gradually approach +m*
and Ap approaches zero. This implies that the critical nucleus size
increases with time and that new nucleation events are increasingly
unlikely.

* Summary and discussion

— According to the classical nucleation theory, the process of phase sep-
aration is triggered by the spontaneous nucleation of droplets with
critical nucleus size R.. The nucleation rate I grows exponentially
with AF according to I = Iy exp(—SAF).

Dynamic properties of the model (Onsager coefficients etc.) enter Ij.

— Remark: Close to the spinodal, the upper minimum m; becomes very
shallow, which implies that the interface becomes very broad. In this
case, the separation of Fjj(R) in terms of volume and surface terms
is no longer justified and the droplet concept becomes questionable.

On the other hand, the spinodal decomposition concept also becomes
questionable, because the only unstable fluctuations have wavelengths
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k very close to zero and grow very slowly compared to the "critical
droplets”.

~» Near the spinodal, it becomes very difficult to distinguish between
droplets and spinodal fluctuations. The transition between regimes
is not sharp. Strictly speaking, the spinodal is not well-defined.

4.5.4 Late stage phase separation in model B dynamics:
4.5.4.1 Droplet regime: Oswald ripening, Lifshitz-Slyozov theory

After the initial droplet nucleation, droplets grow and interact with each other,
and possibly collide and merge. At late stages, a regime is entered where the
evolution of the morphologies can be described by a scaling law.

Characteristics of the late stage of phase separation in model B:

— Nucleation events are no longer important.
(since the nucleation rate goes down, see 4.5.3.2)

— Only few droplets remain in the system and do not interact directly
with each other

— Indirect interactions: Large droplets grow, small droplets shrink (since
R, grows with time, see 4.5.3.2).
~» Number of droplets reduces further, average size increases

~» Further coarsening of length scales: Oswald ripening

Droplet growth and derivation of Lifshitz-Slyozov coarsening
TODO

4.5.4.2 Generalization: Lifshitz-Slyozov ¢'/3- scaling

TODO
David Huse, Phys. Rev B 34, 7845 (1986).

4.5.5 Late stage ordering in model A dynamics

TODO
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Chapter 5

Critical Phenomena and Scaling

Hypothesis

5.1 Scaling relations

Summary of some critical exponents

(Quantity) Mean-field
2D Ising | 3D Ising | Ising | Tricritical | Lifshitz
point point

(Specific heat) a 0 0.1 0 1/2 0
(Order parameter) B 1/8 0.33 1/2 1/4 1/2
(Susceptibility) ¥ 7/4 1.24 1 1 1
(OP < field at T¢) 4] 15 4.8 3
(Correlation length) v 1 0.63 1/2 1/2 1/4
(Correlations at T.) 7 1/4 0.04 0 0 2
(Upper

critical dimension) d. 4 3 8

Question: Are these exponents really independent?

Closer look: Some general relations seem to be fulfilled:

eg: B+vy=05

a+ 23 + v = 2 (Rushbrooke law)

9 oy vd :d<d,
«= vd., :d=>=d.

y=v(2-mn)

~» Scaling relations

History: Main discoveries around 1963

(Josephson law)
(Mean-field case)

e Rushbrooke: Thermodynamic stability = inequality a + 26 + v = 2

e Essam, Fisher: Numerical results suggest o + 25 + v = 2
(for arbitrary models and dimensions)

e Widom: Scaling hypothesis

75
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5.2 Widom’s scaling hypothesis

Provides a framework that helps to classify and “derive” scaling relations. First
introduced in a heuristic manner. A more formal derivation will be pro-
vided in chapter 6.

Of great practical use

Scaling analyses are fast ("back of the envelope” calculations).
Can be applied to a variety of problems/systems
(e.g., finite size scaling, polymers, dynamical systems, ...)

Often give correct relations without lengthy calculations

Here: "Static scaling hypothesis” for Ising-type systems

5.2.1 Scaling hypothesis for the order parameter
(Widom, 1963)

Order parameter is a function of ¢t = (T' — T;)/T. and h = H/kgT

0 t>0

_ _ 1/5
S <0 and m(t = 0,h) = +B|h|

We know: m(t,h =0) = {

Question: Can one combine both formulae?

Widom’s Ansatz:

t? FF(h/t?) >0
mie) = L e ien®) 2o
B, A: Universal exponents  (A: "gap exponent”)
FZ: Scaling functions:

. Fn Data for different fields H should lie
m/[t] — on the same curve
Fn: ~» "data collapse”
| i

(NB: In order to implement this type of plot, one must either
know or fit 5, A, and T¢!)

To derive relations between exponents, consider limiting cases
eh—0,t#0 (|t| small)
R _ B + A ; 0 t>0
it = 0) = 1 Fam) £ s
= FJ(O) =0, F,(0)=+A+#0 (finite)
)

B _ ! _
X(h—0,8) = 22|, = He L FE @), = P2 FE(0) o |17
= 7=A— B, e, A=5+7y
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et — 0, h#0 (|h| small)
m(t — 0,h) = |t1® F(h/|t|2) o [h|Y? independent of #!
= Since A > 0: FE(z) ~ |z|* for z — o
where A has to be chosen such that |t|ﬂ‘h/\t\A’/\
is independent of [t| = f— AN =0, i.e., A = (/A
|
Insert: m(t — 0,h) ~ [h|* = [h|%/2 o |n|'/0
~ B/A=1/5 = A=p3§
Together: ’ A=~ry+p=09 ‘
Thus we have determined the gap exponent A and deduced a scaling
relation!

Derivation of other scaling relations is not yet possible, since the exponents
a, v, 1 do not appear in the critical behavior of the order parameter

~» Must find other, similar scaling hypotheses!

5.2.2 Scaling hypothesis for the free energy

Alternative to 5.2.1: Write singular part of the free energy density as

Fs(t,h) = [t~ FF (h/1t])

= Specific heat at h = 0: ¢y ~ 5;J;s ~ |t|_aF;£(0) +0 \/'
Order parameter: m ~ %];: heo ~ \t\2_a_AFfi,(0) ~ [t}
=2—a—-A=0
Susceptibility: X ~ aaﬁthzo ~ |t|2_a_2AFJ:£”(O) ~ [t~
= 2—a—2A=—v

Taking everything together, we obtain again A = 8 + v
and an additional scaling relation ’ a+28+v=2 ‘

NB: The relation m ~ \t\Q*a*AFf,(h/]t]A) also reproduces the scaling hypoth-
esis 5.2.1 for the order parameter!
5.2.3 Scaling hypothesis for the correlation function

In the same spirit, one also constructs a scaling form for the two-point corre-
lation function G(7) = (m(7o)m(7p + 7)) — (m)?.

— 1 v
G(r,t,h) = mFé(Tltl Sh/1E]%)

This yields scaling relations for n and v
Example: |n=o ~ §d% G(7,t,h) ~ §dr r'="FZ (r|t],0)
|
~ @ §dy y' G (y) oc ¢

= [y=v(2-n) |
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5.3 Scaling hypothesis and dimensional analysis

Question: How can we physically motivate the scaling hypothesis?

Rough answer (not quite correct, see Section 5.4 ):
At T — Ty, the correlations length £ diverges with & ~ [¢|™”. This diver-
gence drives all other singularities: Close to T, the correlation length is
the only relevant length scale.

~» "Dimensional analysis”

*» Dimensions:
— Singular part of the free energy density: [fs] = [length]~¢ = [¢]~¢

— Order parameter density: [m] = [¢]%m
(dy, is an independent exponent!)

— Conjugate field h: [h]-[m] = [fs] = [h] = [¢]7¢

* Scaling functions: Composed of “dimensionless” quantities!

— Free energy density: | fy(t,h) ~ €74 F;—r(h gdtdm)

Specifically h = 0: f, ~ £~¢ < |t|>—
With & ~ [t|™7, one obtains the Josephson relation: | 2 — a = dv
— Order parameter density: | m(t, h) ~ £ FE(h ¢dtdm)
Specifically h = 0: m ~ &% ~ |tP = d,, = —f/v
Generally: m ~ [t|® FE(h/|t|2)
= A=v(d+dy)=vd—p=2—a—p
Also, following 5.2 a): A=~vy+=08J = a+20+~v=2
— Correlation functions in Fourier space:
G(k) = [ d% G(7) e with G(7 — ) = (m(F)m(7)) — (m)>
Dimension: [G(7)] : [m]? = [£]%% = [¢]~28/¥
[G(K)] : [m]*[length]? = []*m*¢ = [g]27/
[k] : [length] ™" = [§]"
~» Scaling Ansatz: | G(k) ~ €172/ F2 (ke)

Specifically & 150 o0: Result should not depend on ¢!
= Falr) "7 220 = G(R) S 200 o e
= 2-n=d—2B/v="21(dv—-28)=L12-a-28)=9/v
= |v=v(2-7n) |

Conclusion: General recipe to construct scaling forms

— Find dimensions of the (dependent and independent) variables

— Construct scaling form from ”"dimensionless” quantities

In practice very successful. However, unfortunately, does not always work.
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Problems that are already apparent at this point:

e Relations that contain the spatial dimension d (e.g., the Josephson
relation) are obviously no longer valid at d > d. (in the mean-field
regime). So what is going on here ?

e It is not clear a priori, why the dimension d,, should be independent
of the other dimensions. (Not at all obvious, see next section!)

5.4 Influence of additional length scales

Preliminary consideration:
Rescale singular part of the Ginzburg-Landau free energy

ﬁg‘;mg = deT‘ (%Q(Vm)2 + %me + %cm‘l) —. deT‘ £,

Rescale: ® = ,/gm and set rg = b/g oc (T — T¢), ug = ¢/g*

1 1 1
= | BT = fddr (§(V<I>)2 + 570 o2+ 7U0 @4>

~» 7®* theory”: Typical starting point for field theories of Ising type
phase transitions More generally — one of the favorite toy models in
statistical field theory and quantum field theory
Dimensional analysis: 5.%,,, dimensionless
—  [fs] = [length]™?,  [®] = [length]' =%/
[ro] = [length]=2, [ug] = [length]¢—*

Remark: If the correlation length £ is the only length that matters, then one
would always have

ro~E2 = E~(T-T) V2 = v=1/2
fs~&% = (2—a)=dv

However, in fact, neither v = 1/2 nor (2 — a) = dv are always valid, and
both together are only valid at d = d. = 4!

Question: Where does the argument go wrong?

Answer: The correlation length is not the only length scale that matters!

In addition, other length scales come in: Microscopic length scales and a
mean-field length scale. Depending on the spatial dimension, one of the
two modifies the critical exponents.

5.4.1 Microscopic length scales and anomalous dimensions

x Correlation length

As shown before: If the correlation length is the only relevant length
scales, one would have & ~ 1/4/[ro| ~ [T = T.|7? = v =1/2



80 CHAPTER 5. THE SCALING HYPOTHESIS

Now assume, a second length scale [y « £ exists (but & — oo still drives
the singularity).

— New scaling Ansatz for &: & ~ ﬁf?( ro| 13)
dimensionless

Assume power law behavior: lim,_,q fgi (z) ~ 2

— For ro — O7 one has: § ~ ’T.O‘fl/2+9 -~ ’T . Tc’71/2+0

= [v=12-0]

= Introduction of an ”anomalous dimension” # solves our problem:
Exponent v may differ from 1/2.

Important: In order to introduce 6, we needed to assume the existence
of a microscopic length ly. This is an unusual thought in the theory
of critical phenomena. However, the exponent 6 turns out to be
independent of the actual value of Iy!

* Correlation function

A second independent anomalous dimension is hidden in the behavior of
the correlation function G(7)
Dimension: [G(7)] = [®]% = [length]?~,
[G(%)] = [G(7)] - [length]? = [length]?
(since G(k) = §{d%r G(F)e'* ™)
Consider specifically T' =T, = & — o0 is not a relevant length scale.
In the absence of another length scale, we must have G(k) ~ k2!

Make again a scaling Ansatz assuming that a microscopic length scale [y
comes into play: G(k) = k_QFéO)(klo)

Consider limit £ — 0 and assume power law: lim,_,¢ Féo) () ~ 2"

Then we have | G(k) ~ k2"

~» (G acquires an additional anomalous dimension 7.

® acquires an additional anomalous dimension 7/2.

5.4.2 ”Mean-field” length scale

Now address next problem:
Why isn’t the Josephson relation (2 — ) = vd always valid?
(And why does it cross over into the mean-field relation (2 — a) = vd.?)

To this end: Inspect dimensions of the parameters rq, ug.
[ro] ~ length™2  — length scale &
[ug] ~ length?™* — new length scale

Corresponding scaling Ansatz for fg.,,

fo =& flup €%
N——

dimensionless
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For d < 4: Argument ofji(x): x—owforT —T.or&— 0
For d > 4: Argument of f(z): * > 0 for T — T, or £ —> ©

~» Suggests solution for our problem:

If{ limx_,ocf(x) ~ const} _ {fs ~ & ford < 4

lim, o f(z) ~ 1 fs ~ &t ford>4

= This reproduces crossover from (2 —a) =vdto (2—a) =4v at d = d, = 4.

5.4.3 Conclusion from Secs. 5.3 and 5.4

On principle, the dimensional analysis is a good method for constructing scaling
hypotheses: It helps to derive relations between “dimensionless” and hence
scale invariant quantities. However, this approach is not rigorous, since
additional length scales apart from the correlation length exist and may
influence the critical exponents. A more rigorous approach is provided by
the renormalization group, see next chapter 6.

However, scaling arguments can help to derive theoretical predictions without
much effort for a variety of problems. Some examples are given below.

5.5 Other applications of scaling arguments

5.5.1 Finite size scaling

Problem: In simulations (and more and more in experiments), system sizes are
not macroscopic, but finite

Example: Simulations with periodic boundary conditions
~» No boundary effects, nevertheless no thermodynamic limit
~» Order parameter distribution P(m, L)

Scaling Ansatz:
Dimensions: [m] = [£]%, [L] = [£], [P] = [£]7% (since {dm P(m) = 1)
= P(m;t,L) = € P(m & LJ€) = L~ P(m L~%; L/¢)
(with P(y,z) = % P(y 2%, z))

Rewrite using & = &6 and dy, = —8/v: P(m;t, L) = L/ P(m LP/V; tL})
Use this to calculate finite size effects on various quantities

Example: Moments of the order parameter
(mpyr = §dm P(mst, L) [m| = L5 fopu), (tLY")
{m™)p = Sdm P(m;t, L) m" = LBV f<mn>(tL1/")
(with fmpy(2) = §dyP(y; 2)lyl,  fommy (@) = §dyPy;2) y™)
Application: Determining T, and exponents (, v from simulations of fi-
nite systems. Need simulation data for a set of different sizes L
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(a) Binder cumulant method to find T, )
Consider specifically t = 0,i.e. T = T.: = (m?") ~ L*2”5/”f<m2n>(0)
B <m2>2
)
~» Plot Uy, vs. T for different L. All curves intersect at T' = T !
(Note: (m?)/{|m|)»* would also work, but is less popular.)
(b) Scaling plot method to find 5, v (after finding T¢ via (a))
— Guess 8,v and plot |m| LP/¥ versus |t|L'/” for various L

= | Ug is independent of system size L!

— Vary 8 and v until the curves collapse onto one scaling curve
(or use a fitting algorithm that does this for you).

5.5.2 Scaling hypothesis in polymer physics

System: Linear macromolecules in “good” solvent

Number of repeat units (monomers): N

Extension: "Gyration radius™ R, = aN",
with v: Flory exponent (v = 0.588... ~ 3/5)

Remark: The calculation of v is an interesting problem of statistical
physics in itself which involves advanced methods of statistical field
theory. Polymers in good solvent (so-called self-avoiding walks) can
be described by a (54 theory in the limit where the order parameter
¢ has zero dimensions (de Gennes, 1972)).

Assumption (de Gennes): Ry is the only relevant length scale in such systems.
This allows to deduce many relations, which mostly turn out to be correct!

Example: Polymer in a tube of diameter D -
Question: What is the lateral extension R)? /’\SES“ D

Scaling Ansatz: R (D, Ry) = Ryfr,(Ry/D) Ri
with conditions: R(D — o, Ry) ~ Ry — f(z) =, 1
R”(D — 0, Rg) o« N — f(.%') _)oo xt

Insert: R, R = Nv(n+l) LN = = % 1
~ In case D « Ry, one obtains R ~ Ry (Ry/D)* = R;/VDPI/”

and hence | R ~ aN(a/D)Yv!

(typical "back of the envelope’ scaling calculation!)

(more examples: Exercises)



Chapter 6

Renormalization

Previous chapter: Focus on behavior of system close to critical points
~» Power laws, critical exponents, relations between critical exponents

Could be described in terms of a scaling hypothesis.
However, the physical basis for the scaling hypothesis was not clear

This section: Theoretical framework that explains origin of scaling laws

~» Provides a way to calculate critical exponents
But also: A way of thinking about scale-invariant systems which has ap-
plications far beyond the theory of phase transitions !

6.1 Kadanoff’s argument for the scaling hypothesis!

Configurations in the 2D Ising model!
upon approaching T, from above:
Larger and larger clusters ap-
pear, but small clusters are still

T=2T¢

present. T=1.05T,

~» Self-similar structure

~» Motivates a description in terms of
successive coarse-graining steps
(Kadanoff, 1966).

~» Justifies scaling hypothesis and es-
tablishes a connection to the di-
verging correlation length.

Starting point: Ising model f 7 = — BJ > 5;S; — BH > Si

\’" (igy h

!Figures in this section are taken from: Kenneth G. Wilson, Scientific American 1979, 158,
Problems in Physics with Many Scales of Length
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Block spins: Combine spins in blocks with side length b.

+++—++ ~» "Coarse-graining”: Every block is characterized
b by gl by one block spin variable S; = +1.

(e.g., S; =sign . Si)
Example (K. G. Wilson, Scientific American 1979):

= 7'-!7-‘ .'ﬁ ?J.’il -
£ — £y

'”i":‘? :‘7
S Ly =
Balnaily

Block spins: T" is hlgher ... the same ... lower than T’
See also Douglas Ashton: https://www.youtube.com/watch?v=MxRddFrEnPc

Assumptions:

(i) "Block spins have only pairwise interactions with direct neighbors”
— one can replace partition function g, e 77 by 2281} e B
such that > j¢q, e A = 280} e A/
with 74 = — K, Z(ij} S1Sy;— hy ZI St + const.
Then we have:
» Correlation length: & = £/b
* Functional form of singular part of free energy is the same:
Nbidfs(tby hb) = Nfs(t7 h)7 Le., fs(tby hb) = bdfs(tv h)
(i) Close to the critical point, we postulate: t;, =t 0¥, hy = h b¥%
Reasoning: Simplest relation that ensures t, = hy =0 fort =h =0
and (hb — —hb, tb — tb) for h - —h
Since &, < &, we must have y;, yp, > 0
( & smaller ~ (hy, tp) further away from critical point)

NB: Assumptions, no proof. In general, only approximately valid.

Consequences:

Free energy assumes the form: fy(t,h) = b=% fo(t b¥%, h b¥»)
Now choose: b = [t|"Y¥% = f(t,h) = |t|¥¥ fo(+1, h|t|~¥n/vt)

~» Scaling hypothesis: fs(t, h) = |t|2*°‘Ffi(h/|t|A)
with 2 —a = d/yt, A = yn/ys, F;—r(m) = fs(£1,2)

NB: Also implies v = 1/y;: For b = |t|~'/% we have f,(t,0) = b=%fs(+1,0)
and hence £(t) = b&(+1), thus £(t) = [¢|~1/¥ £(£1)
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Conclusions: Another motivation of the scaling hypothesis.
Otherwise, not much new insight

— Idea of self similarity (assumption (i)) not new
2 Jdea, that diverging correlation length drives singularities (Chap. 5)

— Exponents y;, yp, still cannot be calculated.

However: Guides our thinking in a direction that will turn out very fruitful:
Block spin summation — Thinning of degrees of freedom
~» Will lead to a better understanding of critical phenomena

6.2 Basic idea of renormalization

Here: First schematic sketch. Systematization of Kadanoff’s idea.

Consider a system with degrees of freedom {o} and coupling constants K= (Ky,--+)

Examples

— Ising model: B = +K1 3, S + K2 2,5 SiSj + -+
Degrees of freedom: S;;  Coupling constants: Ki, Ko, - - -
— Ginzburg Landau model: (57 = der{g + 3(V®)2 + 1rg®% + Jup®* + - - }

Degrees of freedom: ®(7);  Coupling constants: rg, ug, - - -

Coupling constants may be zero. However, the set of coupling constants should
be "complete” in a sense to be defined below.

~» Hamiltonian has the form: 8. = const. + > K, ¥ ({0})

6.2.1 Renormalization group (RG) transformation

Two basic steps

(i) Thinning out: Replace locally b% degrees of freedom by one
e.g., {Si}ier — Sy (block spin);  ®(7) — ®(R) = | dr ®(7)

’FEQR'
(ii) Rescale such that the new system with the new degrees of freedom has
locally the same structure than the old one (possibly with new coupling
constants) ~ N — N/b?%, ie., V — V/be
= New Hamiltonian: £ = const.” + 3] K/ U, ({0'}) with Y e 7 = 3 ¢ 87"
{0} {0’}
Set of coupling constants "complete” — no new coupling constants
~ Free energy: (3, }e—tm — o BN(g+fs(R) L Yo o B _ efﬁ<N(g+g’)+b%fs<I?’)))
= fo(K) = fo(K') g + ¢'(K)
with ¢’(K): Regular contribution from local integration,
does not contribute to the singular behavior
Together: Defines map: K — Ry(K)

with the properties of a semi-group: Ry, o Ry, = Ry, .p,
(no full group because in general, R cannot be inverted)
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6.2.2 Fixed points, RG flow, and critical behavior

Idea: Critical behavior is associated with fixed points K*
of the RG transformation: Rb(I? *) = K* Space of

. . L. coupling constants
Fixed point 2 Self similar system

In general reached after infinitely many iterations
(Local self similarity is not assumed! ) | T

:. Real system

Consequences for the correlation length &

e At the fixed point, one has either £* = 0 or £* — o
(Reason: ¢* i &*/b = £* only possible for £* = 0, )
&* = 0: Trivial fixed point
&* = oo: Critical fixed point

e All points attracted by critical fixed point have £ — o
(Reason: £(K) = b&(Ry(K)) == brE(Ry (K))
=...=bP¢(K*) = o0, since b > 1)

Behavior in the vicinity of a critical fixed point

Consider isolated fixed points (generalization is not difficult)

Expand about fixed point: K = K* + 0K, 6K small

RG transformation: K’ = Rb(f?* + 5K) ( BEDIN 61;3( Ka
N —
K* =M,6K

= K' = K* + 6K’ with | K’ = M, 6K

linearized RG transformation

Assume M, can be diagonalized and has real positive Eigenvalues
(usually correct at critical points. Otherwise, statements below are
not correct)

Eigenvalue equation: M,é") = )\I()V)é‘(’/)
We have: Ml’jé’(”) = ()\I()”))"é’(l’) - )‘IEZ) _ ()\I()l’))n
M =1 = A =2l =

Together: )\[(]n) ks with y, = In )\l()y) /Inb

Insert: 0K = 3, a) )
= 0K’ = MoK = 2 Aew) = 32 @)
— Some components of K grow, others shrink Space of coupling constants
Yy >0: growth — "relevant” directions \* — "frelevam
Yy, < 0: shrink — "irrelevant” directions Y ’\'F‘p T
Yy, = 0: "marginal” directions } ,»:': % ;\

“irelevant
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6.2.3 Relation to scaling hypothesis

Express fs in Eigendirections of M in the vicinity of the fixed point:
fs(OK) = de fs(W1 6K 1,092 6Ko,---) = b7 fo (bW 5Ky, b2 5 Ko, - - -)
Assume we have two relevant scaling fields t and h (e.g., Ising type systems)
= fo(t,h,6K3,---) = p—nd fo (bWt b™nh B35 Ksy, - - )
Consider t — 0 and choose b™ = |t|~%/% (OK since b > 1)
= fo(t,h,0K3,---) = 14/yt fo(£1, tYRYe Y YK )
~ v fs(i_l?t—yh/hth’o’ )

~» Motivates again a scaling hypothesis, however, more systematic approach
than before. Points at a way to actually calculate critical exponents!

Remark: Here we have made the assumption that one can take the limit
fs(-- ,0K3 — 0,---) =0 fs(-++,0K3 = 0,---) without introducing a
new t-dependence. This is not always the case for irrelevant variables.
If f¢ ~ 0KZ for certain irrelevant variables, the critical exponents may

change (see Sec. 5.4). Such irrelevant variable are called dangerous.

(Example: In the Ginzburg-Landau theory, ug is irrelevant at d > 4,
but it still makes a difference whether ug = 0 or ug > 0, see Sec. 6.5)

6.2.4 Final Remarks
« Differential form of the RG equations: Consider K — Ry (K) =: K (I = b")
= RG flow equations: % =1 lin% %(Rl(l-i-e) (K) — Ri(K))

. ,B(l?),independent of
= 4K — B(K) with s = In! Beta function

* Universality:

Many different systems are attracted by the same fixed point. Every
fixed point defines a universality class. In combination with the Ginzburg-
Landau theory, this explains why the universality class (the fixed point),
in general, only depends on the spatial dimension, the symmetry of the
order parameter, and the range of the interactions.

(The assumption that most parameters in the Ginzburg-Landau expan-
sions correspond to irrelevant dimensions can be made plausible by di-
mensional considerations, similar to Sec. 5.4.2, see Sec. 6.5.)

= In practice ... it is often not possible to do exact RG transformations. Nu-
merical approximations and/or expansions are necessary. Nevertheless,
the RG approach is valuable because it ...
— Gives physical explanation for the existence of critical exponents,
scaling behavior, and universality
— Provides a starting point for systematic investigations
— Represents a new way of thinking about critical phenomena
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6.3 Examples of exact RG transformations

Mlustration of RG procedure. Exact renormalization is possible, but ”boring”
results. More complex, nontrivial examples will follow later.
6.3.1 One dimensional Ising model

Example of a renormalization group calculation in real space

System: One dimensional Ising chain with periodic boundary conditions

B = —K Yy~ SiSiy1 —hD,; Si = H(K,h; {S;})  (Sn+1=51)
Partition function: 2% = >}, e PH

RG transformation

(i) Thinning: Average over spins S; with odd index i
(ii) Rescaling: S; = S;

- -t Ly ) e BAS])
= Z'=2sye PITAL ’

Hence: 252 ZS4"'{251 253 ...eKZSiSi+1+hZSi}
— 252 ehS2 234 ehSa ... [Zsl esl(h+K(5N+52))][ZSS 653(h+K(Sz+S4))] L.

= 252 ehS2 254 ehSa ... [2 cosh(thK(SNJrSz))] [2 cosh(h+K(Sg+S4))] e
Sj=53; WY S K 'S S S, 4N —H(K',W {S;)+Ng(K,h
3T Z{S}}e LS +K Y5585 g:Z{Sg}e (K',h" {85} +Ng(K,h)
where we choose K’, h/, g such that for z,y = +1:
e%(x"'y)Zcosh(h + K(x+ h)) =: Q20+h HLAK oy
x=—y : 2cosh(h) = e29— K’ (2)
= z=y=1 : eh2cosh(h + 2K) = e29+h +K’ (i4)
z=y=—1 :e "2cosh(—h+2K) =29~ +K"  (4j)
~» Three equations for three unknowns

- o Z{s'} o H(K' W {S;})+Ng(K.h)
J

with g = £In(2*cosh?(h)cosh(2K + h)cosh(2K — h))
K' = ;In(cosh(2K + h)cosh(2K — h)/cosh?(h))
K = h+ 3In(cosh(2K + h)/cosh(2K — h))

Transformation (K, h) — (K’,h') = R(K,h) defines RG flow

Function g(K,h) = regular contribution due to integration
Needed in order to calculate the free energy SF = —In &
(—BE = g(K,h) + Lg(R(K,h)) + 2g(R2(K,h)) + -+ = X7, (3)79(RI (K, h)))

Analysis of RG flow

*xh=0= h=0

h>0= h >h
h<0= KW <h L

x Forall h: K' < K

(Check: Set z = e 4K, y =2
O<z<l=l4+zy<l+y z+y<l+y

’_ (1+y)?
= T = Gray)(@ty)

K

z>x V)
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Fixed points:
* K =0, h arbitrary (2 T — o0): £ =0
Trivial fixed points, volume phase

* K =00, h=0 (2 T =0): £ > o according to Sec. 3.2
Critical fixed point, but unreachable at T" # 0

Critical exponents and scaling behavior: Use scaling variables h and 2 = e 4K
= Critical fixed point at (z*, h*) = (0,0)
Linearization: (422) = (iggl—g (gi) = (gfl,) =M (gfb)

with M = (g5) = (o) = v2 =2, 4n =1
= Free energy scaling: fs(z,h) = 2%V Fp(hx=vn/¥=) = 212 Fp(h 2~1/?)

6.3.2 The Gaussian model

Example for a renormalization in Fourier space

System: Ginzburg Landau model (®* model) with uy = 0
BF =§dr {1(V®)? + Irg®? — hd}
Makes sense only for 79 > 0 (otherwise, 2 diverges)

In that case, exactly soluble (“trivial”)
Consider this system in Fourier space, with microscopic cutoff A

15 11§12 2\
BT = v2|k|<A{2|‘I’k| (ro + k%) } — hyg
d
(Prefactor: Discretize ﬁ fdék — ﬁ g Vg with vp = (2\7;) )
> 5 1®5]2 (ro+k2)—hdo
E

<=

Partition function: 2 = { 2[®]e 57 = [ [T+ Sd@g]e
|E|<A

RG transformation

(i) Thinning: Integrate over degrees of freedom with short wavelengths
~+ Calculate partial trace for components ® with A/l < k| < A
Easy here, since different k& modes decouple in 5.%
= 2= H\EKA/Z % qu}E{ 1_[A/l<\l€|<A % qu)l;e% % %‘¢E|2(To+k2)_h%}

1 1 2 2
_ 1 V2R 3|@gl7(ro+k”)—h®g L L1o12(rg+k2)
- HIE\<A/Z v qu)EeV RI=a/t 2ok qu)E{eV ER }

<=

AJi<|k|<A
m/(ro+k?2)

1 - 1 12 . 2y _
=jzj<ap v §d2ge” iit<an 2 PR ORI o (1 g(ro))
. T A T
with g(rg) = %ZA/1<IIZ\<A In (W) ~ ﬁ SA/l d?k1In (W) regular
(ii) Rescaling such that new system looks like old system (same cutoff A)

i =/, K =kl V' = V/i4, & =17, (with 0: to be determined)

l—20—d

1

o _ oV v
= 2 =¢V900) H\E’KA = Sd@E,eV
| Same structure = term %(V¢)2 ~ |<I’,;|2k2 must look the same

= 7202 L o 9= —(1+4d/2)

—20— 2 —
=2 dz‘ﬁ,‘d\@’g,ﬁ(rﬁk/ /12)—hi— %)

2 LS p 125,12 (rol2 4k 2) —hiM T2 !
=eV9(ro) 7, Ul 1 e VT HE <A PR 1770 0
€ 1_[|1c’\<A V7 Sd‘b,;/e 1l

= Recursion relations: | ' = rgl%, K = h 12
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Differential form: for the flow r(s), h(s) with s =1Inl
Consider infinitesimal RG step l ~ 1 (but I > 1): [ =exp(ds) ~ 1+ ds

(ro =r(s) RG v = r(s 4+ ds) = 7(s) e®d® = 7(s) + 2r(s) ds + O(ds?)
h=h(s) B = h(s + ds) = h(s) eATDds = h(s) + (1 + &) h(s) ds + O(ds?)

- and [ dh/ds = (1+d/2)h |

Fixed point: 7* =0, h* =0

Expansion about fixed point:

ro = 1% +6r = 6r'(s) = 6re?s = r [
h = h* + 0h = 6K (s) = 6h e(1+d/2)s — 5p 1 +d/2

= r(oct) and h are relevant directions (only ¢ > 0 is possible)
with exponents vy, =y =2, yp =1+ %

Critical exponents and scaling forms

Correlation length: v =1/y; = 3

Free energy: fq(t,h) = =% f(t 19, h19n) c/51 td/th;'(ht_yh/yt)
= a=2—d/y=2-5, A=ufyi=3+1%

%7 7:2_04_25:17

6.4 Renormalization of the 2D Ising model

Example for an approximate RG treatment in real space
(Niemeijer, van Leeuwen, 1974)

System: Ising model on the triangular lattice: 877 = —K >, SiSj — h >}, Si

RG transformation

(i) Thinning: Combine three spins {S}, SI, S}
— New triangular lattice
New spin: Majority rule S} = sign(S7 + 5% + SI)

(ii) Rescaling: Shrink lattice by factor b = /3

SAENGE
L
TN

= Exact RG transformation would read & = Z{S}} e P = 218} S

= BA({S1}) =In| 3 e P I]

(S} T Sr,8ign (S Sé)]

Approximate evaluation of RG recursion relations

Separate 7 into S = J4) + V such that
. Contains no couplings between blocks
My = —K Y, (S{S] + 5185+ 535§) —h 1S
V' : Rest (4 — 7)), treated as "perturbation”
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— B
2oy OOy signs, st
— B
Z{Si} N oIl ésl,sign(Za s
Expectation value with respect to . for fixed blockspins S

Define (O)¢ =

Then we have exactly: | e ?%" = es ATBY 5] e PV,

with (g) = LIn(e3B T30 4+ 367 K7N) + Lin(e3K 30 4+ 3e= K1)

(Calculation: Since the individual blocks decouple in %, we have
= Xs:) e A, 6sl,sign(xa sly ~ [1r Zo(K, S7)
with 24 (K, Sy) = Zsl .55 oK (S1S2+S153+5253)+h(S1+52+53) §

K +3h 4 go=K+h gl _ 1
= { BK—3h | 3~ K—h :Si -1 } =exp(A+ BSy) V)

S7,8ign(s1+Ss+53)

Now approximation: Cumulant expansion ‘ <e_ﬁv>0 ~ e V00 ‘

Then 7’ has the same form as . with new coupling constants:
K' = 2KD(K,h)?

W = B(K,h)+ 12K C(K,h) D(K, h)
3K +3h o~ K+h __ o3K-3h  ~K—h
where (g(é{(:};g) = %(esskjsg;ujy)efkih + 833K—33h:36—1<7h)

(Calculation: Consider (V) in the reference system .7 for given {Sr}
— V couples only to neighbor blocks: (V), = >3;; Vi
— Averaging: e.g, as in the figure:
BViy = K{S11(Ss2 + 5753)) = K{(S1,1)¢({S7,2)0 +<{57,3)0)
= 2K{S1,00{S5,0)o (averages are independent of )
Define ®(S5}) = {S1,a), (is independent of o)
— One can write ®(S5) as ®(S) =C + DS
(must be possible: Two equations ®(+1) for two unknowns C, D)
S Sqe(S152+5153+45253)+h(51+52+53) 5

. S1,2,3
Specifically: (S1,a), = Y oK(515:+5153+5553)Fh(51+52+53) 5

s’ sign(S1+S2+53)

S’ , sign(S1+S2+53)

51,2,3
Cj}i(::hh +3C 71;;}; : S/I =1 ,
= ieskfatfefzwrh, g =:C+ DS}
3K —3h130—K—h ' °J

= BVi; =2K(C + DS})(C + DS’)) = 2KC? + 2KCD(S} + 5;) + 2KD?*5}.5/,
= B = A+ B S+ B, Vis
= J(A+6KC?) + (B+12KCD) Y, St +2KD2 Y, 515 V')
| — —_— v

’
N g regular h’ K

Recursion relations in special cases:

0 gt o e Kpe K2 - | K/2 for K — 0: shrinks
*h=0: K =2 Gew) Ko { 2K  for K — o0: grows

* h — 0: K' =2D?K = 3K shrinks

= Fixed points and RG Flow diagram

Trivial fixed points:
(h, K) = (0,0), (0,00), (£o0,0)
Critical fixed point:
(h, K) = (0, K*) with (

ok *
eBKT 4K )2 _
e3K* 4 3e—K* B

N[ =
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Analysis of RG results

* Critical point: K, = K* = -+ = 11n(1 + 2v/2) = 0.33

(Compare exact value: K, = 0.27, Bragg-Williams: K, = é =0.17)
* Phase diagram: Follows from flow diagram
x Critical exponents

Expand about critical point: (%I}f) = (I}f) — (I}f:) — (%I}f,l)

= (6h’):M(6h) with M = | & 5 e
K*.h

oK  Oh
For symmetry reasons (h* = 0), we have aTIZ’ = 2}1”(’ = 0
= M is already diagonal!
Eigenvalues of M:
Ag = (Y goxpny = - =162 =:b% = y, = 0.882
Ap = (Z5) gy = - = 3.06 =: b9 =y, =2.034

Compare exact values: y; = 1, yp = 15/8 = 1.875
Remarks

* RG treatment allows calculating phase diagrams and critical exponents.
Not exact, but can be improved systematically — e.g. by taking the
cumulant expansion up to second order!

(In that case, RG transformation generates additional interactions
— have to be cut off, further approximations become necessary.
Result is nevertheless much better: K. = 0.26, y; = 1.04.)

* Important: RG transformation must be analytic! (Singularities should
emerge when approaching the fixed point, not prior to that!)
Non-trivial requirement! Among other, it implies that the RG trans-
formation must maintain the symmetries of the system.

(For example, an RG transformation that maps a Heisenberg model
on an Ising model is not allowed!)

6.5 Renormalization of the ®*model

Recall (®* theory and related)
Section 5.4 — ®* theory: B.F = {dir {3(V®)? + iro®? + Luo®*}
Rescale: ¢ = Q\/ﬁl_dﬂ, ¥y =174/To
= BF = [dl {3(Ve)? + Lo + Luopt} with dg = ug \/ﬁd*‘l
At the phase transition, rg vanishes: rg — 0
= *-term diverges for d < 4, vanishes for d > 4
(NB: Dimensional analysis: In the latter case (d > 4), higher order

terms vanish as well. For example, prefactor of ¢ scales as rg_3.

Section 6.3.2 — Exact renormalization of Gaussian model with ug =0
BF = (dir {3(V®)? + Lryd?}
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Treatment of ®* term in ®*- theory

a) d > 4: wy irrelevant, effectively Gaussian model ("Gaussian fixed
point”).

b) d < 4: uy becomes relevant at the Gaussian fixed point.
~» Gaussian fixed point unstable,
new fixed point ("Wilson-Fisher fixed point”).
Perturbation expansion about ug and € = d — 4.

Problems:

e Expansion diverges ! (already clear from the fact that expansion
must diverge for uy < 0! = Convergence radius ug = 0)
But: First terms of the expansion still improve the results. Be-
yond that, Borel resummation is possible.

e Individual terms of perturbation expansion diverge in the limit
A — 0 (A: microscopic cutoff): "Ultraviolet divergences”!
~» suggests sensitive dependence on A

Ways out

— Fourier space renormalization (shown here)
~» Degrees of freedom in [A, A/l] are gradually integrated
out — RG equations. Fixed point is independent of A

— Direct elimination of ultraviolet divergences by field theoretic
renormalization (not covered here, detailed treatment, e.g.,
in Binney, Dorwick, Fisher, Newman: The theory of critical
phenomena.

6.5.1 ®*-theory in d > 4 dimensions

Question:

ug irrelevant — RG group should correspond to that of Gaussian model
(Sec. 6.3.2).

Critical exponents of the Gaussian model:

_ d _d 1 _ _ d+2
a=2-5,PF=1-27=10=53

But: In fact, critical exponents are quite different!
Mean-field exponents, independent of dimension (cf. Sec. 4.3.5)
a=0,B8=2%v=16=3

~» How does this fit together?
Answer: ug is a dangerous irrelevant variable (cf. Sec. 6.2.3).
Scaling form of the free energy in mean-field approximation (according to

dimensional analysis, Sec. 5.3): fs(t, h,ug) = I~ fs (£, hi¥»  ugl¥+)
with y; = 2, yh=1~|—g,yu=4—d.



94 CHAPTER 6. RENORMALIZATION

Specifically: Mean-field solution fs = %TOCDZ + %UOCI)ZL — h®

v To/uo + h/2|rg] 1o <0

with @ ={ (h/ug)'/3 ‘1o ~ 0
h/?‘o 1T > 0
—% r%/uo—hM—h2/2ro i1 < 0
= fs = —%u61/3h4/3 g~ 0
—h?/2rg 19> 0

= for ug > 0, we can generally write fs(t, h,ug) = u—lofs(t, ha/ug)
—l'r‘g—w o —22/2rg :t <0
{ _§x4/3 t~0 § wherergoct
—x2/2r¢ t>0
= fi(t, hug) = l—dfs(tlyf hive ugl¥e)
=rL |t|d/yt Fo(21, hft|om/hs uo!t! vulu)
Y ACS NN
‘ Use yr = 2, yh:1+§, Yy =4—d
= [t2 o fo(£1, hyfuglt|75/%) = [¢]2 FF (h|t[72)

(Replaces i (ht|~vn/ht) = FF (h|t|=(d+2)/4)

with fo(t,z) =

= a=0

= Specific heat: cH ~ 32{5 ~ [t°

Order parameter: m ~ —%J;LS ~_|t|1/2FJj—”(h\t\*3/2) = f=1/2
t=0: m~ h'/3 = =3

(Last line: t > 0,h # 0 = m independent of ¢t = F;L (z) w12 13

Conclusion:
Since wug is irrelevant, the RG-calculation still gives the Gaussian fixed
point (Sec. 6.3.2). However, ug is dangerous and changes the critical
exponents. To obtain the correct critical exponents, one needs additional
information (i.e., mean-field solution and Ginzburg criterion!)

6.5.2 ®*-theory in d < 4 dimensions: e-expansion

At the Gaussian fixed point, ug becomes relevant, new RG treatment necessary
(Gaussian fixed point becomes unstable.
— new fixed point: Wilson-Fisher fixed point.)

System: Ginzburg-Landau theory (®* theory) with ug > 0

F ={d {3(V®)? + Lrg®* + Jug®! + - — hd}
In Fourier representation ((Qi)d §dtk = L )
BT = %Z\EKA {51922 (ro + k%) } — h®g (Gaussian model)
+quo g Y Pp @p ®p &p Visug (®* term)
k1,k2 k3 k4
+ 2wy % ) > Op - P Vézak ot (®° term and higher)

kl?”' 7k6
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Higher order terms (®°® etc.) must be included for now, because they
might be generated by RG transformation.

RG transformation (same as 6.3.2)

(i) Thinning: Integrate out ®; for A/l < k| < A

(ii) Rescale: k — K, @% — ZQQE, such that 8.7 retains its form
~ term 3(V®)? remains unchanged.

First (i): Thinning: Integrate out short wavelength modes ®;

Separate J Fo+ S + ¥ with
590— Z <A/l2|<I> 2(ro + k?) — h®
BF1 = Z A< <A 21®; ! (7”0 +k?)
BY = 4u0 V4 Zkl R T IRER O V5Z rot higher order terms

= % = ngq),;e ﬁfﬂ/g(m) with e 8% =<e 5’/>1e B0
|k|<A/l
where Vg(ro) =In[ [] 3 §d®pe 1] = 3 In(;5p)
(see Sec. 6.3.2)  AJi<|E|<A AJi<|K|<A
_ apcjgjen §d@ge#710
and <O>1 N HA/L<\E\<ASd<I’Ee_ﬁ§1 ’

Cumulant expansion:

(7, mexp (= B, + Z (D, =) +--)

= Expand 535 in powers of wug.
Here: Only very rudimentary sketch of the calculation
For a more systematic treatment involving Feynman diagrams
etc. and better assessment of the approximations below see N.
Goldenfeld Lectures on Phase Transitions and the Renormaliza-
tion Group

» First order: Calculate contribution of d4-term to <”//>1

Separate the contributions to - V4 Zkl Fa <I> Pz V(524 %0

- |kZ| > T Vi (¢ =1,...4): Can be integrated out completely — regular term
— k| < % Vi (i =1,...4): No integration (term remains).

— One or three |K;| > A: — Terms vanish for symmetry reasons ((®3), = 0)
—Two\k|> , e.g., \k12\< \k34|>*

—

= Contrlbutes only if ¢:= k3 = —ky (implying Ky = —ky = 12)
(k3 # £ha = (g Bp 5y = (@ 1 (@p )1 =0,
k3 = k4 not possible, incompatible with > k; = 0 & |k1,2| < A/I)
Every single such term contributes = ( \/12 Zq>A/l F(q)) % Zk<A/l Q0 5
with I'(q) = {|@4]%), =--- = To‘iqz (Gaussian integral)
In total: (3) = 6 such terms ((;) ways to distribute (+k, +7) on ki...4)

Summary: & term in (¥, gives additional contribution to rq
rg — T =19+ SUO% 2insg=an L) with I'(g) = V(ro + q?)
(not yet rescaled)
Coefficient ug remains unchanged in first order of ¥
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* Second order: Consider again ®*-term
— Contribution of order &'(u2) to # — neglected
(keep only leading contributions of expansion in u)

— Contribution to ug: Leading correction, must be accounted for
. lengthy calculation .

1 1
— WZ(I) P V524k 0 10
= V4 va k1 52% 0%“0(1*91%% X F(Q)F(QI)V6E3+E4,(§;¢)

q,q' >N/l
— Approximation: @ ~ ug(1 — QUO% DA Al I'(g)?)
* Higher order terms in ® (®° etc.) give higher order contributions
to 7 and @ (e.g., ®° — &(u?)). Shall be neglected here.
Now (ii): Rescaling — analogous to Sec. 6.3.2:
L _ 1—(1+d/2 _ d
k—kl, ®p — &L =172, vV -V =V/I
= 1= HQ, u' =@l b= 2
(,v) P2 ~ 10 1 Loy It 10 W' ~ lO)

Together: Recursion relatlons (recalling T'(q) = V/(r0 + ¢2))

7“’ = 12(7"0 + 3’LL011(7“0)), u/ = UQ l4_d(1 — 9u012(7’0)), h/ = hl1+d/2

with [i(ro) = & % T(@)~ghy  § dlgts
AJI<g<A AfI<g<A
L(ro) =3 X T(g?= (zflr)d § dlgiay

AJl<g<A AJI<g<A
Differential form of the RG flow equations

for the flow r(s), u(s), h(s) with s = In!
Consider infinitesimal RG step [ ~ 1 (but [ > 1): | = exp(ds) ~ 1 +ds

Ad 1 Ad—2C
= Il(To) x TQ+AS QAd Cd _d51+r0A dQ

Ad d—1 Ad—4C

where Cd = Qd (271r)

= 7rd/2(%—1)! (Qd: Surface of unit sphere)
Specifically: Cy = 1/872

(ro = r(s) 5 1 = r(s + ds) = €245 (r(s) + 3u(s)1) = r + ds (2r + 3uly) + O(ds?)
up = u(s) RG W = u(s + ds) = e@=Ddsy(s) (1 — Yu(s)l2) = u + dsu ((4 — d) — Yu I2) + O(ds?)
h=h(s) 5 W = h(s + ds) = h(s) e1+4/2ds — b 4 (1 + 4) hds + O(ds?))

4 — (2r + Bug S Q)Ad ?)
= U —y((4—-d)—9u

>
7_h _‘_7)

(1+r A 2)2




6.5. RENORMALIZATION OF THE ®*-MODEL

Fixed points

Gaussian fixed point: | r* = u* = h* = 0

Wilson-Fisher fixed point:

u* = (4—d) 7(1”9272)2 A = —% 7(1+T2%72)Ad_2u*, h* =0.

NB: Approaches r* =u* =0for4—d — 0

~» Motivates expansion in | e =4 —d

1 872 1
u*=69—c4zle, T*=—6A26, h* =0

9

Linearized RG equations and scaling exponents

Consider recursion relations
% = fT(ra u, h)) % = fu(Tauvh)7 % = fh(T,U,h)
Expansion about fixed point: r = r* 4+ ér, u = u™* + du, h = h* + oh

d [ér
ﬁ& ou

or 2—% x 0

=L [su| with L = 46(55;{1‘7}{)“ — 0 ’ —c 0 +ﬁ(62)
5h Y 0 0 3-—

where x = A2C4(3 + §)

oh

£
2

(Calculations:

df, _ _
Ly = fr = 2-3u* A2 Cu rgipmayr A2 = 2-3u¥Ca - 0(e?) = 2— et 0(c
L'ru =

= % = 3Ad_20dm = 3A2C4(1 + €/6) + O(e2)

dfu _ — —2 _
Lur = 2 = 180*2 A" Cy frgiyays A2 = 0(2)
dfu _ s
Luw = i = (4 = d) = 18u*Ca ry=ayz A7 = € — 18u%Ca + 0(€)
= —e+ 0(?)
L'rh = Lhr = Luh = Lhu =0

d
Lpn=%r =144 =3 1¢)

or or or
ou| = eXp(LS) sul =Y |ou
oh oh oh

= Scaling exponents and scaling fields are the Eigenvalues and Eigen-
vectors of L

= Solution:

= ’ yr=2—€/3, Yy = —E, yh:3_6/2‘

1 — % /2 0
with scaling fields €. o (0), €y, OC ( 1 ), €, oC (o).

0 0 1
~ Yr,yp > 0 are relevant scaling fields,
Yy < 0 is irrelevant!

97

)



98 CHAPTER 6. RENORMALIZATION

Discussion

* Flow diagrams
e>0 (d < 4) r Gaussian fixed point (unstable)

Wilson-Fisher
fixed point

At € =0 (d = 4), Wilson-Fisher fixed point
joins Gaussian fixed point.

e<0 (d > 4) Wilson-Fisher r
fixed point

‘/:—J\i\\lj
unphysical

parameter ) Gaussian fixed point
region

(u<0)

Wilson-Fisher fixed point becomes unstable and
moves into unphysical parameter region at u < 0.

* Critical exponents at the Wilson-Fisher fixed point, d < 4

Calculation as before from
yr=yr=2—€/3 (sincet ~r), yp, =3 —¢€/2
Yy < 0 = Scaling field u is irrelevant fixed point
(and also not dangerous)

Results (numbers for 3 dimensions — € = 1)

v=1/y=1/2+¢/12 + O(?) ~ 0.58
a=2—d/y =e¢/6+ O(?) ~ 0.16
A= gy = 3/2+ 0() ~1/5
B=2—a—-A=1/2—¢/6+ O(?) ~ 0.33
y=A-B=1+¢/6+ O(c?) ~ 1.16
§ =A/B=3+¢+ O(c?) ~ 4

n=2—v/v=0() ~ 0

~>» Much better than Mean-field!
(Correct values in 3D: aw = 0.11, § =0.32, v =1.24, 6 = 4.82
v =0.63, n=0.04)



Part 11

Nonequilibrium Statistical
Mechanics
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The theory of nonequilibrium statistical physics is much less unified than equi-
librium statistical physics. The main reason is that one has no equivalent to the
central postulates of equilibrium statistical physics - the existence of an equilib-
rium state where the entropy is maximal. Nevertheless, statistical descriptions
are sometimes possible.

Here we will briefly describe a few selected approaches

Linear response theory

Close to equilibrium, equilibrium statistiscal mechanics can be used to
describe nonequilibrium systems within first order perturbation theory.
Important results are the fluctuation-dissipation theorem and the Green-
Kubo relations (already used in section 4.5)

Boltzmann equation

Statistical approach to systems, whose dynamical evolution is dominated
by scattering processes (e.g., gases). Assumes

e Only collisions between two particles
e Every collision is a random process

e Description by one particle distribution functions f(p;t)

In general, the validity of these assumptions is questionable. Nevertheless,
the Boltzmann equation has been very successful in many respect, and
played an important role in the history of nonequilibrium physics.

Extensions: Equations for hierarchies of N-particle distributions, BBGKY
hierarchy, requires "closure” relations (not covered here).

Stochastic processes
Basic idea: Separation of time scales, slow and fast degrees of freedom
— Coarse- graining, similar to RG idea
e "slow” degrees of freedom: Formulate dynamical equations for them

o "fast” degrees of freedom: Noise
In the simplest case: Langevin equation with white noise

Extensions: Colored noise and memory
Statistical physics framework: Mori-Zwanzig theory (not covered).

Stochastic thermodynamics
TODO

Exact relations for fluctuating driven systems. Entropy production, fluc-
tuation theorems, thermodynamic uncertainty relations.
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Chapter 7

Dynamics Close to Equilibrium:
Linear Response Theory

Recapitulation: Regarding static properties, we already know that there exists
a relation between correlations and response functions (cf. Sec. 3.5.3.4).

Consider generally a Hamiltonian with a small, time independent pertur-
bation that couples to a dynamic variable A: 77 = 54 — haA

~+» Response of quantity B to this perturbation:

KB .
;h: =BCpa | with ’ Cpa = (BA) —(B){4) ‘
(Proof: & = Tr(e P70+Bhady. (BY — % Tr(Be_ﬂ%+5hAA)

EB) _ 1 22 (e PH0ANAA) 4 L0 Ty(Be At Ahad)

— ,éﬂ’l;r(fe*ﬁ:%+im/4)Tr(Aefﬂ%WhAAHéﬁ Tr(BAe #o+58had)
= —B(B){(A)+ B(BA) V)

This relation is also called "static fluctuation-dissipation theorem”.

Now: Generalization for time-dependent perturbations
~» Dynamic fluctuation-dissipation theorem

General relation between dynamical correlations and dynamic response
functions.

Particularly relevant in the context of

— Transport close to equilibrium
(Currents in response to external driving forces)

— Green-Kubo relations and Onsager coefficients

— Friction and entropy production close to equilibrium
(hence "dissipation”)

7.1 The fluctuation-dissipation theorem

Shall be derived at the level of quantum theory here.
Pure classical derivation — Exercise!
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7.1.1 Fluctuation-dissipation theorem for density fluctuations

First consider important special case: Fluctuation-dissipation theorem relating
density fluctuations (i.e., structure factor) with a generalized susceptibility).

Generalization in Sec. 7.1.2

Consider Hamilton operator of a homogeneous many-particle system with a
perturbation that couples to the local particle density:

H=Hy+ H.. with H,, ={d%n(7t)dFt) =Y, dR;,t)

with ®(7,¢): Local time-dependent one-body potential
and n(7,t) = >}, (7 — R;(t)): Operator for particle density

Define:

* Dynamic structure factor: (can be measured in scattering experiments)

S@w) = [ ate i ni-a.0)

—00

with n(q,t): Fourier transform of n(7,t) (n(7,t) = 3 2an(q, t)e'’T)

* Generalized susceptibility: y® — Characterizes local density change
d{n(¥,t)) in response to an infinitesimal perturbation ® — 0.

Translational invariance in space and time — General linear relation

0
8(n(7,t)) = Jddr/f dt' xB(F -7t —t') o(7, 1)
—Q0

(leading order in ®) or, in Fourier space (convolution theorem):
on(q,w)) = x"(7.w) ®(7,w)
with (7, w): Generalized susceptibility

(Fourier transform: f(7,t) = 52 quiow dw f(q,w) e T7 et

In this Section, we will derive the following relations:

K1) = =5 O(0) (@ ), n(~3,0))

and the Fluctuation-dissipation theorem

(1- efﬁh“’) S(¢,w) = —2hV Im XR((j’, w)

Classical limit (h — 0, X[A, B] — {4, B})

X 1) = O(t) ({n(q. 1), n(—7.0)})
BwS(q,w) = =2V Im x (7, w)

This will now be shown in several steps in the next subsections.
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7.1.1.1 Linear response and susceptibility

Task: Calculate response of density 0{n(7,t)) to perturbation ®

Procedure: Time-dependent perturbation theory

Equations of motion in the Dirac picture
(Heisenberg picture with respect to unperturbed system Hy)
States: ihdy|vpy = HE |1p), Statistical operator: ihdrpp = [HE,, pp]
with HeD = eﬁHOt H..e — 5 Hot

Solution at lowest order of Hext (first order perturbation theory)

= [¥p(t)y = [y — 1§ ar HD (') [0\
pD<t>=qu’—f dt' [HE, (1), p\]

(with: W?% pg : unperturbed system, Heisenberg picture)
= Time evolution of the density

Density operator in the Dirac picture: n(7,t) = erHoty, (f’)e_%Hot
Expectation value:

(7, 1)) = Tr (pp(t) n(71))
= Tr (pfn(F, 1) — 4§ 4t T ([HR(#), 7 In(F. )
Tr (o3 [n(7,0) HE, ()] )
= (n(Ft)po— 1§ dt’ §d4' d(7,¢') {[n(7,t),n(7, )]
= Time evolution of the density fluctuation
Mn(rit)) = —+ dt’der' O (7, t") {[n(F,t),n(7,t')] Do

where {-)g: Expectatlon value with respect to unperturbed system!

Result: Generalized susceptibility

Equation for §(n(7,t)) can be rewritten as

o0
S(n(7,t)) = fddr’f dtDE(F t; 7 t') (7, 1)
—0

with | DR 67, 1) = %@(t — Y (7, B, )]

Specifically: Homogeneous system Hy: DT depends only ( F—7) and (t—t').
~» Fourier transform: x®(q,w) = & {d?r §d?’ § dte =

Then we have: §{n(q,w)) = x ((j’, w) P(q,w) v
with x%(q,w) = —ﬁ §di e"""t O(t) {[§ddr e~ Tn(7,t), { A% T n(,0)])
= —p Jdte®* (1) {([n(q,t),n(=7,0)]) v
7.1.1.2 Relation to structure factor

Task: Establish connection between x and number density fluctuations

Procedure: Starting from expression for x*(¢,w) in the previous section
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* Insert integral representation of the Heaviside Theta function

L
@(t) = ﬁ O_OOO dw’ e tw,#_m (Proof: Theorem of residues)
n—0+
- YR(Gw) 727r1hV S_ dt Soo do’ eit(wtw) {dn(d, :) ﬁgnq 0)1>

Substitute w” = w + w’, exploit time invariance

i § S s [t et ((n(@8) n(—4,0)) — (n(=4,0) n(G,1)))
(=q,—

Substitute ¢/ = —t {n t) n(g,0))

b § 9 s ([dte™ Hn(g, (=, 0))—§ dt'e= " (n(~q, ' )n(d, 0)))

T TRV 2n (W=w)
~» Establishes general connection with structure factor
(for homogeneous steady states)
W) = 1 dw’ S((f, W) = 8S(—q,—w')
7w % (w—w') +in ot

* Now consider a reference (unperturbed) state at thermal equilibrium

= Statistical operator: p = ﬁe_B(HO_“N) (grand canonical)

Consequences:
o S(q,w) = 5(—¢q,w) is real.
o | S(—q, —w) = 8(7, —w) = e P §(q,w) |("detailed balance”)

(Proof:
S(7,w) = [dt et Tr (o5 n(q,t) n(—q,0))
Choose Eigenbasis |m) of Hy and N
with Holm) = Em|my, (Ho — uN)|m) = Kpm|m)
= fdte™t 3, (mlply) e ot n(q,0) e~ 710! n(—,0) [m)
‘ Insert 1 =3, |m/)(m/|

= Jdtet st g 3 e PHo =1 Nk 0 (g, 0)e™ R0 !y om n(~g, 0)}m)
= Zor S © PHm fdt ™! e Bmt o3 Bt (| (7, 0) [m) (m| n(—4,0) |m)
27h(hw+Em—E,, 1) [<m|n(g,0)|m’)|2
= g Sy © PEm 2008 (hw + Em — Byt [(min(g, 0)|m/)[?
S(q, —w) = Zc% Dim,m/ e BEm 2mh§(—hw + Em — E,y) [{m|n(q, 0)|m’)|?

By = Bm — hw, [(m|n(g,0)[m/)[* = [<m/|n(q, 0)|m)[?

T S € P B0 2§ (o + By — o) [ [(; 0) 2
= S(Fw) V)

Remark: Interpretation of the factor e =A™
S(q,w) = Average over transitions between states m and m’. The

transition probability w <> w’ is symmetric, but the occupation
probability of the states depends on temperature.

Result: Collect all = | (1 —e ™) S(q,w) = =20V Im YT (7, w) | v

)_1 dw’ 1

— —Bhw'
= Wi or oot S(q,w) (1 —e Bw)

n—0+

( Proof: x2(q,w

) ﬁm|n—>0+ = P(%) — 47 §(w) with P: Principal value
= 5w PI 5 8@ W) (1*6_[3%)*%3( w) (1 —e Ay
ﬁ/—/
real

real
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7.1.2 General fluctuation-dissipation theorem

Generalize results from Sec. 7.1.1 to general case of a small perturbation that
couples to a dynamical quantity A ~ H = Hy + ®4(t) A. (Proofs as before).

(a) Generalized susceptibility:

The response of a quantity B at time ¢ to ® 4(¢') is given by

KB = [ at Bt t) oalt)

where

XBa(tt') = =2ixpa() Ot — 1) with  xpa(t) = o7 {[B(®), A(0)])

NB: - Rationale to introduce x'; 4(t): Analytic function
— Relation between x§ 4 and X’]’3 4 in Fourier space:

X .
XBA Jd ' BA ZX%A(CU)

iw't

(Proof: Insert O(t) Sd W' —

n—0+t
= xF(w) = —QiSdte“"tG(t)x”(t) -1 = fdw ’S — Sdt WA (1)

=_1 L X'(w+w)=2% L §do’ — W1+lnx"(w’)

’”7

- —P(f —imd(w) )

and use 5 +i7z

(b) Generalized correlation function and detailed balance

’ Cpa(t) = (B(t) A(0)) ‘With Cpa(w) = ™ Cyp(w) |at equilibrium

(Proof of detailed balance property same as in Sec. 7.1.1.2
(c) Fluctuation-dissipation theorem
(1—e ™) Cpa(w) = 2h XA (W)

Specifically: If B = AT = Cpa real = x4 ,(w) = —Imx& ,(w)
(e.g., Sec. 7.1.1: A =n(q,t), B=n(—q,t)=A")

(d) Classical limit — Simplest via o — 0 and [B, A] — ih{B, A}

) B d
= | xpalw) = B—wCBA( ) | respectively X%A(t)zlg aCBA(t)

= | Xfalt) = ~2ixha(t) O(1) = 5 O(1) T Cal)

7
and further | x'54(t) = §<{B(t), A0)} (from X" (t) = L{B(t), A(0)]))

(Can also be calculated directly without quantum mechanics — Exercise!)
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7.1.3 Other exact relations
Famous relations. Useful in practice, e.g., for evaluating approximations.

7.1.3.1 Kramers-Kronig relations
Relations between real and imaginary part of response functions:

I
Rex®( dew my? )

w—uw
Imy " (w )—+P5d“’ Rixw =

This is a consequence of causality, i.e., x*(t) = 0 for all ¢ < 0

xB(t) = &£ {dwe @t xB(w) =0 fort <0
2m
~ XR(w) does not have poles in the upper complex half plane

Assume further:
— No poles on the real axis (would correspond to dissipationless resonances)
— xT(w) decays "sufficiently rapidly”
Choose integration path as in picture and consider integral §dw’x (w ) =0
— Contribution large circle: 0
— Contribution small circle: (W' = w + ee’? = dw’ = iee’® dy)

L 0 S 3
s X (w) [ dpiee? [eet? = —%XR(U.Q .
’ . 9 ’
— Contribution straight part: ﬁPde’% = iPde’%
. R,/

Together: xT(w) = %Pde’%; Insert x* = Re(xT) + i Im(x®?) v)

271'1

7.1.3.2 Sum rules
Exact relations for moments of response functions.

Here: Specifically for structure factor and density fluctuations (Sec. 7.1.1).
Similar relations can be derived for for other response functions

* If the interaction potentials do not depend on the velocity, one has

{[[n(q, H qﬂ> (@), T, n(~p]) = ZLN)

(Proof: n(q) =%, ¢

= [ (‘D Zj 2m] = Z]‘[eii‘iﬁj7 g] = . = Z] efitfﬁj(_% q2 + %LT ﬂj)
= [[n(@. ZJ 2m] n(-q)] = Z hq'[eiiqﬁjﬁjwiq’ﬁj] = = hif 21 )
=

* This results in the f-sum rule for the density response function

2
| 2 wtnge) = -1 @)

with m: particle mass, N: particle number, 7T": kinetic energy

(Proof: With the notation of 7.1.2, we have Imx (7, w) = —x"(&,w)
with X" (,1) = g7 ([n(, 1), n(=4, 0)])
= §2ox (G w) = - [ Lox(qw) = —§ Lo fdte™ X" (1) = [dix"(31) § 52 1 Gre™!

= —9; A (gt 1. d 7t ) da

T3 X (q’ )|t:O WV dt([n(q, )7”( q; )]>|t:O 2157 6(t)
2

= A En(@ )] ,_g n(~T,OD|,_y = — 2 [n(@), H, n(-]) = — L. 42 v)

+[n(3,0),H]

* In the same way one can derive sum rules from higher order commutators.
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7.2 Transport

Topic in this section: Stationary currents that build up in response to constant
external driving fields in the linear response regime, i.e., small fields

Starting point:

* Densities py of conserved quantities K (mass, energy, charge, ...)

= Continuity equations d;pr = —V - i

* Associated generalized potentials @y
Physical origin (e.g., electrostatic potential) or thermodynamic origin

(e.g., chemical potential)

Remarks:

* One can distinguish between two types of transport

(i) Convective transport in a flowing medium.
Flow velocity ¥ — Current f,;onv = U pp
(ii) Diffusive transport in the local rest system of the medium
in response to an external generalized force Zk
~» This is the transport type of interest here.
Usually, a diffusive transport law is associated with a diffusion law.

* Nature of generalized forces Zk

— Similar to generalized potentials, can have "physical” origin (e.g.,
electric field) or "thermodynamic” origin (e.g., chemical potential
gradient, temperature gradient)

— Can be associated with a perturbation H' of the Hamiltonian

At constant temperature: H = Hy + H'
Zp = -V &,
H' =Y, §d% pp(F) Ok (7)
In case of temperature gradient T'(7) <> B(F) = By + 5(7)
T'(7) induces gradient in the energy density p.(7)
Define reference system Hy that has same profile p.(7) at
equilibrium: Hy = Hy + der %(:) pe(7)
O () — Oy (F) = EDO(7),  Zy = —VOi(7)
= "Perturbed” system: H = Hy + H'
with H' = = §d%r pe(r) 57 + X0, §d'r pi(7) 57 @

~—

Ho—Hy other perturbations

~» Connection with generalized potentials:
Zy, = =Ty V(®4,/T) | ( setting )
* Consider spatially constant Zk = %@k = — 7 -7 + const.

= H=-3, Zy - § ddr py(7) 7+ const.
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7.2.1 Green-Kubo relations

Consider locally conserved quantities a, b, where a experiences spatially con-
stant generalized force Z,
= Perturbation (see above) H' = —Z, {d% 7 p, + const.

Question: How does the current density jb respond to this force?

Answer: (as will be shown below)

<jb> = Apa Za | with Apg: Onsager coefficients

Connection to current correlations: Green-Kubo relations

0 B8 . .
Quantum mechanical: Apa = Vf dr J dA Ga(—ih\) ® Ju(1))
0 . 0

Classical: Apg = Vﬂf dr <.;a(0> ®jb(7')>
0

Derivation of these relations:
« Consider first moments of densities: A = {d% 7p,(7), B = {d% 7py(F)
— Perturbation: H' = —Za . ff, Current: Vfb - B

(Assume |j,| — 0 at border of volume V
= Vi, = {dirF, = {d% (G - V)7 = = {d% #(V - Jp) = {d% 7opy, = B)
~» New, equivalent problem:

Response of a quantity B to a field coupling to A

. : t
Vijpay ={Bay = =2, | dt XgaAw (t—=1) Zay =V 2 Ny Zary
= M\ =—3 SOdT XEQAW (1) (a,7: Cartesian coordinates)

* First classical case (simpler). Drop indices «,~ for simplicity.
Fluctuation-dissipation theorem:

= X[, (1) = O §Cp4(1) = BO(1)F(B(1)A(0)) = BO(1) §(B(0)A(-t))
— —B6(t) (B(0) A(-t)) — —pet) (B(t) A(0))

= Mo = = 5 drx (1) = § §57 dr(B(r)A(0)) = VB d7ja(0)5(7))
* Now quantum mechani‘cal version, again without indices «, 7.
XE (1) = ~ (1) [B(), AO)) | |
= —46(t) Tr (p [B(t), A(0)]) = —;0(t) Tr (B(t), [A(0), p])

Side calculation (most general case: grand canonical, Ko = Hg — uN, [A, N] = 0)
[A(O)MDGK] = Zé’K [AveiﬁKO] = ﬁeiﬁl{o (eBKOAeiﬁKO - A)
= Zl e PKo(efHo Ae=FHo — A) =: p . ¥(B) with ¥(8 = 0) = 0.

GK
T(A) = eMoHyAe Mo — Mo Afje 2o = Mo [Hy, A]e= Ho
—

o

= %e/\Her’)‘HO = %A(t = —ih\) LA®
= [A(0),p] = pU(B) = Lpgyc § ANA(iN)
= —Tr (B(t)pox §7 AAA(=ihN)) = — §7ANTr (paic A(—ihN) B(1))
= — (P AN (A(—ihN) B(1))
= Mo = — ¢ 55 drxE (1) = & §7 dr §7 AN CA(-ihA) B(1))
=V §L a7 §7 A\ Ga(—iA) jo(1)) v
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7.2.2 Onsager relations

From microscopic reversibility (invariance of dynamics under time reversal)

one can derive | ()N, = AT} ’ (i) Age >0 i

( Proof (drop again indices a,7):

e Classical case — almost trivial reversi-
() Aav = VB dr(ip(0)ja(r)) = VBT dr<ja<0)jb<—r>> PR VBT drGa(0)s(r)y
(if) Consider <(So drdalr ))*) =i d7d7 Ga(7) ja (7)) = §fg d7d7 (Ga(0) ja(7 = 7))
= 5 drdr’Ga(0)ja(lT— T’\)> = 2T 5 d7"(ja(0)ja (7"))(1 — 7"/T)
bllity

= Xaa =5 Jim 1((f5drja(r)®) =0 v
e Quantum mechanical case (grand canonical, Ko = Ho — puN, [N, A] = [N, B] = 0)
() Aap = V {3 d7§5 dAG(—ihA) ja(r)) = V 7 A7 §5 dAGp(—T — i) ja(0))
reversibility Vv SO dTS d)\<]b (T _ Zh)\) ja(0)>

= Vio d‘r Tr( *ﬁKo+)\Hojb(T) eBKo—AHo o—BKo Ja(0))
=V{ldr de Za— Tr (e” PV H0 i (1) PV Ho o=6Ko 5, (0))
Ju(T+iR(B—X)
\N=p

- T . . . . T . . .
£ v Tdr g(‘f AN (Ga (0)jp (T+ihN) ja (0)) = V §7 dr g(‘f AN Ga(—ihN ) (7)) v
(ii) Define Jr = S T/ dr’ jo (' — ih%, Jh = STQ?/Q dr’ jo (v + ih%
Consider (JrpJ) = §§dr’ dr"{ja (7" — ih3 5)Ja(T" + 2h2 )

= 2T §drja(~imN)ja(r"~)) L ~(a(~iiN)ja(r))(1 — 7/T)
= Aaa = S limp_o & §FdANIT L) >0 V)

7.2.3 Entropy production

Starting point: Consider a system characterized by
Pk: Densities of conserved quantities with 6tpk =-V. ]k
Zk, ®,.: Generalized forces and potentials, Zk = —V( D)
s: Local entropy density, function s({p})
(well-defined if one assumes local equilibrium)

Recall fundamental equation dE' = T'dS + >; p;dN; — PAV + -

= Change of entropy density: mechanical work
ds = Ldp. — 7 d L > X;d L9, d
S=7 Pe*TZ-Mj ng— g 2;X;dE — o= =20 7Pk dpg
= Total entropy change: 9 = SdV = {dV % with
Rate of local entropy change @ =—Du }F(I’k % — — > 7Pk (V - Jk)
"Entropy flow”: jy := — D% T‘I)k i

"Entropy production” § ds = %—I—V-js =—> V(%@k);k =L > Zy-Jx

Insert Onsager coeflicients ;k = ALk Zk

dS 1 = - 1 .
= &—T;Zk.]k_TZAg?Z§2>O since Ay >0

Conclusion: Diffusive currents generate entropy
~» The assumption of microscopic reversibility (A%p > 0)
results in macroscopic irreversibility (ds/d¢ > O Time arrow) !
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7.2.4 Applications

First overview (table), then discuss selected cases separately

CHAPTER 7. LINEAR RESPONSE THEORY

Transport Conserved Current Green-Kubo relation
coefficient quantity (classical)
. . . . = 1 © = = kT
Self diffusion D Particle Velocity ¥ D = 5 §dr (#(0) - 0(r)) = -
0

Mobility 1/u

number (one)

Friction
coeflicient p

Force F acting on particle
at constrained velocity ¥ = 0

Electrical Charge jq = % D G

conductivity o
Thermal Energy je = vVa Zz ri(ei - <6>) kT = 3712 S dr <]e(0) : je(T)>

.. 2 . BY 0
conductivity kr ei=2i 41 >, v(Fy) 4
—_—
pair interactions

Viscosity Momentum Viscous stress tensor

Shear viscosity 7

Longitudinal
viscosity 7
(m = 3n+¢)

(Momentum current)
Jg = (g =0
——

equilibrium value: P 1
with P: pressure

dg = & 3,(miT @T; + 7 @ fi)

Secondary diagonals

Main diagonals
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7.2.4.1 Electrical conductivity

x Conserved quantity: Charge

— Density: py(7,t) =

— Current: A = qu =

Zas(r R )
First moment: A,(t) = §d%r 7 p,(7,t) = Y., i Ri(t)

Z‘Qi g

— Generalized force Z Electrical field, Z, = E
(Perturbation: H' = —E - D qzﬁ)

* Transport law:

<jq> =o.L

Omnsager coefficients: Conductivity tensor o,

* Green-Kubo relation:

T f:o dr (7,(0) ® (7))

. . Ve ([~ - -
Isotropic medium: oy = ol and | o = a4 dr <]q(0) 'Jq(7)>
0

ds

* Entropy production: Fri

der%fq'ﬁz%052>0

7.2.4.2 Thermal conductivity

* Conserved quantity: Energy

— Density: pe(7,t)

— Current: er =Vj.
— Generalized force Z, = TV (%) = -

* Transport law:

* Green-Kubo relation: | k1 =

= 33 6(7 = Rit))(ei — (&)

2 1
with e; = 2p;n + 52”“ +---: local energy
J
—
pair interactions
First moment: A( = §d%r 7 pe (7 t) = > Ri(t) (e

ey = —kp VT | Fourier law

V © e e
W o dT<Je(0)'Je(T>>

» Entropy production: 92

S PUS A W PUTe AR

* Relation to diffusion law (with ¢: specific heat, p: density)
Combine 0pe + V -fe =0 and 0ipe = cpdiT = cpo,/ T = —Vje = krAT

~» Thermal equation:

o — kAT |with [ 5 = krep |

113
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7.2.4.3 Mobility and self-diffusion of one particle

x Conserved quantity: Particle Number

— Density: Distribution n(7,t) = 6(7 — R(t))
First moment: A, (t) = {d% 7#n(F,t) = R(t)

—

— Current: Velocity A,, = an —R=7
— Generalized force Zn: Real external force ﬁext on the particle
(Perturbation: H' = —F,,, - R)

* Transport law: | (7) = F../u (1/p: Mobility constant)

1 Q0
* Green-Kubo relation: | — = g dr (@(0) - v(1))
K 0
* Entropy production: %S = %_‘n . ﬁext = % iﬁit >0
* Relation to self-diffusion <(}§(t) o ]%(0))2> kT
B

instei ion: | D:=1i -
Einstein relation: ) LI& S .

(((B(t) = B(0))2) = (55 dr5(r))2) = §§ dr dr/ (@(r) - 5(')) = (§§ drdr’ (5(0) - 7(|7 — ')
=2t §; dr (1 — 7/t) (B(0) - T(7))

= limioo 5 (B(t) = R(0))) = & £ V)

Remark: In general, Einstein relations have to be applied with care. Problems,
e.g., in the case of rotational diffusion (angle jumps by 27!)

7.2.4.4 Friction of one particle

Same problem as 7.2.4.3, but from a different perpective: Particle moves with
fixed velocity Ugy.q (2 Particle mass M — o0), experiences friction force Fooion
Split up particle momentum: P=M Utixed + ]3mt

(M Ugyeq: “external”; imposed; P..: absorbs collisions with medium)
— Reference system: Zero velocity, Ugeq =0 = P = ]3int

—

. p2 P2 B+ Mageq)? P2 R »
~ Perturbation: = H' = L — 5t = %—T}\“j = Pt Uinea + O (U3,0y)

* "Conserved quantity”: None, apply formalism nevertheless with A= sz
— "Current”: Friction force Fiieion = dP/dt = dP,,/dt = dA/dt

— Generalized force Z = —Ugyeq

* Transport law: <ﬁmmon> = — [ Ugyea (same coefficient p as in 7.2.4.3)

o]
* Green-Kubo relation: | u = g JdT <F’ﬁ.imon(0) . ﬁrimon(v'))
0

Remark: Prerequisite is that the particle really has velocity zero in the
reference system (limit M — o0). Does not work if it diffuses freely. In
that case, Green-Kubo integral is found to vanish ~» "plateau problem”.

* Entropy production (dissipated work): %S = %F}riction < Vaixed = % piz >0
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7.2.4.5 Viscosity

Consider the following system: Fluid confined between parallel plates.
Impose a strain rate by moving one plate v/ith velocity Usxeq
(normal vector N, area a, mass M — o).

— Flow profile: (7);

— Local strain rate: Gog(7) = Oqug.

~ Global strain rate: G = & §d*r G(7)
with NGV =a T

— Force on plate: F late =
with o: Stress tensor, known to be symmetric!

oNa Shear flow Elongational flow

— Reference system: G=0

— Perturba‘mon (snnllar to 7.2.4. 4) Split up plate momentum: P = M Vgixed + ﬁim

with <4 Rm = Fplate = crNa Define P,, =: v AN = % =—Vo
P2
= H' = fi7 = g} = Oonea - Pos + O(..,) = NG AN

Generalize: Sum over all directions of of N and use ¢ = 67 = A = AT

= H =Tr (ET’A) =Tr (I_CA) with E = (G + GT): Strain rate tensor

* Conserved quantity: Momentum

— Density: Momentum density g(F t)=>,0("— Ri(t)) 7;
First moment: A,y (t) = {d4r 7@ g(7,t) =Y., Ri(t) ® ¥ mi
— Current: jg = %Ag D (mwl ®v1 + R ® ﬁ) since (f = miR;)
= Ag = A Virial theorem —Vo
NB: Equilibrium o., = —P1 must be removed ("response”)
~ 0Jg = —0 — P]l = —o’ (viscous stress tensor)

— Generalized force Z - _E

* Transport law: | o’ = LE with L: Fourth order tensor
Isotropic media (without proof): Lagys = 1 (dary 085 + 0as 08+) + B dap 05

= | o' =2E+ B1Tr(E) =29 (l_?— %]1 Tr(l_?)) +¢1 T (E)

traceless (V- )

7: Shear viscosity - Opposes deformation without volume change
¢: volume viscosity - Opposes isotropic volume dilation, { = B + %7]

* Green-Kubo relation: Logys = 757 SSO dr {o,,5(0) 07 5(7))
B

Specifically: Logas =1 for oo # (Onsager: n = 0)
Looaa = 20 + B =: n;: Longitudinal viscosity (m = 0)
Q0
/ /
no= Gk‘BT 0 dr <o-a/3(0>0-a,8(7_)>
= «

I )] KIRCROCNGE
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Remark: As in 7.2.4.4, these Green-Kubo relations are only valid if the
global strain rate is really constrained to zero in the equilibrium reference
system (e.g., simulations with periodic boundary conditions). If it is al-
lowed to fluctuate, one may encounter a plateau problem. On the other
hand, the resulting viscosity parameters can also be used to describe local
stress/strain rate relations in inhomogeneous systems down to the length
scales of "fluid elements” (see literature on hydrodynamics).

* Relation to diffusion law for velocities

Consider incompressible case Tr(E) =V -4 =0 = o' = 2nE and

~» Density of viscous force: f, = Vo' =2nVE

~» Associated acceleration of fluid element: p% = fu
U=

with % = Oyll + (ﬁV)’JZ Oyl + ﬁ(E2) = 0

= with v = n/p: kinematic viscosity

* Local entropy production:

% = % Tr(o’'E) = % (2n(Tr(E2) —(Tr E)?) + m(TrE)Q) >0

mVE VEY ) Au




Chapter 8

The Boltzmann Equation

TODO

8.1 Boltzmann equation for gases
8.2 Homogeneous systems: Equilibrium and H-theorem

8.3 Chapman Enskog expansion for inhomogeneous
systems

8.4 Boltzmann equation for electrons
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Chapter 9

Stochastic Processes

Equilibrium statistical physics (Sec. 1.2)
— Probability based approach (Entropy and Jayne’s principle)

Here: Consider dynamics, equilibrium and non-equilibrium
— Choose again descriptions based on probability

First example: Boltzmann equation (Chapter ?7)
~» Description in terms of statistics of collisions.
Details of collisions (collision parameter) do not matter.

Second famous example: Brownian motion
~» Important additional concept of time scale separation
— "Slow” degrees of freedeom: Formulate dynamical equations
— "Fast” degrees of freedom: Enter as "noise”, stochastic forces

This is the topic of the present chapter

Structure of the chapter
— First "quick and dirty”
— Mathematical framework of stochastic processes

— Applications: Brownian motion and Kramer’s problem

9.1 Introduction: Brownian motion

System: Observe a particle under the microscope that undergoes thermal mo-
tion (one dimension for simplicity). Take a series of pictures (a movie)

~> stroposcopic time series (t1,ta, -+ ,tp)

~> Observation: Series of positions (x1(t1), - xn(ty)) for t1 < -+ < t,
Goal: Understand the laws governing this time series

119
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9.1.1 History
1827: Brown (Botanist)

Discovers irregular motion of small particles swimming on water under the
microscope (pollen, minerals)

1905: Einstein
Theoretical explanation. Diffusion law (Ar?) ~ Dt.

(Actually, Einstein did not know Brown’s experiments. He made a theo-
retical prediction for an experiment designed to prove the atomic structure
of matter.)

Very influential work
— Establishes nature of heat as being kinetic motion of particles
— Inspires a new field of mathematics (stochastic processes)

1906: Smoluchowski
Derivation of the same law by a different method

(Although not as "independent” as some claim: Smoluchowski knew Ein-
stein’s work and refers to it in his paper).

1908 Langevin — "Langevin equation”

Theoretical description in terms of a stochastic equation

1914 Fokker and 1917 Planck: — Fokker-Planck equation

Theoretical description in terms of equations for distribution functions

1918 - 1921: Smoluchowski and Wiener

Mathematical model for Brownian motion

1948: Feynman: Path integrals

9.1.2 Starting point: Deterministic friction force

Consider a particle in a viscous fluid — friction
(Surrounding molecules slow the particle down and absorb energy.)

Simplest equation: Stokes equation
Friction force: Fp = —pv
“w

Dynamical equation: mv + pv =0 or v +yv =0 with y = £ =: %

Solution: Velocity decays exponentially
v(t) ~ e 7t = e7¥7 (with 7: Relaxation time)

Discussion: Deterministic treatment seems acceptable
2 2 10,2 _ 1
as long as v” » Uthermal (§mvthermal - EleT)

~» Only valid for particles with large masses!
Gives information on expectation value of v(t)
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9.1.3 Motivation of the Langevin equation

Simple sloppy "derivation” of the Langevin equation for Brownian motion.
A more rigorous treatment will be introduced in Sec. 9.2.

If the particle velocity is comparable to thermal velocity vyermal
~» Add additional stochastic force Fg(t)

Interpretation: Coupling to a "heat bath”
Represents an ensemble of possible surrounding systems

* Total force of the medium on the particle: F(t) = Fp(t) + Fgr(t)

or | i+ v =n(t) | with 5(t) = Fr(t)/m

Example of a Langevin equation

* Properties of 7(t) (usual assumptions)

(i) n(t)) =0
(it) (n(t) n(t")) = q 6(t — t') — Uncorrelated white noise
("white” — §(¢) = {dw e™'1 is independent of w)

(iii) Higher order correlations: According to Gaussian distribution
Motivation for these assumptions

ad (i): Nonvanishing parts of (Fr) would be attributed to the determi-
nistic friction force.

ad (ii): The time scale of correlations (~ collision time) is taken to be
much smaller than the time scale of interest here.
(questionable, but reasonable first order approximation)

ad (iii) Central limit theorem
For reasons of consistency, the functional form of the distribution of
7 should be the same for different time discretization (RG argument)
~» If second moment exists (¢ < o0), this is only possible

for the Gaussian distribution

*» Determination of remaining free parameter ¢

Temperature has to be recovered, i.e., tlim () = kT /m
—00

e, T
m

= q=2v

(Argument: Quick and dirty solution of Langevin equation
with initial conditions v(0) = v
v(t) = voe 7t + S(t) dt’ e ()
(wlta) vlta)y = e+ 4 {10 [ athdty o) (o) (th))

_ _ " ’ qé(t'lfté)
— Uge Y(t1+t2) +qe y(t1+t2) Sol dt/162’vt1

%(62%1 —1)

) e*ﬁ(t2+t1))

2 —y(t+t —~(ty—t
= vie “/(1+2)+%(e Y(ta—t2
130 g = lta—ti]

2y

kT
:><v(t)2>:%:%i = qg=2vkT/m V)

m
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* Discussion:

— Above, we have also calculated the velocity autocorrelation function
b (1)) = et
— Mean square displacement {(z(t) — x(0))?)
Einstein relation (cf. 7.2.4.3):
{((t) = 2(0))%) = {(fy dt’ v(t")*) = {§; dt'dt" v (t) v(t')?
ot

I 2 Ve i L N

BL(2¢— Z(1-e7")
Limit ¢ — oo: {(z(t) — x(0))?) = 2Dt with | D = ’fBi;F

— This behavior is characteristic for diffusion
Consider ¢-shaped distribution at time ¢ = 0 (p(ac, t=0)=0d(x) )

After time ¢: Broadens according to second moment (%) = 2Dt
Distribution is Gaussian (proof see later)

~ pla,t) ~ e /4Dt \Br Dt
~» Solves differential equation dyp(xz,t) = D Opup(x,t)
~» Dynamical equation without dubious "random force”!

9.1.4 Motivation of the Fokker-Planck equation

The above discussion suggests that it may be of advantage to describe Brownian
motion in terms of dynamical equations for distribution functions.

Here: Consider velocity distribution p(v,t) (since the previously discussed
Langevin equation describes the evolution of the velocity).
It turns out (next chapter) that this equation has the form
op o(vp) kT 0%p Example of a
2 T + m 002 Fokker-Planck equation

"Drift term” "Diffusion term”

* Discussion of the different terms

— "Drift term”: Originates in friction force Fp
Consider pure Stokes equation, without stochastic force: v = —y v
— Evolution of v, dv after time dt: v — v—~yvdt, dv — dv(1 —~dt)
— dvp(v,t) = [dv(1 — v dt)] [p(v — yvdt, t + dt)
=dv [p(v, t)—vydtp(v,t) —ywv % dt —|—%It’ dt]

"

—y o) gy
ov
"Diffusion term”: Originates in stochastic force Fr

Consider Langevin equation without friction force: v =7
— Diffusion in velocity space

(Again quick and dirty: {(v(t) — v(0))2) = SS(t) de’'dt"{n(t" )n(t")) = QWkBTT t=gqt

2
Initial condition p(v,0) = §(v—vg) — Gaussian distribution: p(v,t) ~ exp(%)
Arbitrary initial distributions — Linear superposition of Gaussians
kT 52
satisfies differential equation %t v -B p

m 6u2)

For a clean treatment beyond "quick and dirty” see Section 9.2
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9.1.5 Final remarks

* General form of a Fokker-Planck equation

— One variable, p(z,t)
&p(a.t) = (= £DD(@) + 5 52D () pla. 1)
— Several variables, p({x},1)
Zo(faht) = (X 2DV (ah) +3 2y 72 DY ({2h)) p({r}, )

* Interpretation: Describes distribution of fluctuating “slow” variables.
~» Hierarchy of modelling levels:

Microscopic — Stochastic — Deterministic
All degrees Mesoscopic DoFs "Macroscopic”
of freedom (DoFs) | Microscopic DoFs are Fluctuations
integrated out are neglected.
(fluctuations and friction) | (e.g., no diffusion)

NB: Assumes perfect separation of time scales. Usually not correct (ap-
proximation). In the more general case, memory comes into play at the
level of the stochastic description ~» "Generalized Langevin equation”

* Approaches to connect between levels

— Ideally: Exact calculation of DM, D@ from first principles” (i.e., from
microscopic theory). Usually not possible.

— Close to equilibrium: Linear response theory
— Often just heuristic: Start from from known deterministic equations

(e.g., Navier-Stokes equations), add stochastic Langevin force

» Comparison of Fokker-Planck equation and Boltzmann equation

In both cases: Equations for distribution functions

Boltzmann equation: All particles treated on equal footing
Approximation: Particles are uncorrelated

Fokker-Planck equation: Degrees of freedom could be anything
(e.g., Laser modes, currents, ...)
Approximation: Separation of time scales
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9.2 Mathematical background: Stochastic processes

Problems with the discussion of Brownian motion so far:

Heuristic postulation of an "equation of motion” © + yv = n(t)

Many “quick and dirty proofs” relied on calculations involving integrals
of the form {dt' o ~ -+ + {d¢'n(t")

However, n(t') (white noise) is uncorrelated, i.e., different at all times ¢
~> ¥ is not well-defined (v(t) is continuous, but not differentiable).
~> Currently, {dt’ n(#') - -+ is not well-defined.

(Example: <S dtn(t)?) = S dt{(n(t)?) = St2 dt B 0(0) always diverges!)

Now: More rigorous mathematical formulation

9.2.1 Definition of a stochastic process

* Recall: stochastic variable

— Probability space (92, %, u)
with Q: Set of "outcomes” of a random process or experiment
F: o-algebra on ) ("event space”)
w: Probability measure

— Random variable: p integrable function X : Q2 — R
Distributed according to a distribution function f(x)
Expectation value: (g(z)) = {g(z(w)) dpu(w) = {g(z) f(z) dz

— Notions of conditional probabilities, statistical independence etc.

* Stochastic process: "Time dependent random variable”

— Family (X¢) of random variables with ¢ € R or N (index set)
(R: Continuous time; N: Discrete time steps)
below: often use notation for discrete processes for simplicity
— Corresponding distribution function
- "One-point” distribution for one time ¢: p(x,t) = (§(x — X3))
- "N-point” distributions
p((x1,t1), - (an,tn)) = Oz — Xy, ) -+ - 0(zn — Xiy))

- Conditional probabilities etc. defined as usual
e.g., P(xy|x;): Conditional probability for X,, = z,, given X; = x;
E(xy|z;): Corresponding expectation value

* Special stochastic processes

— Stationary process:
p((xl,tl), e ,(:EN,tN)) = p((ﬂ:‘l,tl +7), 0, (TN, tN + T)) for all 7
~» Invariant against time translations, homogeneity of time
(not to confuse with stationary state in a dynamical system)
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— Martingale process: (Discrete case): Process with E(x, 41|21+ ) = op
(Actual value is the best estimate for the next value)
Examples:
- Sum of random variables with mean zero, z,, = > y; with {y;) = 0,
- Diffusion in the absence of drift,
- Weather forecast (well, sort of)

— Markov process: Process without memory

p((xthn)’(xlytl), T (xn—latn—l)) = p((xnytn)‘(xn—lvtn—l))
fOI‘tl <ty---<t,

Such processes are fully characterized by two distributions:
p(l‘, t) and p((:m, t1)|({L‘0, tO))
(Examples: Monte Carlo simulation in Chapter 3.6,
Brownian dynamics,
Deterministic Hamiltonian dynamics)

In the following, we will focus on stationary Markov processes

9.2.2 Dynamical equations for Markov processes
9.2.2.1 Transition rate and master equation

*» Chapman-Kolmogorov equation

Consider a Markov Process.
Then we have for t3 = t9 > t7:

p((x3,t3)|(21,11)) = de@ p((z3,t3)| (22, t2)) p((w2, t2)] (21, 1))

For stationary Markov processes, p((x’ Jt+ 1) (2, t)) is independent of ¢.
This motivates the definition of a Transition rate

R(z',z) = lim = p((@ t+7)|(z,1))

70T

Using the Chapman-Kolmogorov equation, one can use this to construct
every other conditional probability for finite 7.

* Master equation (for stationary Markov processes)

%p(m,t) = jd:p’p(m', t) Rz, 2") — de’p(m,t) R(2, x)

Flow in Flow out

(Example again: Monte Carlo simulations, chapter 3.6)
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9.2.2.2 Fokker-Planck equation
Starting from the Master equation, make the following assumptions:

(i) Jumps are small (process is continuous): R(z,z’) ~ 0 for large (z — 2')
~» Moment expansion: Define R(z,x’) =Z~R(l‘ —a' 2
- §da’ p(a’,t) Rz, 2") = {da’ p(a’,t) R(x — ', ')
= §dép( 33—5 tz R(§z—&)
Taylor k ~
> Sd& S T L [pla, 1) R(E 2)] €8
k ~
= 3 S Ze [p(a, 1) JdE R ) |
—_—
o (z)
. de’p(a:,t) R(z',z) = p(x,t) Sdl‘/ R(:E’ —z,z) = p(x,t) oy ()

~» Kramers Moyal expansion of the master equation

2 COE 2 o, @) p(e.0))

with | (z) = fd&g’f Ri&,x)

(ii) Higher order moments can be neglected
~» Cut off the expansion after the second moment, i.e., at k = 2

2
| Cplat) = (o, (#) Pl 1) + 5y (0, () pla, 1)

NB: Pawula theorem: If a full Kramers Moyal expansion contains nonzero
terms k£ > 2, it must contain infinitely many terms; otherwise p(x,t) may
become negative. Hence truncating at £ > 2 may cause problems.

9.2.2.3 Evolution of single paths and Langevin equation

Now try to describe evolution of single paths (X})

Assume p(x,0) = §(x) (initial condition) and 7 small = p(z, 7‘) =0(x)+ %Zf T
(X" = (dza"p(z, T —TSd:U:E” p —T[Zk k, Sdacm (ozk(:v)é(x))]

— | 2 Sa AL&x:J=T%@

Generalization: {(X, — Xo)") = ((z(7) — 2(0))") = 7 e, (x(0))) + O(7?)
Specifically: Cutoff at n = 2 (Fokker-Planck equation)
= Formal notation as "Langevin equation”

| dz = a(z)dt +b(x) AW | with (W) =0, (AW?2) = dt

Idea: a(z) takes care of a,, b(z)? takes care of a,

However, at this point, the interpretation of this equation” is not clear.
How to integrate over dz in "z(7) — 2(0) = §; da” ?
~> What is the relation between a(z), b(z) and o, (z), a,(z)?

— Next section!
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9.2.3 Stochastic differentials and stochastic integration

Question: Given a differential such as that quoted in the last section (9.2.2.3),
dz = v(x) dt + b(z) - dW. How does it have to be integrated?
~» Requires some more definitions!

9.2.3.1 Wiener process

Special stochastic process W (t) with
e W(0)=0
e Increments (W (t+7)— W (t)) are Gaussian distributed with mean zero
and variance T
e For 0 <ty < t1 < tg---, the (W(tn41) — W(t,)) are stochastically
independent.
Consequence: (W (r1) W (r2)) = min(ry, 72) for 71,7 > 0
(Increment dW is the mathematical version of a d-correlated noise dW = dt £(t)

with (€(t)) = 0 and {§(t) £(t')) = 6(t — '), i.e, AW = &(t )
= (W(m)W(re)y = §itdt > dt’ &) () = §F dt §o2 dt’6(t—t") = min(71,72))

9.2.3.2 Stochastic integrals: It6 and Stratonovich convention

Here: Wiener process as "Integrator”. Can be generalized for other Martingales.

t (t—to)/e—1

G)-dW(t) =mslim > GEG)[W(ti)-W(t)]  (t; = tote))
to €= =0

where ms- lécm Ty =T < hm <(xn —)%) = 0: Mean square limit

(NB: regular limit cannot be used if random variables are involved!)
To complete the definition, we must specify how to evaluate G(Z;).

e Ito integral: G(¢;) = G(t;) (Notation: "§G(¢') dW (¥')")
e Stratonovich integral: G(t;) = 3(G(t;) + G(tj+1)) ”SG(t’) odW(t')”)
Example illustrating the difference: Calculate <So ) - dW ("))
It6 integral: <SO W) dw (t')) =0
(o Wt dW (#')) = Qlimeo 35 W (t;) (W (tj41) — W(t)))
= lime—o X5 ((W(tj41) W(t5)) — (W (t5)?)) = limeo X (¢ — t;) = 0)
Stratonovich integral: <SS (") o dW(t))y = £ = (W?2(t)/2)
(o W) 0 dW (1)) = limeo 35 5 (W (tj1) + W(t5)) (W(tj1) = W(t))

= limeo 3 5 ((W(tj4+1)%) — (W (t5)?)) = limeno X 5 (tj+1 — t5) = £/2)
(Compare regular integral: Sé W dWw = W?/2)

~» Comparison:

It6: Simpler, stochastic integral is a Martingale process
But: New rules for differentiation and integration (It calculus)
Preferred convention in financial mathematics

Stratonovich: More "physical”, usual calculus rules apply
Convention often adopted in physics and engineering
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9.2.3.3 Implications for stochastic differential equations
Consider a stochastic differential of the type: dz = a(z) dt + b(x) - dW

~> Defined by the chosen convention (Ité or Stratonovich) for calculating
the integral 2(t) — z(0) = §{ dt’ v(z(t')) + § b(x(t)) - AW (¥')

» Remark on the difference between the two conventions. When is it important?

Distinguish between

(i) Additive noise: b = const. independent of x

~> Then, the choice of convention does not matter!
(since {dW (¢') is the same in both cases!)
(ii) Multiplicative noise: b(x) depends on x
~» In that case, the conventions give different results.
Background: Multiplicative noise induces drift.
This is described differently in the different conventions.

x Variable transform
Given a stochastic differential equation dox = a(x) dt + b(z) - AW

Goal: Change of variables x — y = f(z,t)
~ Expand df = f(z + dz,t + dt) — f(z,t) up to O(dt),
using (AW) ~ O(v/dt) ("Tt6 rule”: (dW)? = dt)

In the It6 formalism: Itd formula

2
df(z(t),t) = [%f +a %f + % b? %f]dt +bL

(Quick and dirty calculation: df = f(z + dz,t + dt) — f(z,t)
8f 102 I of
df = 5 |d+23z‘ (dz)? )2+ 5
dz = adt +bdW,
(dz)? = b2 (dW)? + higher order 2 b2 dt + higher order
— (L a+ L 2L 2 Y| at+b L] aw V)

oz 2 ox2

of 4
ox

} , dt+ higher order terms

In the Stratonovich formalism: Chain rule
0 0
df(z(t),t) = (—f+ —f)dt+baf

(Quick and dirty: df = af adz + 1 a f (dz)2? + %—{ dt as above
dz = a(x) dt + b( ) odW =a(z)dt + 5 (b( ) + bz + dm)) dw
=adt+bdW + 1(dzb) dz dW = adt+de+ 1(02b) b (dW)?
(dz)? = b? (dW)?
df = (L a+ )dt + L (9 £)b(0sb) + (Paaf) b2) (AW)2 + (02 f) bdW
=(La+ fj)dt+ Lbo,(boy f)( W)2 + b (8, f) AW
Compare chain rule: df = (gf a+ at ) dt + b(0g f) o dW
with b (9zf) o dW = §([b (8x/)], + [0 (02 /)], q,) AW
=b(0xf)e AW + 1 02(b (0 f) dz dW
=b(0zf)a dW + % b0z (b (9 f) (AW)? — same expression! v)
Note: By a suitable choice of variables (dy = dz/b(z) in the Stratonovich
formalism), one can turn multiplicative noise into additive noise. In
one dimensional systems, the difference between It6 and Stratonovich

is thus not truly fundamental.

dw
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9.2.3.4 Implications for corresponding Fokker-Planck equations

Consider Langevin differential of the form ’ dz = a(x)dt + b(z) - AW ‘
with b(x) - dW = b(z) dW (Itd) or b(z) - AW = b(x) o dW (Stratonovich)

Question: Corresponding Fokker-Planck equations?

Solution: Use Kramers Moyal expansion (Sec. 9.2.2.3),
i.e., calculate moments: a,(xp) = lir%% {(x(7) = 2(0))™)2(0)=20
T

Calculation:
Consider Az(t) := z(t) — z(0) = Sé dz for fixed initial value z(0) = zo
Expand up to order ¢ using W (t) = O(+\/1)
Notation: ap = a(xo), bo = b(z0), by = db/dz|y, (numbers, not stochastic!)
Split up: Azx(t) := Aa:l( ) + Aza(t)
with Azq(t) = So adt’ = agt + O(t3/?)
and Aza( t) =§0b-dW(t) = 0(t'/?)
Calculate Axa(t) = SO (z(t)) - AW (t') = SO (bo + by Az(t)) - AW (') + O(t3/2)
=bo W(t) + by §§ Axa(t') - dW (¢ )+ O(t3/2)

Iterative solution by successive insertion: Azg = A:Bél) + Amém +

with Az§! (t) = boW (2) ~ O(t\/2)
Ax; >( = v 1 AcD () - AW (¢) = by bo SEW () - AW (#)  ~ O(t)
Axd) () = by §E AT () - aw (t) ~ O(t"2)

= Axa(t) = bo W(t) + b’ bo §¢ W (') - dW (¥') + O(t3/?)
Insert to calculate moments up to order 7
—{Ax(7)) = ao T + by bo(§ W(t') - AW (t')y = (ao + 0 3 bl bo)
with 6 = 0 (Itd) or 6 = 1 (Stratonovich) (see Sec. 9.2.3.2)
—{(Ax(1))?) = b (W (1)?) = b§ 7
—{(Az(T))™> ~ O(3/2) for n > 2

Result: al(ac) (x ) (Itd) or a(z) + 5(zb(z)) b(z) (Stratonovich)

b(x)?

Q, (m) = 0 for n > 2 ~» Expansion stops as expected v’

2
E
I

2
1t6 case: %p(m,t) = —%(a(m) p(z, 1)) + 1a—(b(:ﬂ)2 p(x,t))

Stratonovich case:

Cple, 1) = () p(r, 1)) + 5 (b(x) = b{a) pla, 1)

otp(z,t) = —0g (a(a:) p(z,t) + 1b( ) (02b) p(z, t) ) 109”5 (b(z)2 p(:c,t))
Use A (b(z)2p(w.1)) = 25 (B(z)2s (@) p(z.1)) + 0 ((2:b(2)) b(@)p(. 1)) )

Remark: The physical dynamics of a system is actually defined by the Fokker-
Planck equation, not the Langevin equation.

— Depending on the convention, different Langevin equations must be
used to represent the same system ("It6 / Stratonovich” dilemma)

* Physical theories are often based on the Stratonovich convention.
Simulation schemes often tacidly use the Itd6 convention.

* Luckily, the difference only matters if b(x) depends on z, i.e., in cases
of multiplicative noise.
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9.3 Applications: Brownian particles revisited

With the mathematical formalism at hand, we will now turn back to the problem
of Brownian motion and discuss a few simple applications.
9.3.1 General description

We consider a Brownian particle of mass m with velocity ¢ and position 7 in an
external field F'(7) with fixed friction constant p = m~.

* Stochastic differential equation (two coupled differentials)
(1) dr  =uvdt

(2a) mdv = (F(F)—pt)dt+TdW
or, alternatively

- F@® — r
(2b) dv = (=2 —A0)dt+ - dW
NB: Here, W stands for a three dimensional Wiener process

* Corresponding Fokker-Planck equation for | p(7, ¥, t)

Klein-Kramers equation

op , . F 1,7
T —Vi- (Up) + V- [(VU—E) p] + §(E

(Kramers 1940: Description of chemical reactions)

)2 Ayp

Determination of the constant I'

Assume ﬁ(F‘) = —VU(7) can be derived from a potential

At thermal equilibrium, the Fokker-Planck equation should have the
ot Tt 1 1,2
stationary solution p.,(7) ~ exp(—kB—T (U + 3md?))

Insert this in the r.h.s. of the Klein-Kramers equation (exercise)

. 2 !
= OiPeqg(T) = -+ = V- (”YU - %k;ﬂv) Pea(F) =0

= I? =2my kT =2puk,T |: "Fluctuation-dissipation relation”

* Overdamped limit

Assume that the time scale 1/v of velocity relaxation (the inertial time
scale) is very small compared to the time scales of interest. Then the
stochastic differential equation can be simplified:

L _ F(@) r
dif = 2 dt + Law

(Sloppy reasoning: Neglect inertia — set m = 0 and insert d7 = ¥ d¢ above in Eqn. (2a).
However, in fact, one makes an expansion 1/y — 0 and keeps the leading term.
See below for a cleaner calculation.)

Corresponding Fokker-Planck equation: Smoluchowski equation

Pt _ 1o (mea oy LT
s = Ve F@O ) + 5

)2 AFP(F, t)
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* Addendum (Side calculation):

Derivation of Smoluchowski equation from Klein-Kramers equation in one dimension.
For the sake of generality allow the parameters 7 etc. to depend on .

Starting point: Klein-Kramers equation for p(z,v,t)
kT
TYRp Ouop

F
O1p = —02(v p) + Oy (v — E) p+

Define velocity moments: p{™ (z,t) = {dvv p(m v, t) for n >0

= 0™ = — 3™ 44— np“” fn D 4 R gy )
where we formally set p(™ (z,t) =0 for n<0
Laplace transform in time domain: P (s) = = dte ! p™ (), p™(0) = pno

= sP"™ = pno — & P 4 4(— P(”> + nmLWP(" Doy % n(n—1) P"=2)
Expand in powers of 1/ in the limit v —
Starting point:
n=0:sP® =poo—aacP<1>
n#0: P =[1+ ﬁ]‘l [fT07D pn=2) | F pn=b) _ 15 plotD 4 Ly ]

Expansion for n # 0

Zeroth order: P(™ — ( 1) P (s pntD) — .],S,LT” (n*1>)
First order: P = (1 — ﬂfn)km (n— )P(” 241 [(m - %gzk ) P Dy Lpno]
Specifically n = 1: P®Y) = }r [(£ - )p(O) +p10]
Insert in equation for n = 0
= 5P = (poo — 0 Lpro) + 0 L (= £ + 0,720 ) PO

Backtransformation ~» Equation for ’ pm)(gv7 t) = §dv p(z,v,t) =: p(z,t) ‘

F kT, _
e ——) p(z, 1)
mey my

with effective boundary condition p(z,0) = §dv p(z,v,0) — % Oz § dv v p(z,v,0)

Gtﬁ(x,t) = 6,3 (

9.3.2 Free diffusion

First we describe a freely diffusing Brownian particle (F' = 0) in one spatial
dimension.

9.3.2.1 Velocity process

If the position is not of interest, the stochastic process reduces to an effectively
one-dimensional Ornstein-Uhlenbeck process

op 1,T 202

= = 0lvvp) + 5 (- )au2p

r
dv=—~yovdt+ —d
v Yy v —l—m w o

Solution: Fokker-Planck equation is linear ~» Greens functions formalism

For given initial condition p(vg,ty), the solution has the form

p(o, ) = f dvo (v, £ v, to) p(vo, to)

where G(v, t; v, tp): Greens function or propagator, which fulfills

atG = av(’y v G) + §(E)26UUG
with initial condition: G (v, tg;vo,t0) = d(v — vg)
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Ansatz for G: Inspired by discussion in Secs. 9.1: Gaussian distribution

v—1o(t))? t—to
G(v,t;v0,t0) = 27T10(t)2 exp (— (20(;;2))) with o(t) — 0

Determination of o(t), o(t): Moment equations
0™ () = '8t §dvm v G = §dv o™ 0,G = {dv o™ [0, (vwG) + %(%)QGUUG]
pari = §dv[ —yno™ G+ 5 ( )2n(n—1)v" 2G|
= —yn () + 5 (5;)% n(n — 1) " 2)
with initial condition <v (to)) = o
n=1: e = () = (I = vo e t0)
n=2: a0 = 2y (1)) 1 (L)2
= @A) = (L)1 — e D) e -ta)

Compare with Gaussian distribution = (v(t)) = o(t), W2(t)) = v(t)? + o2(t)

1 T —2v(t—to
(1) = 5 ()1 =)

= B(t) = vy e V1)

(Check, e.g. by insertion, that this Ansatz works — exercise)

9.3.2.2 Full solution including position
In case the position is of interest, it must be treated separately ~ p(x,v,t)

ap 1, .9 0?
— = =0 + 0y
5 = ~Owp) +d(yop) +5(—) o5
Solution again via propagator formalism
~> Distribution G(z,v,t; xg, vo, to)
with initial condition G(x, v, to; xg,vo,to) = d(x — o) (v — vp)

Consider again moments

o (v(t)), (V?(t)) as in 9.3.2.1
= (v(t)) = vy e Vt=t0)
W) = w(t))? = 25 ()2 (1 — e >10700))
e Differential equation for (z™v*)
0y (x™Fy = {da dv 2™k — 0, (vG) + Ou(YVG) + %(%)2 OnG
P g kG 4 (D)2 k(s — 1))
(n k) = (1,0): (@) ={v) = (x)y=wmo+ 2(1- e (t=to))
(n,k) = (1,1): 0 (wv) = (v*) = ¥{aw)
= {(av) —{2) (V) = 7 (5;)* (L — e 70))2
(n, k) = (2,0): 0 <«%’2> = 2 ()
= (@%)—(x)* = (;;5)*(t—t0) = 35 (535)? (3—e 777 10)) (1—e (1= 10))

These can be used to construct Gaussians for the propagator

{(z—z )2> N U(Z] (t— t0)2 for vt « 1 : ballistic regime
0 (mL,y)Q(t —tg) for vt >» 1 : diffusive regime

log <(X-X0)2>

log ‘(t—to)
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9.3.3 Crossing potential barriers: The Kramers problem

Situation: Brownian motion in external potential U(z),

i.e., external force F'(z) = —%

(1940, Kramers — description of
chemical reactions)

Potential U(x)

1A B h
Reaction coordinate x

Time scales

Toawn - Fast degrees of freedom
1/wa: Oscillation frequency in Minimum A from Newtonian motion
(W ~ AU (Zain) /)

1/wp: Time scale for taking up/releasing kinetic energy at maximum B
1/v : Relaxation time of velocity
7r . Equilibration time at the minimum
Te : Mean escape time from the minimum:

Time required to escape the minimum and reach an

(arbitrary) point C' beyond the barrier at B!

Assumption Ty, €« 77 & Te < Energy kT « AU

Regimes: 1/ « 1/wpg: Spatially diffusive (Smoluchowski) regime
1/v » 1/wp: Energy diffusive regime

Here we will study the first regime

~» Overdamped regime, described by Smoluchowski equation

dr = vdt = 28 qr + /28T aw

op = —0r (22 p) + L0 (327 p)

my mry

Question: What is the mean escape time 7.7

9.3.3.1 General "first passage time” problem

Rephrase question outlined above in more general terms: How long does it
take a particle starting at < z_ to reach the point z_ for the first time?

~» "First passage time”: Classical problem in the theory of stochastic processes

Shall be discussed at a very general level here, and then applied to the Kramers
problem in the next subsection.

Given: General Fokker-Planck equation
82
Go(z,t) = =& (DW(@) p(a, 1)) + 5 £z (DD (x) pla. t))

Goal: Find probability P(z,,t) that a particle, which starts at z, < z_ at time
zero, hits the point x, for the first time at a time larger than ¢ (i.e., never
crosses x, in the time interval [0 : ¢]).
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Knowing P(z,,t), one can calculate - - -

e Probability distribution of the first passage time: —%P(mo,t)

CAtt 2Pz, tP="(C At P(x,, t
0 ot 0 0 0
= —SO dt t" S P(z,,t) = nfydt "L P(z,,t)
Calculation of P(z,,t): Must fulfill the equations

e Mean first passage time: 7(z

e Higher moments: 77(z,)

Boundary conditions

(i) Absorbing at x, =z, : P(z,,t)=0fort>0
(ii) Reflecting at x, — —o0: 0y P(

z,,t) = 0 at z, - —©0

Initial condition: P(z,,0) = { (1) io i ic
. 0 =

c

Dynamical equation

éP@t%%Dm@)fl+lD®m)ﬁgP@t)
ot o, 2 °) a2 0

(Proof: Rewrite P(z,t) = ¢ da’ G(z/,t;x,,0) where G(z,t;2,t,) is the Greens-
funktion of the Fokker-Planck equation with boundary conditions (i),(ii) and initial
condition G(z,t,;x,,t,) = 6(x — x,).

First find backward equation for G(z,t;z,,t,) (i.e., Eq. with respect to z,,t,)
Use G(z,t; 3y, t,) = §da’ G(z, ;27 ,¢') G(a/, V52, t,) for t, <t/ <.
and homogeneity G(a',t';z,, t,) = G(z',t' — t,;2,,0) = 0t, G = —0pG
= de’G(z,t;m/,t/)éto G, t';z4,t,)
= —{da’ Gz, t; 2", t,) 0y G2/, t' 20, to) | =¢

R
= #G(x, t;xg,ty)

‘ Choose t' — t,

Fok—ker—gdx’G(a:,t; a:’,to)(—611D<1)($')+%81/11D(2)(J:')) Gz, ty;20, )
Planck

5(e )
part. int'de 52’ —a )( DM (2")0, — LD@(2)0,,) Gla, t:a',t,)
(D(l) (20) 0z, D<2>(a:0)ax 2y )G, 153, ty)
Insert in P(z,,t) = §°° da: G(x t;2,,0) = {72, da’ G(2',0; 2, —t)
= 0iP(zy,t) = {7, 0:G(2',0; 4, —t)
S ( D (SCO)(? %D(Q) (xo)azozo) G(Ilvo;xov _t)
( 2, + D(Q)(azo)awowo)P(xo,t) V')

These equations determine P(z,,t) uniquely.
Instead of solving directly fo P(z,,t), one can also derive differential equations
for the moments (sometimes simpler!)

T(zy) = — {0 dt t" 0y P(x,,t)

o 02
—Soodtt" (DM (o) 55+ 3 D® () az) Plao.t)
~(DW (@) g8+ 3 DO (wo) i) §§ Ao " P, 1)

0 | —

T (2g)/(n+1)
— (1) d 1 o0, ¥
= | —(n+1)7(z,) = (D (xy) — + = D'¥(z,) @) Tt (z,)

0

~> Hierarchy of differential equations for 77(z,)
with boundary conditions T”( .) =0, WT"(Q: ) 025"
and "initial condition” 70(z,) = —SO oP(z,,t) = P(x,,0) =1 for z, <z,
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Specifically, the equation for the mean first passage time 7(x) reads

d 1 d2

~1=(DW(x) =t D@ () @) 7(z)

Formal solution of the differential equation for 7(z) via 7'(z) = 47 (x)

Homogeneous equation 0 = D(l)ﬂ’l + %D(Q)?}’L’
S

3dac

p _ d?’L _ p _ D)z’
—25m T = ?;{, =d(In7}) = 25 dz = 7 exp(—sg dz’ 2 7D(2>Ei’;)

(1) (o
Inhomogeneous equation by variation of the constant: 7/ (z) = A(x) exp (— §o da’ 2 w)

D) (a)
. D) (g
= —1=1D@ exp (-7 da’2 D(Q)Ez,;) 4 Az)

= A(z) = —2{"da’ exp <Sgl dz” 2 gg;gi::;)/D@)(Il) + Ao

All together, using boundary condition 7 (z) — 0 at z — —o0

_ (' . D(l) ’
= 7(x) = -2f"  da’ D(z(;c(m)/) ﬁ with ®(z) := exp ( {; da’ 2 D(Q)g,;)

Integration of 7/(z) with second boundary condition 7(z,) = 0 gives 7(x) = {7 da’ 7/(z’)

/

_ _ e , v " 1 v D(l)(j)
= | 7(x) =2 de fix DO exp ( — QJde DO (3 (j))

x

9.3.3.2 Application to the Kramers problem

Recall: We were looking for the mean escape time
from a metastable minimum in a potential U(x)
~> First passage time 7(x_) in a system obeying

the Fokker-Planck equation:

Potential U(x)

Reactién coérdinate X
U’ 2 2k T
Gpt) = =& (-5 p(a,0) + § 2 ( 52 plat))

my
— ——
D) (x) D(2)

(Ideally, the result should not depend on z, as long as x, > x,)

Apply result from 9.3.3.1: Exact solution!
z, x! 1
T(z) = ;Z;L da’ J_oo dz” exp (kB—T(U(x') —U(2"))]

Approximation: AU » kT

~» Main contribution stems from 2’ ~ =, and 2" ~ z,
~» Harmonic expansion (£ saddle point approximation)
1
U(:c:/) ~U(x,)— lew% (a:'”— a:B)22
U(z") ~ U(xA)fimwA (2" —z,)

e (U(zp)—U(z — ol mw? 2’2 — ol mw? 2”2
= Fa I:;} ekBT( ( B) ( A)) S(iooc dz’ e 2kgT B SO:DOO dz" e 2kgT A
AU/kLT
€ B V’QWkBT/msz \/27rkBT/mw2A
. _ 27y AU
= Mean escape time: | T = exp ( )
- W,y kBT
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Interpration and remarks

e exp(AU/k.T): Energy barrier (Arrhenius behavior)
e w,: Frequency of attempts to escape

e Result does not depend on the specific choice of =, as expected.



Chapter 10

Stochastic Thermodynamics and
Fluctuation Theorems

TODO
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