
Computing a largest empty anchored cylinder, and related

problems

Frank Follert∗† Elmar Schömer∗ Jürgen Sellen∗ Michiel Smid‡

Christian Thiel‡

Abstract
Let S be a set of n points in IRd, and let each point p of S have a positive weight

w(p). We consider the problem of computing a ray R emanating from the origin (resp.
a line l through the origin) such that minp∈S w(p) · d(p,R) (resp. minp∈S w(p) · d(p, l))
is maximal. If all weights are one, this corresponds to computing a silo emanating
from the origin (resp. a cylinder whose axis contains the origin) that does not contain
any point of S and whose radius is maximal. For d = 2, we show how to solve these
problems in O(n log n) time, which is optimal in the algebraic computation tree model.
For d = 3, we give algorithms that are based on the parametric search technique and run
in O(n log5 n) time. The previous best known algorithms for these three-dimensional
problems had almost quadratic running time. In the final part of the paper, we consider
some related problems.

1 Introduction

Geometric optimization problems in low-dimensional spaces have received great attention.
See e.g. [1, 3, 7, 9]. Such problems often occur in practical situations. Consider the following
example from the field of neurosurgery: A surgeon wants to remove tissue samples from the
brain of a patient for diagnosis purposes. This is done by inserting a probe through a small
hole in the skullcap of the patient. In order to minimize the exposure to danger, the point of
entry has to be chosen in such a way that the trajectory of the probe stays away from certain
brain areas. If we model this trajectory as a ray, and the brain areas we want to avoid by
weighted points in three-dimensional space, then we want to find a ray R emanating from
the position at which we want to remove the tissue sample such that the minimal weighted
distance from any of the points to R is maximal.

We denote the Euclidean distance between a point p and the origin by ‖p‖. Also, the
Euclidean distance between two points p and q is denoted by d(p, q). If p is a point in
IRd, and R is a closed subset of IRd, then the distance between p and R is defined as
d(p,R) := min{d(p, q) : q ∈ R}. Finally, we define an anchored ray as a ray that emanates
from the origin. The above mentioned optimization problem is the three-dimensional version
of the following problem.

Problem 1 Let S be a set of n points in IRd, and let each point p of S have a weight w(p),
which is a positive real number. Compute an anchored ray R for which minp∈S w(p) ·d(p,R)
is maximal.
∗Universität des Saarlandes, Fachbereich 14, Informatik, Lehrstuhl Prof. Hotz, Im Stadtwald, D-66041

Saarbrücken, Germany. E-mail: {follert,schoemer,sellen}@cs.uni-sb.de.
†This author was supported by a Graduiertenkolleg Fellowship from DFG, Germany.
‡Max-Planck-Institut für Informatik, Im Stadtwald, D-66123 Saarbrücken, Germany. E-mail:

{michiel,thiel}@mpi-sb.mpg.de. These authors were supported by the ESPRIT Basic Research Actions
Program, under contract No. 7141 (project ALCOM II).

1



We get an obvious generalization if we ask for a line through the origin instead of an
anchored ray:

Problem 2 Let S be a set of n points in IRd, and let each point p of S have a weight w(p),
which is a positive real number. Compute a line l through the origin for which minp∈S w(p) ·
d(p, l) is maximal.

Let R be any ray, and let δ ≥ 0. The set of all points in IRd that are at distance at most
δ from R is called a silo with axis R and radius δ.

If each point of S has weight one, then Problem 1 asks for the silo whose axis starts in
the origin, that does not contain any point of S in its interior, and that has maximal radius.
Also, in this case, Problem 2 asks for the cylinder of maximal radius whose axis contains
the origin and that does not contain any point of S in its interior.

Problem 1 and the application described above were posed by Prof. Hotz, and appeared
for the first time in Follert’s Master Thesis [3]. He shows how to solve this problem in
O(nα(n) log n) time when d = 2, and in O(n2+ε) expected time when d = 3. Here, α(n)
denotes the inverse of Ackermann’s function, and ε is an arbitrarily small positive constant.

Follert also considers Problem 2. For d = 2, he shows how to solve this problem in
O(n logn) time. Moreover, he reduces problem Max-Gap-on-a-Circle to Problem 2. (See
also Lee and Wu [9].) Hence, Problem 2 has time complexity Ω(n logn) in the algebraic
computation tree model. For d = 3, Follert gives an algorithm that solves Problem 2 in
O(nλ6(n) log n) time, where λ6(n) is the maximal length of any Davenport-Schinzel sequence
of order six over an alphabet of size n. It is known that λ6(n) is slightly superlinear. (See
Agarwal et al. [2].) Hence, Follert’s algorithm has almost quadratic running time.

1.1 Our contribution

In Section 2, we prove some preliminary results. First, we show that we can assume w.l.o.g.
that all points have weight one, i.e., it suffices to consider the unit-weight versions of Prob-
lems 1 and 2. (This observation appears already in [3, 9].) Then we show that the time
complexity of Problem 2 is bounded above by that of Problem 1.

In Section 3, we consider the two-dimensional version of Problem 1. We give an extremely
simple algorithm that solves this problem in O(n logn) time. This algorithm uses the lower
envelope of some appropriately chosen curves. A careful analysis shows that this lower
envelope has linear combinatorial complexity.

The results of Section 2 imply that the two-dimensional version of Problem 2 can also
be solved in O(n log n) time. Since Follert [3] proved an Ω(n log n) lower bound for this
problem, it follows that our algorithms for solving the planar versions of Problems 1 and 2
are optimal in the algebraic computation tree model.

In Section 4, we consider the three-dimensional version of Problem 1. The appropriate
technique to apply seems to be Megiddo’s parametric search [10]. We show that this is
indeed true. In particular, we show that it suffices to design sequential and parallel algo-
rithms for the following problem: Given a set of n disks on the unit sphere, decide whether
these disks cover the sphere. Then, Megiddo’s technique immediately solves Problem 1.
Our algorithms for solving the sphere cover problem are based on the following topological
fact: The boundary of the union of the n disks has combinatorial complexity O(n) and
can be computed by a divide-and-conquer algorithm. (See Kedem et al. [8].) The overall
algorithm for solving Problem 1 has running time O(n log5 n). Another solution based on
the parametric search technique, which requires only running time O(n log4 n), is proposed
in [4]. In contrast to this approach, which uses additional geometric properties, our solution
uses only topological information and can be easier modified for other obstacles.

2



By the results of Section 2, the three-dimensional version of Problem 2 can be solved
within the same time bound. Compared with the previous almost quadratic time bounds
of [3], these are drastic improvements.

In Section 5, we consider some related problems. In particular, the dual of the three-
dimensional version of Problem 1, which asks for an anchored ray R for which maxp∈S w(p) ·
d(p,R) is minimal, can be solved in O(n log5 n) time using basically the same approach as
in Section 4. We also discuss the dual of the three-dimensional version of Problem 2, which
seems to be much more difficult. Finally, for d = 3, we show how to compute a plane H
through the origin such that maxp∈S w(p) · d(p,H) is minimal, in O(n logn) time. It was
proved in [9] that the planar version of the latter problem has an Ω(n logn) lower bound in
the algebraic computation tree model. Hence, our algorithm is optimal in this model.

2 Some preliminary results

Let S be a set of points in IRd. If S contains the origin, then any anchored ray R (resp. any
line l through the origin) is a solution to Problem 1 (resp. 2). Therefore, from now on, we
assume that set S does not contain the origin.

Lemma 1 Let p = (p1, p2, . . . , pd) be a point in IRd, let w be a positive real number, and let
R be an anchored ray in IRd. Let p′ := (wp1, wp2, . . . , wpd). Then w · d(p,R) = d(p′, R).

Corollary 1 Let T (n) denote the complexity of the unit-weight version of Problem 1. Then
the weighted version of Problem 1 has complexity O(T (n)).

Lemma 2 Let T (n) be the complexity of Problem 1. Then the complexity of Problem 2 is
bounded by O(T (2n)).

Proof: Let S be a set of n points in IRd, and let each point p of S have a positive weight
w(p). We want to compute a line l through the origin for which minp∈S w(p) · d(p, l) is
maximal. Let S′ := S ∪ −S, where −S := {(−p1,−p2, . . . ,−pd) : (p1, p2, . . . , pd) ∈ S}. We
give each point in −S the weight of the corresponding point of S. Let R∗ be the anchored
ray such that minp∈S′ w(p) ·d(p,R∗) is maximal. Let l∗ be the line that supports R∗. Then,
l∗ is a solution to Problem 2 for the set S.

3 Problem 1: the two-dimensional case

Let S be a set of n points in the plane, and let each point p of S have a positive weight
w(p). We want to compute an anchored ray R such that minp∈S w(p) · d(p,R) is maximal.
By Corollary 1, we can assume w.l.o.g. that w(p) = 1 for all points p. Define

δ∗ := max{min
p∈S

d(p,R) : R is an anchored ray}.

Let δ∗l (resp. δ∗r ) denote the analogous quantity where we only consider anchored rays that
lie on or to the left (resp. right) of the y-axis. It is clear that δ∗ = max(δ∗l , δ

∗
r ). We show

how to compute δ∗r . The value δ∗l can be computed in a symmetric way.
Let δmin := min{‖p‖ : p ∈ S}. For each δ ≥ 0 and each point p of S, let Dδ

p denote
the disk with center p and radius δ. For 0 ≤ δ ≤ δmin and p ∈ S, let Cδp denote the cone
consisting of all anchored rays that intersect or touch the disk Dδ

p. (Since δ ≤ δmin , Dδ
p does

not contain the origin. Therefore, Cδp really is a cone.) Note that Cδp has the origin as its
apex.

3



ϕp

αδp

δ

p

αδp

Figure 1: Illustration of the angles ϕp and αδp.

Observation 1 Using these notations, we have

1. δ∗r is the maximal value of δ, 0 ≤ δ ≤ δmin , such that there is an anchored ray in the
halfplane x ≥ 0 that does not intersect the interior of any disk Dδ

p, p ∈ S.

2. 0 ≤ δ∗r ≤ δmin .

3. δ∗r is the minimum of δmin and the minimal value of δ, 0 ≤ δ ≤ δmin , such that the
cones Cδp , p ∈ S, cover the halfplane x ≥ 0.

Let 0 ≤ δ ≤ δmin and let p ∈ S. Consider the intersection of the cone Cδp with the
halfplane x ≥ 0. Let Ip(δ) be the interval of slopes spanned by all anchored rays that lie
in this intersection. We represent each slope by the angle between the ray and the positive
x-axis. Hence, Ip(δ) ⊆ [−π/2, π/2]. We can easily write down this interval explicitly:

Let p have coordinates (p1, p2), and let ϕp, −π < ϕp ≤ π, be the angle between the
vector ~p and the positive x-axis. Then, sinϕp = p2/‖p‖. Also, for 0 ≤ δ ≤ δmin , let αδp be
the angle between ~p and an anchored ray that is tangent to the disk Dδ

p. (There are two
such tangents, but both define the same angle.) Then, 0 ≤ αδp ≤ π/2 and sinαδp = δ/‖p‖.
(See Figure 1.) If p1 ≥ 0, then

Ip(δ) =


[ϕp − αδp, ϕp + αδp] if 0 ≤ δ ≤ δmin and δ ≤ p1,
[ϕp − αδp, π/2] if p1 ≤ δ ≤ δmin and p2 ≥ 0,
[−π/2, ϕp + αδp] if p1 ≤ δ ≤ δmin and p2 ≤ 0.

If p1 ≤ 0, then

Ip(δ) =


∅ if 0 ≤ δ ≤ δmin and δ ≤ −p1,
[ϕp − αδp, π/2] if −p1 ≤ δ ≤ δmin and p2 ≥ 0,
[−π/2, ϕp + αδp] if −p1 ≤ δ ≤ δmin and p2 ≤ 0.

It is clear that the cones Cδp , p ∈ S, cover the halfplane x ≥ 0 if and only if the intervals
Ip(δ), p ∈ S, cover [−π/2, π/2]. Hence, δ∗r is the minimum of (1) δmin , and (2) the minimal
value of δ, 0 ≤ δ ≤ δmin , such that the intervals Ip(δ) cover [−π/2, π/2].

4



Using the intervals Ip(δ) has the disadvantage that we need non-algebraic functions. In
order to stay within the algebraic computation tree model, our algorithm works with the
intervals

Jp(δ) := sin (Ip(δ)) = {sin γ : γ ∈ Ip(δ)}.

Note that Ip(δ) ⊆ [−π/2, π/2] and that the function sin(·) is increasing on [−π/2, π/2]. Using

the relations sinϕp = p2/‖p‖, cosϕp = p1/‖p‖, sinαδp = δ/‖p‖, cosαδp =
√
p2

1 + p2
2 − δ2/‖p‖,

and sin(x+y) = sinx cos y+cosx sin y, we get the following expressions for Jp(δ). If p1 ≥ 0,
then

Jp(δ) =



[
p2

√
p2

1+p2
2−δ2−p1δ

‖p‖2 ,
p2

√
p2

1+p2
2−δ2+p1δ

‖p‖2

]
if 0 ≤ δ ≤ δmin and δ ≤ p1,[

p2

√
p2

1+p2
2−δ2−p1δ

‖p‖2 , 1
]

if p1 ≤ δ ≤ δmin and p2 ≥ 0,[
−1, p2

√
p2

1+p2
2−δ2+p1δ

‖p‖2

]
if p1 ≤ δ ≤ δmin and p2 ≤ 0.

If p1 ≤ 0, then

Jp(δ) =


∅ if 0 ≤ δ ≤ δmin and δ ≤ −p1,[
p2

√
p2

1+p2
2−δ2−p1δ

‖p‖2 , 1
]

if −p1 ≤ δ ≤ δmin and p2 ≥ 0,[
−1, p2

√
p2

1+p2
2−δ2+p1δ

‖p‖2

]
if −p1 ≤ δ ≤ δmin and p2 ≤ 0.

The value of δ∗r is equal to the minimum of δmin and the minimal value of δ, 0 ≤ δ ≤ δmin ,
such that the intervals Jp(δ) cover [−1, 1]. For p ∈ S, let

Rp := {(x, δ) : 0 ≤ δ ≤ δmin , x ∈ Jp(δ)}.

The region Rp is contained in the rectangle [−1, 1]× [0, δmin ].

Observation 2 δ∗r is the minimum of (1) δmin , and (2) the minimal value of δ, 0 ≤ δ ≤
δmin , such that the horizontal segment with endpoints (−1, δ) and (1, δ) is completely con-
tained in

⋃
p∈S Rp.

Let lp be the lower envelope of Rp. Then, lp is the graph of a continuous function on a
subinterval of [−1, 1]. Finally, let L be the lower envelope of the graphs lp, p ∈ S, and the
line segment with endpoints (−1, δmin ) and (1, δmin ).

Observation 3 δ∗r is the y-coordinate of a highest vertex of L.

We now analyze the lower envelope L. Let Bl, Br, Bt and Bb be the left, right, top and
bottom side of the rectangle [−1, 1] × [0, δmin ], respectively.

Let p = (p1, p2) be a point of S, and consider the graph lp. If p1 ≥ 0, then lp consists
of a decreasing part l−p that has (p2/‖p‖, 0) as its lowest and rightmost endpoint, and an
increasing part l+p that has (p2/‖p‖, 0) as its lowest and leftmost endpoint. Moreover, l−p
(resp. l+p ) has its leftmost (resp. rightmost) endpoint on Bl or Bt (resp. Br or Bt). If p1 ≤ 0
and p2 ≥ 0, then lp is decreasing from some point on Bt to some point on Br. Finally, if
p1 ≤ 0 and p2 ≤ 0, then lp is increasing from some point on Bl to some point on Bt.

Lemma 3 Let p = (p1, p2) and q = (q1, q2) be two distinct points of S. The graphs lp and
lq intersect at most twice.

5



p

q

δ

δ

Uq(δ)

Lq(δ)

Up(δ)

Lp(δ)

Figure 2: Growing δ from 0 to δmin .

Proof: We give a geometric explanation for this claim. In the full paper, we give a rigorous
proof. Assume that p1 and q1 are both positive and that ϕq > ϕp. For 0 ≤ δ ≤ δmin , let
Up(δ) (resp. Lp(δ)) be the anchored ray that is upper (resp. lower) tangent to the disk Dδ

p.
Define Uq(δ) and Lq(δ) analogously.

Intersections of lp and lq are in one-to-one correspondence with values of δ such that
{Up(δ), Lp(δ)} ∩ {Uq(δ), Lq(δ)} 6= ∅.

Consider what happens when we grow δ from 0 to δmin . Initially, Up(δ) = Lp(δ) and
Uq(δ) = Lq(δ). If δ increases, then the tangents Up(δ) and Lp(δ) move in opposite directions.
Similarly, the tangents Uq(δ) and Lq(δ) move in opposite directions. (See Figure 2.) Clearly,
there is exactly one δ0 such that Lq(δ0) = Up(δ0). This corresponds to an intersection of
l−q and l+p . Also, for δ < δ0, there are no intersections between lp and lq. Now we grow δ
further, from δ0 to the next “time” δ1 at which {Up(δ1), Lp(δ1)} ∩ {Uq(δ1), Lq(δ1)} 6= ∅. (If
there is no such time, then the graphs lp and lq intersect exactly once, and we are done.)
Then, Up(δ1) = Uq(δ1) or Lp(δ1) = Lq(δ1). Assume w.l.o.g. that at time δ1, Up(δ1) = Uq(δ1).
This corresponds to the second intersection between lp and lq; more precisely, an intersection
between l+p and l+q . Note that then Up(δ) must move faster than Uq(δ). Hence, for δ > δ1,
these two tangents never coincide any more. That is, l+p and l+q intersect only once. Now
look at Lp(δ) and Lq(δ): Since Lp(δ) and Up(δ) (resp. Lq(δ) and Uq(δ)) move at the same,
but opposite, velocities, Lq(δ) will never overtake Lp(δ). That is, l−p and l−q do not intersect.

Lemma 4 The lower envelope L consists of O(n) vertices.

Proof: We will show that the names of the points that correspond to the edges of L, when
we traverse L from left to right, form a Davenport-Schinzel sequence of order two. This
will prove the claim. (See e.g. [6].) Hence, we must show that for any pair p and q of
distinct points of S, this sequence of names does not contain a subsequence of the form
p . . . q . . . p . . . q. But this follows from the fact that lp and lq intersect at most twice, and
from the restrictions on the endpoint of these graphs.

6



Now we are ready to give the algorithm for computing δ∗r and a corresponding ray R∗.

1. Compute the graphs lp, p ∈ S.

2. Compute the lower envelope L of the graphs lp, p ∈ S, and the horizontal segment
with endpoints (−1, δmin ) and (1, δmin ).

3. Walk along L and find a highest vertex on it. Let this vertex have coordinates (a, δ).

4. Output δ and the anchored ray R := {(x, ax/
√

1− a2) : x ≥ 0}.

To prove the correctness of this algorithm, consider the vertex (a, δ) that is found in Step
3. Observation 3 implies that δ = δ∗r . Let ϕ be the angle such that −π/2 ≤ ϕ ≤ π/2 and
sinϕ = a. Let R∗ be the anchored ray that makes an angle of ϕ with the positive x-axis.
Then δ = minp∈S d(p,R∗). It is easy to see that R = R∗.

Next we analyze the running time of our algorithm. Step 1 takes O(n) time. The lower
envelope L can be computed by a divide-and-conquer algorithm. (See e.g. [6].) Since L has
linear size, this algorithm, and hence Step 2, takes O(n log n) time. Step 3 takes O(n) time,
and Step 4 takes O(1) time. We have proved the following result.

Theorem 1 Let S be a set of n points in the plane, and let each point p of S have a
positive weight w(p). In O(n log n) time, we can compute an anchored ray R∗ for which
minp∈S w(p) · d(p,R∗) is maximal.

Corollary 2 Let S be a set of n points in the plane, and let each point p of S have a
positive weight w(p). In O(n logn) time, we can compute a line l∗ through the origin for
which minp∈S w(p) · d(p, l∗) is maximal.

The results of Theorem 1 and Corollary 2 are optimal in the algebraic computation tree
model. Follert [3] proves an Ω(n logn) lower bound for Problem 2. It follows from Lemma 2
that this lower bound holds for Problem 1 as well.

4 Problem 1: the three-dimensional case

We briefly recall Megiddo’s parametric search technique [10]. Suppose we are given a fixed
set of n data items, such as points in IR3. Let P(t) be a decision problem whose value
depends on the n data items and a real parameter t. Assume that P is monotone, meaning
that if P(t0) is true for some t0, then P(t) is also true for all t < t0. Our aim is to find the
maximal value of t for which P(t) is true. We denote this value by t∗.

Assume we have a sequential algorithm As that, given the n data items and t, decides if
P(t) is true or not. The control flow of this algorithm is governed by comparisons, each of
which involves testing the sign of some low-degree polynomial in t. Let Ts and Cs denote
the running time and the number of comparisons made by algorithm As, respectively. Note
that by running As on input t, we can decide if t ≤ t∗ or t > t∗: we have t ≤ t∗ iff P(t) is
true.

The parametric search technique simulates As on the unknown value t∗. Whenever As
reaches a branching point that depends on a comparison operation, the comparison can be
reduced to testing the sign of a suitable low-degree polynomial f(t) at t = t∗. The algorithm
computes the roots of this polynomial and checks each root a—by running As on input a—to
see if it is less than or equal to t∗. In this way, the algorithm identifies two successive roots
between which t∗ must lie and thus determines the sign of f(t∗). Hence, we get an interval
I that contains t∗. Also the comparison now being resolved, the execution can proceed. As

7



we proceed through the execution, each comparison that we resolve results in constraining
I further and we get a sequence of progressively smaller intervals each known to contain t∗.
The simulation will run to completion and we are left with an interval I that contains t∗. It
can be shown that for any real number r ∈ I, P(r) is true. Therefore, t∗ must be the right
endpoint of I.

Since As makes at most Cs comparisons during its execution, the entire simulation and,
hence, the computation of t∗ take O(CsTs) time. To speed up this algorithm, Megiddo
replaces As by a parallel algorithm Ap that uses P processors and runs in Tp parallel time.
At each parallel step, let Ap make a maximum of Wp independent comparisons. Then our
algorithm simulates Ap sequentially, again at the unknown value t∗. At each parallel step,
we get at most Wp low-degree polynomials in t. We compute the roots of all of them and
do a binary search among them using repeated median finding to make the probes for t∗.
For each probe, we run the sequential algorithm As. In this way, we get the correct sign of
each polynomial in t∗, and our algorithm can simulate the next parallel step of Ap.

For the simulation of each parallel step, we spend O(Wp) time for median finding. Hence,
the entire simulation of this step takes time O(Wp + Ts logWp). As a result, the entire
algorithm computes t∗ in time O(WpTp + TsTp logWp). Since Wp ≤ P , the running time is
bounded by O(PTp + TsTp logP ).

4.1 Applying the parametric search technique

Let S be a set of n points in IR3. Each point p of S has a positive weight w(p). Define

δ∗ := max{min
p∈S

w(p) · d(p,R) : R is an anchored ray}.

Our goal is to compute δ∗ together with the corresponding ray R∗. We saw already that we
may assume w.l.o.g. that w(p) = 1 for all points p.

In order to apply the parametric search technique, we have to solve the following decision
problem P(δ): Given the set S and the real number δ ≥ 0, is there an anchored ray R such
that minp∈S d(p,R) ≥ δ. It is clear that P is monotone, and δ∗ is the maximal δ for which
P(δ) is true.

We reformulate the decision problem P(δ) in the following way. Let δ ≥ 0. For each
point p of S, let Bδ

p denote the ball with center p and radius δ. Then P(δ) is true if and
only if there is an anchored ray R that does not intersect the interior of any of these balls.

Let δmin := min{‖p‖ : p ∈ S}. Then P(δ) is clearly false for δ > δmin .
For 0 ≤ δ ≤ δmin , let Cδp denote the circular cone consisting of all anchored rays that

intersect or touch the ball Bδ
p. This cone intersects the unit sphere—i.e., the surface of the

ball of radius one centered at the origin—in a disk. We denote this disk by Dδ
p.

Let 0 ≤ δ ≤ δmin . It is clear that P(δ) is true if and only if there is a point x on the unit
sphere that is not contained in the interior of any of these n disks. If there is such a point
x, then the ray R that starts in the origin and contains x satisfies minp∈S d(p,R) ≥ δ. In
other words, P(δ) is true if and only if the interiors of these n disks do not cover the unit
sphere.

In the next two subsections, we give sequential and parallel algorithms that decide the
latter condition.

4.1.1 A sequential algorithm that decides the covering problem

Let D1,D2, . . . ,Dn be a set of n disks on the unit sphere. We want to decide if the interiors
of these disks cover the unit sphere. Clearly, we can use the arrangement of the disks for
deciding this. This arrangement, however, may have size Ω(n2).

8



Let Ii (resp. γi) denote the interior (resp. boundary) of Di, 1 ≤ i ≤ n, and let I :=⋃n
i=1 Ii. (Note that there may be i 6= j such that γi = γj.) We denote the closure of I by

cl(I). The boundary B of I is equal to

B = cl(I) \ I =

(
n⋃
i=1

Di

)
\
(

n⋃
i=1

Ii

)
.

The interiors of the disks D1,D2, . . . ,Dn cover the unit sphere if and only if B is empty.
Hence, our problem can be solved by computing the boundary B rather than the entire
arrangement of the n disks.

The boundary B is a planar graph on the unit sphere. Each edge of this graph is part of
a circle γi for some i, and each vertex is an intersection point of at least two distinct circles.
We choose an arbitrary point pi on each circle γi, 1 ≤ i ≤ n, with the restriction that pi = pj
if γi = γj . Then, if γi does not intersect any other circle, it forms an edge of B with both
endpoints equal to pi. Note that B can have isolated vertices: If three circles intersect in
one point x, and there is an arbitrarily small disk α (not equal to any of D1,D2, . . . ,Dn)
centered at x such that α\{x} is contained in the union of the interiors of these three circles,
then x is a vertex of B, and x is not incident to any edge of B.

Lemma 5 ([8]) The boundary B is a planar graph on the unit sphere, and, if n ≥ 3, it
contains at most 6n− 12 vertices.

In [8], an algorithm is given that computes the boundary of the union of n regions in the
plane, each of which is bounded by a simple closed Jordan curve. This algorithm follows the
divide-and-conquer paradigm, and the merge step is implemented by using a plane sweep
algorithm of Ottmann, Widmayer and Wood [11] for computing the boundary of the union
of superimposed polygonal planar regions. This plane sweep algorithm also works if the
edges of the planar regions are curved. We can easily modify this algorithm such that it
computes the boundary B:

Consider the disks D1,D2, . . . ,Dn. Recursively compute the boundary B1 (resp. B2)
of the union of the interiors of D1,D2, . . . ,Dn/2 (resp. Dn/2+1,Dn/2+2, . . . ,Dn). Note that
B1 and B2 are planar graphs on the unit sphere. Let l and r be the points on the unit
sphere with minimal and maximal y-coordinate, respectively. Using the algorithm of [11],
we compute the boundary B from B1 and B2 by sweeping a circular arc with endpoints l
and r around the unit sphere. Let b1 and b2 denote the number of edges of B1 and B2,
respectively, and let t denote the number of intersections between B1 and B2. Then this
sweep algorithm runs in time O((b1 + b2 + t) log(b1 + b2)). It follows from Lemma 5 that
b1 + b2 = O(n). Since each intersection point between B1 and B2 is a vertex of B, Lemma 5
also implies that t = O(n). Hence, the entire sweep algorithm runs in time O(n logn). This
shows that the entire divide-and-conquer algorithm for computing the boundary B takes
O(n log2 n) time. The interiors of the input disks D1,D2, . . . ,Dn cover the unit sphere if
and only if the graph B is empty. If B is not empty, then any vertex of B is a point on the
unit sphere that is not contained in the interior of any disk. We have proved the following
result.

Lemma 6 Let D1,D2, . . . ,Dn be a set of disks on the unit sphere. In O(n log2 n) time, we
can decide if the union of the interiors of these disks cover the unit sphere. If this is not the
case, then the algorithm finds a point on the unit sphere that is not contained in the interior
of any disk.

9



4.1.2 A parallel algorithm that decides the covering problem

Now we give a parallel algorithm for computing the boundary B. Consider again the disks
D1,D2, . . . ,Dn. The algorithm uses n processors. The first (resp. last) n/2 processors
compute the boundary B1 (resp. B2) of the union of the interiors of D1,D2, . . . ,Dn/2 (resp.
Dn/2+1,Dn/2+2, . . . ,Dn). It remains to describe the merge step. That is, given B1 and B2,
how to compute the boundary B of the union of the interiors of the n input disks.

Rüb [12] gives a parallel algorithm based on a segment tree, that computes the inter-
sections among red and blue curved segments in the plane. The interiors of the red (resp.
blue) segments are assumed to be pairwise disjoint. Also, each segment is assumed to be
x-monotone, meaning that any vertical line intersects a segment at most once. Finally, it is
assumed that each red-blue pair of segments intersect at most a constant number of times.
If n denotes the total number of red and blue segments, and t denotes the total number of
intersection points among the red-blue pairs of segments, then Rüb’s algorithm runs on a
CREW-PRAM in time O(log n+ t/n) using n processors.

This algorithm can be used to compute the boundary B from B1 and B2: In our case,
the slabs that define the segment tree are bounded by circular arcs on the unit sphere with
two fixed diametral endpoints. In order to guarantee that each curved edge of B1 and B2 is
monotone, we cut each of them into at most two parts. Note that, by Lemma 5, t = O(n).
Hence, using Rüb’s algorithm, we compute all intersections of B1 and B2 in O(log n) time
using n processors.

Then, for each edge e of B1, we sort the intersection points on this edge. This gives the
arrangement A of the union B1 and B2. Given this arrangement, we compute the boundary
B by removing the appropriate vertices and edges from A. All this can be done in O(log n)
time using n processors.

Hence, the entire merge step of our parallel divide-and-conquer algorithm takes O(log n)
time and uses n processors. This proves:

Lemma 7 Let D1,D2, . . . ,Dn be a set of disks on the unit sphere. There is a CREW-
PRAM algorithm that decides if the union of the interiors of these disks cover the unit
sphere. If this is not the case, then the algorithm finds a point on the unit sphere that is
not contained in the interior of any disk. The algorithm takes O(log2 n) time and uses n
processors.

Lemmas 6 and 7, and the parametric search technique immediately provide a solution
for Problem 1:

Theorem 2 Let S be a set of n points in IR3, and let each point p of S have a positive weight
w(p). In O(n log5 n) time, we can compute an anchored ray R∗ for which minp∈S w(p) ·
d(p,R∗) is maximal.

Corollary 3 Let S be a set of n points in IR3, and let each point p of S have a positive
weight w(p). In O(n log5 n) time, we can compute a line l∗ through the origin for which
minp∈S w(p) · d(p, l∗) is maximal.

5 Some related problems

Problem 3 Let S be a set of n points in IRd, and let each point p of S have a weight w(p),
which is a positive real number. Compute an anchored ray R for which maxp∈S w(p) ·d(p,R)
is minimal.

10



As before, we can assume w.l.o.g. that all points have weight one. In [9], Lee and Wu
show how to solve this problem in O(n logn) time when d = 2. We show how to solve it for
d = 3. Let Bδ

p denote the ball with center p and radius δ. Then we want to compute the
minimal real number δ ≥ 0 such that there is an anchored ray that intersects all balls Bδ

p,
p ∈ S. We find this minimal δ using the parametric search technique.

Let δ ≥ 0. We need sequential and parallel algorithms for deciding if there is an anchored
ray that intersects all balls Bδ

p, p ∈ S. Clearly, we do not have to consider those balls that
contain the origin. Using the same approach as in Section 4, we arrive at the following
problem: Given a set of at most n disks on the unit sphere, decide if their intersection is
empty. This intersection has combinatorial complexity O(n). Moreover, it can be computed
by basically the same approaches as in Sections 4.1.1 and 4.1.2.

Theorem 3 Let S be a set of n points in IR3, and let each point p of S have a positive weight
w(p). In O(n log5 n) time, we can compute an anchored ray R for which maxp∈S w(p)·d(p,R)
is minimal.

Problem 4 Let S be a set of n points in IRd, and let each point p of S have a weight w(p),
which is a positive real number. Compute a line l through the origin for which maxp∈S w(p) ·
d(p, l) is minimal.

For d = 2, this problem can be solved in O(n log n) time, which is optimal in the algebraic
computation tree model. See [9]. The three-dimensional version seems to be much harder.
Follert [3] solves this problem in O(nλ6(n) log n) time.

A symmetric slab is defined as the region between two parallel planes in IR3 that are at
the same distance from the origin. If we intersect a symmetric slab with the unit sphere,
then we get a symmetric slab on the unit sphere. A natural approach to solve the three-
dimensional version of Problem 4 is to use the parametric search technique. Then we have
to design sequential and parallel algorithms for the following decision problem: Given a set
of n symmetric slabs on the unit sphere, do they cover the unit sphere.

This decision problem resembles the following problem: Given a circle C and a set of n
slabs, both in the plane, decide whether these slabs cover C. Gajentaan and Overmars [5]
proved that this problem is n2-hard, which indicates that it is probably very hard to find a
subquadratic algorithm for it.

Open problem 1 Decide if the problem “Given a set of n symmetric slabs on the unit
sphere, do they cover the unit sphere”, is n2-hard, or if it can be solved in subquadratic
time. Note that if this problem is n2-hard, that then also the three-dimensional version of
Problem 4 is n2-hard.

Problem 5 Let S be a set of n points in IRd, and let each point p of S have a weight w(p),
which is a positive real number. Compute a hyperplane H through the origin for which
maxp∈S w(p) · d(p,H) is minimal.

Lee and Wu [9] proved an Ω(n logn) lower bound for the planar version of this problem.
We show how to solve the three-dimensional version of Problem 5 in O(n log n) time. We
can assume w.l.o.g. that all points of S have weight one.

Our problem is equivalent to that of computing the symmetric slab of minimal width that
contains all points of S. Let S′ := S∪−S, where −S := {(−p1,−p2,−p3) : (p1, p2, p3) ∈ S}.
For any plane H through the origin, we have H = −H. Therefore, d(p,H) = d(−p,−H) =
d(−p,H). As a result, it suffices to solve our problem for the set S′. Since this set is
symmetric w.r.t. the origin, the width of the minimal symmetric slab containing S′ is equal
to the width of S′, which is defined as the minimal width of any slab containing this set.

11



The best known algorithm for computing the width of an arbitrary set of n points in
IR3 has running time O(n17/11+ε), where ε is an arbitrarily small positive constant. (See
Agarwal et al. [1].) In our case, however, the set of points has a special form.

Houle and Toussaint [7] observed that the width of a set of points in IR3 is the minimum
distance between parallel planes of support passing through either an antipodal vertex-face
pair or an antipodal edge-edge pair of the convex hull of the set.

It is not difficult to see that in order to compute the width of our set S′, we only have
to consider parallel planes of support passing through an antipodal vertex-face pair of the
convex hull of S′, and take the minimum distance between any such pair of planes. This
minimum distance can be computed in O(n log n) time. (See [7].)

Theorem 4 Let S be a set of n points in IR3, and let each point p of S have a positive
weight w(p). In O(n log n) time, we can compute a plane H through the origin for which
maxp∈S w(p) · d(p,H) is minimal. This is optimal in the algebraic computation tree model.

Acknowledgement

The authors thank Prof. Hotz for posing the problems, and the application to neurosurgery,
that were considered in this paper. They also thank Christine Rüb and Stefan Schirra for
several helpful discussions.

References
[1] P.K. Agarwal, B. Aronov, and M. Sharir. Computing enveloped in four dimensions with

applications. Proc. 10th Annual ACM Conf. on Comp. Geom., 1994, pp. 348–358.
[2] P.K. Agarwal, M. Sharir, and P. Shor. Sharp upper and lower bounds for the length

of general Davenport-Schinzel sequences. J. Combin. Theory, Ser. A 52 (1989), pp.
228–274.

[3] F. Follert. Lageoptimierung nach dem Maximin-Kriterium. Master’s Thesis. Depart-
ment of Computer Science, Universität des Saarlandes, Saarbrücken, 1994.

[4] F. Follert. Maxmin location of an anchored ray in 3-space and related problems, sub-
mitted to CCCG95

[5] A. Gajentaan and M.H. Overmars. n2-Hard problems in computational geometry. Tech.
Rep. RUU-CS-93-15, Department of Computer Science, University of Utrecht, 1993.

[6] L. Guibas and M. Sharir. Combinatorics and algorithms of arrangements. In: New
Trends in Discrete and Computational Geometry, Ed. J. Pach. Springer-Verlag, Berlin,
1993, pp. 9–36.

[7] M.E. Houle and G.T. Toussaint. Computing the width of a set. IEEE Trans. Pattern
Anal. Mach. Intell., PAMI-10 (1988), pp. 761–765.

[8] K. Kedem, R. Livne, J. Pach, and M. Sharir. On the union of Jordan regions and
collision-free translational motion amidst polygonal obstacles. Discrete Comput. Geom.
1 (1986), pp. 59–71.

[9] D.T. Lee and Y.F. Wu. Geometric complexity of some location problems. Algorithmica
1 (1986), pp. 193–211.

[10] N. Megiddo. Applying parallel computation algorithms in the design of serial algorithms.
J. ACM 30 (1983), pp. 852–865.

[11] T. Ottmann, P. Widmayer, and D. Wood. A fast algorithm for Boolean mask operations.
Comput. Vision Graph. Image Process. 30 (1985), pp. 249–286.

[12] C. Rüb. Computing intersections and arrangements for red-blue curve segments in par-
allel. Proc. 4th Canadian Conf. on Comp. Geom., 1992, pp. 115–120.

12


