
Trunk packing revisited

Ernst Althaus, Tobias Baumann, Elmar Schömer, and Kai Werth

Johannes-Gutenberg-Universität Mainz
Institut für Informatik

{althaus, tba, schoemer, werth}@informatik.uni-mainz.de

Abstract. For trunk packing problems only few approximation schemes
are known, mostly designed for the European standard DIN 70020 [10]
with equally sized boxes [12, 13, 15, 16]. In this paper two discretized
approaches for the US standard SAE J1100 [14] are presented, which
make use of different box sizes. An exact branch-and-bound algorithm
for weighted independent sets on graphs is given, using the special struc-
ture of the SAE standard. Another branch-and-bound packing algorithm
using linear programs is presented. With these algorithms axis-oriented
packings of different box sizes in an arbitrary trunk geometry can be
computed efficiently.

Keywords: approximation algorithms, branch and bound algorithms,
branch and cut algorithms, graph algorithms, linear programming, pack-
ing problems, weighted independent set

1 Introduction
The cooperation with a German car manufacturer has led to several effi-
cient approximation schemes for the trunk packing problem according to
the German standard DIN 70020 [8, 9, 10, 12, 15, 16]. This cooperation
has been continued by exploring the baggage volume capacity according
to the US standard SAE J1100 [14].

The computation of the baggage capacity has a significant influence
on the car design process. According to international regulations, the
baggage capacity is not equal to the continuous volume of a trunk which
can be easily computed using a standard CAD program. The German
standard DIN 70020 uses boxes of size 20 × 10 × 5 cm, which equals 1
l per box. The American standard SAE J1100 uses a more realistic set
of boxes: seven different box sizes are used, making an equivalent from 6
up to 67 litres. To create a valid1 SAE J1100 packing, a few rules must
be obeyed: The smallest boxes may not be used until none of the larger
boxes fit into the trunk, and each box type has got a fixed number of
instances to be used at maximum.
1 A packing is considered valid if it contains only boxes of allowed sizes and each box

size does not occur more often than allowed.

The trunk packing problem has recently been explored for the DIN
70020 case. In [9, 15], a discrete approach is followed using a discretization
of the trunk volume into cubes of fixed size. Using discrete coordinates
derived from these cubes as representatives for boxes, a conflict graph
can be created and the Independent Set (IS) problem can be solved
on this graph. [9, 15] also provide several algorithms using some struc-
tural properties of the conflict graph and optimization techniques for the
underlying grid.

Cagan and Ding [7] presented a packing algorithm for SAE J1100
using extended pattern search. Additionally to this approach one could
also make use of a conflict graph. The SAE standard differs from the DIN
standard in two issues: At first, the goal is to find an independent set
with the maximal covered volume. This problem is known as Weighted
Independent Set (WIS). Second, the maximal WIS might not be a valid
solution for the SAE J1100 standard which allows only a fixed number of
occurences for each box type. Table 1 shows the allowed box types and
their sizes. There also exists an irregular shaped golf bag (type G) which
is currently not used.

For the WIS problem itself a greedy algorithm has been explored re-
cently [11, 17]. An approximation ratio of min((d̄w + 1)/2, (δw + 1)/2) is
derived for the greedy algorithm, where d̄w denotes the weighted aver-
age degree, and δw is the weighted inductiveness of a weighted undirected
graph as defined in [17]. The special structure of the conflict graph, how-
ever, causes that this approximation ratio can be achieved easily and
provides rather poor values for the trunk packing problem.

Some branch-and-bound algorithms for the WIS problem on general
graphs have been evaluated [19]. An approximation algorithm using lo-
cal search has been developed by Berman [6]. This algorithm achieves
an approximation ratio of d/2 in a d-claw free graph. A d-claw is an in-
duced subgraph containing an independent set of d nodes, and a center
node that is connected to all members of the independent set. A graph

box max. inch (′′) mm Volume
type occurrences l w h l w h l ft3

A 4 24 19 9 610 483 229 67.47 2.375
B 4 18 13 6.5 457 330 165 24.88 0.880
C 2 26 16 9 660 406 229 61.36 2.167
D 2 21 18 8.5 533 457 216 52.61 1.859
E 2 15 9 8 381 229 203 17.71 0.625
F 2 21 14 7 533 356 178 33.78 1.191
H 20 12.8 6 4.5 325 152 114 5.63 0.200

Table 1. Allowed box types for the SAE J1100 trunk packing problem.

is called d-claw free if it does not contain any d-claws. Unfortunately, the
conflict graph as constructed in section 2 contains d-claws for very large
d, so this approximation ratio would not provide any gain for the trunk
packing problem. Furthermore, these algorithms apply to graphs with ar-
bitrary integer weights. In the trunk packing case, the fact that only seven
different weights are present can be exploited. Thus it is necessary to find
other efficient algorithms for this special version of the WIS problem.

Additionally, a continuous approach was developed using Simulated
Annealing techniques (see [8, 12, 16]). Using moves like translation, rota-
tion, creation and deletion, the discretized solutions could be improved in
many cases. A new promising approach for continuous packing is the sim-
ulation of the physical processes during the motion of rigid bodies. There
it is possible, by pushing boxes, to create free space at a designated place
and therefore to insert new boxes [5]. The idea to use a contact simu-
lation for a packing problem arose from a programming contest about
Circle Packing [21].

This paper is structured as follows: Section 2 deals with the WIS
problem itself, the mapping of the container structure to a discretized
model and the description of graph algorithms. In section 3 an approach
without the use of a grid is presented. There, the packing problem is
solved by using linear programs using a convex container structure with
convex obstacles. Finally, section 4 presents some quality and runtime
results achieved by these combinatorial approaches.

2 Discrete Approach

2.1 Hardness of the discrete trunk packing problem

The Trunk packing problem can be discretized in the following way: First,
the rotation of the boxes can be limited to axis-oriented placements. Sec-
ond, the possible placements are restricted to the cells of a grid. Clearly,
these restrictions reduce the solution space and possibly eliminate the op-
timal solution of the original problem. Reichel [15] shows similar problems
(Discrete-Box-Packing for equal boxes) to be NP-complete and the
continuous version to be NP-hard. Similar considerations can be applied
here.

2.2 Conflict Graph

Reichel presented techniques to compute a grid approximation for the
container and uses a graph to describe conflicts between possible box
placements on the grid [15]. This can easily be extended to the SAE case.

Now there are seven different box types and therefore up to seven nodes
for each anchor cell and orientation2.

SAE J1100 defines seven box types with 17 different side lengths. The
finest grid spacing used for the DIN problem was 12.5 mm, which equals
about 0.5′′. This grid size would be too fine for the SAE case since for each
box type, there has to be a copy of each node. Since the conflict graph
will be very large for small grid spacings, one has to restrict the minimal
spacing to 1′′ – 1.5′′. Although larger grid spacings lead to smaller conflict
graphs, the resulting packings would be larger using small grid spacings
such as 1.5′′ or 1′′.

The conflict graph G = (V,E) corresponding to a grid is generated
analogue to [9] as follows: For each grid cell (i, j, k), orientation o and
box type t, determine whether a box of type t, situated at (i, j, k) in
orientation o, would fit into the trunk (i.e. the box would cover only
inside-cells). If so, then add node v = (i, j, k, o, t) to V . Now, for each
pair of nodes u, v ∈ V , check whether the two corresponding boxes would
intersect, i.e. whether there is a cell which is covered by both boxes. If
so, then add edge {u, v} to E.

Using instances of the DIN 70020 case, the boxes have a size of at most
16×8×4 cubes (12.5 mm spacing). With 6 possible orientations, each node
representing a box might intersect with 201 other possible boxes, thus the
conflict graph will have a maximum degree of 201 for 50 mm grid spacing
[15]. A typical conflict graph for the DIN problem would have about 104

nodes and 106 edges (with 50 mm grid spacing). For the same trunk,
a conflict graph using 2′′ spacing for the SAE problem has about 8.000
nodes (due to the larger boxes, where less positions are possible) and
about 15 · 106 edges (due to the huge number of conflicts for each box).
Including the smallest box-type H, the number of nodes in the conflict
graph would actually be twice as much. Since the SAE J1100 standard
requires the boxes of type H to be packed after the other boxes have been
properly packed, it will be sufficient to exclude the H-boxes temporarily.
After having computed a solution without H-boxes, the packing can be
extended.

The largest box of the SAE problem consists of 12× 9× 4 cubes (2′′

spacing3), hence covering 432 cubes. The box intersects with all boxes

2 Since SAE boxes are much larger than DIN boxes, there are less grid cells useable
for a box, and not all box types might fit at a certain position.

3 For computational purposes, the SAE box lengths will be rounded down to fit into
an integer number of cubes, e.g. the largest box (type A) has 24′′×19′′×9′′, making a
12×9×4 grid box. Section 2.8 deals with the problem of rounding the box measures
to fit into the grid spacing.

that overlap one of these cubes which means up to 105 potential conflicts
in a grid of 2′′ spacing for the biggest box of type A.

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

(a) 6′′ × 4′′ vs 6′′ × 4′′

� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �

� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �

(b) 6′′ × 4′′ vs 4′′ × 6′′

� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

(c) 6′′ × 4′′ vs 10′′ × 7′′

Fig. 1. Conflict regions

Figure 1 shows regions of forbidden reference points when one box of
size 6′′× 4′′ is already placed. The forbidden area due to the boundary of
the trunk is coloured light grey, and the forbidden area due to the placed
box is coloured dark grey. The hatched area marks those points that are
allowed by the boundary constraints but placing a box there would cause
to intersect the previously placed box.

2.3 Reducing the Conflict Graph size
Since most of the following algorithms examine the edges of the conflict
graph, it might prove useful to reduce its size. To find an IS of maximal
size resp. maximal weight, it is necessary to observe some properties of a
maximal IS I. The goal is to eliminate some nodes of the graph without
reducing the size of the largest IS. In the unweighted case the decision
which nodes are to be deleted is quite easy. First, the set of neighbours
of a node v has to be defined:

Definition 1 Let v ∈ V be a node of G. Then N(v) = {u ∈ V : {u, v} ∈
E} is the set of neighbours of v. The set N+(v) = N(v)∪{v} denotes the
set of neighbours of v including v.

Now, an elementary property of independent sets can be described.

Theorem 2 Let G = (V,E) be an undirected graph, and u, v ∈ V be ad-
jacent nodes ({u, v} ∈ E). If N+(u) (N+(v), then the following is true:
For every independent set I ⊆ V containing v, there is also an indepen-
dent set I ′ ⊆ V with at least the same cardinality containing u.

Proof. Obviously, v ∈ I ⇔ u /∈ I since {u, v} ∈ E. N+(u) (N+(v) states
that all neighbours of u are also neighbours of v, so v can be replaced by
u. That is, I ′ := I \ {v} ∪ {u}.

Theorem 2 can be used in an elegant way to reduce the nodes of a graph.
Since the goal is to find an IS of maximum size, it is useful to include

the node u instead of v because v has got a larger neighbourhood and
more nodes would be useless for later additions. Since all neighbours of
u are also neighbours of v, one would rather choose u with its smaller
neighbourhood.

What does this mean for the trunk packing problem? If there is a
box position near the boundary of the grid, some space between box and
boundary would be unusable for other boxes (see figure 1). So it would
be better to move the box directly to the boundary, where less space is
wasted. This approach is sometimes called a bottom left justified packing:
All boxes are placed in a way that their bottom, left and front sides
touch either other boxes or the surrounding geometry. Any axis-oriented
packing can be transformed into a bottom left justified packing [18, 20].

Theorem 2 also applies to the WIS problem:

Corollary 3 Let G = (V,E) be a weighted undirected graph, and u, v ∈ V
be adjacent nodes ({u, v} ∈ E). If N+(u) (N+(v) and w(u) ≥ w(v), then
the following is true:
For every weighted independent iet I ⊆ V with v ∈ I, there is also a
weighted independent set I ′ ⊆ V with at least the same weight with u ∈ I.

Proof. Simply replace v by u. Then w(I ′) = w(I)−w(v) + w(u) ≥ w(I).

Corollary 3 shows the crucial problem of the SAE case: If two different
box types are compared, normally the larger box also gets the larger
neighbourhood. So it is not clear which node to eliminate in these cases.
Fortunately, there are only seven (a fixed small number) different node
weights. So an easy way to reduce the nodes is to do this typewise, i.e.
to compare only nodes of the same weight. In the general case, one could
classify the nodes into a few weight classes and perform the reduction on
these classes.

Algorithm 1. Graph reduction
for each type t do
for each edge {u, v} with Type(u) = Type(v) = t do
if N+(u) ⊂ N+(v) then let V := V \ v.

Using this procedure it is possible to reduce the number of nodes of
a typical conflict graph of the Trunk Packing problem with cell size 2′′

by 75% and the number of edges by up to 90%. Therefore, the perfor-
mance of the packing algorithms increases significantly because of the
smaller conflict graph. The effect of reduceable nodes is directly related
to the size of the boxes compared to the trunk. Since the SAE boxes are

relatively large and the DIN boxes are relatively small, the reduction al-
gorithm is only useful for the SAE case. When small boxes (type H) are
included, only nodes with relatively close positions to each other could be
candidates for Theorem 2. Thus, small boxes reduce the positive effects
of graph reduction additionally to their large contribution to the number
of nodes and edges. The reduction process itself mainly takes place near
the boundary of the grid. Since small trunks have got a large boundary
compared to their interior, the conflict graphs of smaller trunks can easily
lead to graphs of less than 20% of the original graph size. Additionally,
when the grid spacing is reduced, the portion of eliminated nodes tends
to increase.

2.4 Brute Force algorithms

The easiest way to find an IS is to successively add a free node to an
already existing IS I. A node v ∈ V is called free if there is no edge
between v and any node of I. This is done until there are no free nodes
left. The SAE case adds the following condition to the definition of free
nodes: The number of nodes of the corresponding types must not exceed a
pre-defined number, e.g. there may only be four A-boxes and two C-boxes
in a valid packing (see Table 1).

This simple approach will hardly lead to the desired optimal solution
in the first step. Therefore, a backtracking mechanism has to be added:
Test all independent sets of the conflict graph recursively. If there is no
free node left, compare the current IS with the best set found so far, and
take the better one. Algorithm 2 shows an outline of this procedure. Let
therefore w(v) be the weight of node v, and w(I) =

∑
v∈I w(v) be the

total weight of the set I.

Algorithm 2. Recursive enumeration (G, I)
1. Let F be the set of all free nodes of G

2. if w(I) > w(Imax) then set Imax := I.
3. while F 6= ∅ and Upper bound (F, I) > w(Imax) do

(a) Choose v ∈ F and set I ′ := I ∪ {v}, F := F \ {v}
(b) Recursive enumeration (G, I ′)

4. return (Imax, w(Imax)).

Using this approach, the IS of maximum weight will definitely be
found since all IS are examined. Unfortunately, the number of indepen-
dent sets is exponential in the number of nodes. So it is necessary to find
an efficient branch-and-bound technique to prune the recursion tree.

2.5 Computing an Upper Bound

Now the main question is: Starting from the current IS, what is the best
possible size one could achieve? The exact solution for this problem is
equivalent to solving the IS problem on the subgraph induced by all free
nodes. Fortunately, the SAE standard gives a hint how to calculate a
strong upper bound on the current WIS efficiently: Add the weights of all
free nodes but limit the number of the free nodes to the allowed number of
boxes for each type. This would mean that the upper bound is calculated
at first by using all allowed boxes (≈ 28.7 ft3), and will only be reduced
if there are less free nodes of a certain type left than allowed.

2.6 A Greedy Algorithm

Up to now, only a brute force algorithm has been presented. Although
this approach gives the exact result for the current WIS problem, the run-
time still is exponential in |V |. Maybe a polynomial-time approximation
algorithm can be found which is easy to analyze.

For comparison with the optimal solution of the problem, it is neces-
sary to give an additional definition:

Definition 4 [17] Let v ∈ V be a node of G. Then the weighted degree

dw(v) is defined as dw(v) =
P

u∈N(v) w(u)

w(v) .

The weighted degree of a node shows how much weight would become
unuseable in relation to its own weight. Now it is possible to sort all free
nodes ascending by their weighted degree within the remaining graph.
The greedy algorithm for weighted independent sets works as follows:

Algorithm 3. Greedy (G)
1. Let I := ∅, U := V .
2. while U 6= ∅ do

(a) Let v ∈ U be a node with dw(v) = minu∈U dw(u).
(b) I := I ∪ {v}.
(c) U := U \N(v).
(d) Recompute dw(u) for all u ∈ U w.r.t. U (not V).

In [17] an approximation ratio of min((d̄w + 1)/2, (δw + 1)/2) for the
greedy algorithm is derived. It is obvious that an asymptotic bound is
not really useful for the small cases of the Trunk Packing problem. It also
comes clear that the greedy algorithm achieves more than the expected
asymptotic bound for graphs derived from trunk packing instances.

2.7 Greedy Enumeration

Observing these facts it will be necessary to extend algorithm 3 by algo-
rithm 2 to enumerate all weighted IS systematically.

Greedy! Line 2d of algorithm 3 needs an efficient update function,
especially if it is planned to use this approach for a recursive enumeration
of all weighted independent sets. If node v is added to the IS, then all
nodes of N(v) would be unuseable. Hence, the weighted degrees of all
nodes w ∈ N(N(v)) will be decremented by w(N(w) ∩ N(v)). In the
present implementation, all pairs u, w of nodes of the remaining graph
are examined, where u ∈ N(v), w /∈ N(v) and {u, w} ∈ E.

Node orders For an enumeration algorithm, the node order is cru-
cial. If the right sequence is chosen, a very good result can be achieved at
an early stage, and in combination with a good upper bound, the enumer-
ation process can be cut early. In the previous sections, no specific order of
the vertices is assumed. Normally, they are sorted by their time of creation
in the conflict graph. In the current implementation the nodes are first
sorted by type, then by orientation and position. For instance, a random
permutation might be chosen and the recursive algorithm executed like a
multi-start approach, increasing the probability to find the optimal solu-
tion earlier. Again, this approach is difficult to analyze. The experiments
showed a large average runtime for the randomized node order. Another
possibility would be taking nodes with small weighted degree first. In the
trunk packing problem, the weighted degrees are directly correlated to
the sizes of the boxes, hence a node of small weighted degree represents
a small box. Therefore, this strategy means packing small boxes first.

For the SAE Trunk Packing problem the following observation can
be made: If a large box is taken first, it will cause a large amount of
nodes to be unuseable and therefore the remaining conflict graph will be
significantly smaller. Also, a large box has only few possibilities to be
placed, making the recursion tree narrower. But if a small box is chosen,
the number of possibilities will be much larger and the algorithm will
be stuck at an early stage by examining many almost equal sets. This
approach is very alike a human’s way to pack a trunk: take the big cases
first, and then stuff the smaller boxes in between. Now an additional effect
comes into account: If the nodes with large weights are used first and the
small ones afterwards, it is possible that the last few (small) nodes can
not exceed the best found IS, and the algorithm can make effective use
of the upper bound discussed in section 2.5. This implementation proved
to be the fastest in all experiments.

2.8 Rounding the box sizes
Another discouraging aspect is the need for rounding the box sizes. In a
2′′-grid, only 8 of 21 side lengths are represented correctly (only the even
ones), and all other lengths would have to be rounded. Table 1 shows
that the largest grid spacing without rounding the box sizes would be
0.1′′, thus far from practicable. Now there are some different possibilities
to be discussed:

1. All lengths are rounded up to the next even integer.
2. All lengths are rounded down to the last even integer.
3. All lengths are rounded to the nearest even integer.
4. The lengths are rounded up or down with respect to the available space.

The first strategy will provide a feasible4 solution when the set is
converted into a real box set. Unfortunately, this strategy will waste space
between the boxes. Strategy 2 causes the opposite problem. Since the
grid boxes are smaller than the real boxes the resulting solution will be
unfeasible due to intersections between boxes. These intersections can be
resolved by using a physical simulation of contacts between the boxes
and the trunk [5]. However, the intersections might be too severe to be
resolved. To prevent this, the outmost layer of inside-cells is deleted.
This provides a feasible solution in most cases. Strategy 3 will cause both
problems of the first two rounding strategies. A mixed strategy would
raise the problem of data representation. Currently, strategy 2 is used. In
most cases it suffices to delete one layer of inside-cells in each dimension
to generate legalizable solutions, i.e. the resulting packings themselves
would not fit into the trunk, but the packed boxes could be translated
and rotated to fit into the trunk. However, this reduction of the grid
causes another deficit in comparison to a manual solution.
3 Omitting the grid
An optimal solution with respect to a grid is limited to fixed orientations
and discretized placements. Thus, such a solution is unlikely to be opti-
mal with respect to the original trunk packing problem. If the restriction
to discrete placements is dropped, it might be possible to find a better
solution. Omitting the grid means that the box sizes are not required to
be multiples of a grid cell size and therefore do not have to be rounded.
So a legalization step is not necessarily required.

Schepers [18] shows how to compute packings of axis-oriented boxes
within a cubic container of ”unit” length. This is done by solving several
linear programs.
4 A packing is considered feasible if there are no intersections between the packed

boxes as well as between the boxes and the trunk.

For a fixed set of boxes we use enumeration to decide the relative
position of the boxes – i.e. for each pair of boxes, we decide whether
the first box lies left, right, above (but neither left nor right), below, in
front of, or back of the other box. Using the center coordinates of each
box, the relative positions between boxes can easily be enforced by linear
inequalities. Furthermore we can describe the set of all feasible points for
the centers of the boxes by linear inequalities.

Hence the feasibility of such a configuration, called packing pattern,
can be tested by verifying the feasibility of a linear program. Schepers
additionally shows how to solve these linear programs combinatorially,
but this result does not generalize to our approach. The optimal set of
boxes is found by enumerating all sets of boxes (such that a subset fits
into the container).

Let T ⊂ R3 be the interior of the trunk. For a box B with fixed type
and orientation, let TB be the Minkowski sum of the trunk boundary and
B. Now the set M = T \ TB describes all reference points where box B
can be anchored within the trunk.

To generalize the approach described above to the case of a trunk,
the set M has again to be described by linear inequalities. As this set is
not convex, we over-approximate the set M by a convex region and allow
to place some convex bodies, called obstacles, into the set. Similar to the
case of two boxes, we have to know the relative position of every box and
every obstacle, i.e. knowing which of the half spaces defining the convex
obstacle does not intersect the center of the box.

Notice that the complexity of the approach grows rapidly with the
number of half spaces describing the inserted obstacles. Therefore we aim
to describe a close approximation of the feasible region for the centers by
a small number of obstacles.

Currently this description is done manually. First, the trunk itself is
approximated by linear equations, and then cuboid obstacles are inserted.
It is quite easy to calculate the Minkowski sum of a set of linear equations
and a box. Especially the desired set M = T \TB can be described as the
same linear equations translated by the half diagonal of the box. Since
the obstacles are restricted to be convex, they can be described in the
same way. At the moment, we develop automated methods to describe
the set M in the required way.

To improve the practical efficiency of this approach, we enumerate
the region, the inequalities of an obstacle and the relative position only
if the appropriate constraints are violated by our solution of the linear
program.

As the number of feasible packing patterns and therefore the number
of linear programs solved increases rapidly with the size of the trunk,
the enumeration of all packing patterns is very time consuming. For the
manually created approximations, we are able to enumerate all packing
patterns within a few days. Moreover, we experimented with the following
heuristic. We first enumerate packings that use only large boxes. Then
we take some of the best packings and add smaller boxes if possible.

4 Experimental results
All grid based algorithms discussed so far are exact, so they will find the
optimal solution for the given discretization of the trunk. Table 2 shows
the best achieved results of some typical instances. As can be seen, the
results achieved by the LP approach are comparable to those provided
by the grids. Very fine grids cause a too large conflict graph for an ef-
ficient computation. Also, the finer grids do not necessarily provide the
best grid-based solutions, contrary to the DIN case [9]. This follows from
the rounding strategy described in section 2.8. Rounding the box sizes
according to a large grid spacing leads to larger intersections between
the packed boxes. Anyway, it is possible in most cases to resolve these
intersections using a physical contact simulation [5]. The best grid-based
results compared to the computational effort could be achieved using the
2′′ and 1.5′′ spacings.

trunk manually grid-based (algorithm 2) LP-based
3′′ 2′′ 1.5′′ 1′′

small 5.337 ft3 4.767 ft3 5.071 ft3 5.648 ft3 5.392 ft3 5.792 ft3

mid-size 9.358 ft3 8.538 ft3 9.207 ft3 9.418 ft3 9.041 ft3 9.521 ft3

large 11.837 ft3 10.871 ft3 12.056 ft3 12.674 ft3 11.790 ft3 12.637 ft3

Table 2. Experimental results for some problem instances without H-boxes

The pre-computation of the node order proved quite useful. If the
nodes are sorted by their weighted degrees only, the problem of calculating
the upper bound remains: One has to scan all free nodes whether there
still are nodes of a certain type left or not. If the nodes are sorted by
their type, this examination is obsolete: If the algorithm adds a node
of type t, then it is guaranteed that no more nodes of previous types
are free. This leads to an additional time saving effect. The runtimes
needed for verifying the optimal solution are compared in Table 3. Within
this context, verifying an optimal solution implies a complete run of the
algorithm.

The algorithms timestamp, randomized and sorted refer to algo-
rithm 2 and use different node orders: the time of creation, a randomized
order and sorted by box size and weighted degree, respectively. Algorithm
greedy refers to the recursive greedy algorithm discussed in section 2.7.

trunk grid nodes/edges timestamp randomized sorted greedy

small 1.5′′ 470/7.8 · 104 5sec 2.5sec < 1sec < 1sec
small 1′′ 850/2.5 · 105 1m40sec 20sec < 1sec 2sec

mid-size 3′′ 480/6.3 · 104 45sec 3m 1.75sec 7sec
mid-size 2′′ 1200/4 · 105 40m 1h40m 10sec 1m
mid-size 1.5′′ 2200/1.4 · 106 > 24h > 24h 3m20sec 13m

large 3′′ 660/1.1 · 105 6m 10h 6sec 30sec
large 2′′ 2000/9.6 · 105 18h > 24h 17sec 1m30sec
large 1.5′′ 4800/5.9 · 106 > 24h > 24h 8m20sec 45m

Table 3. Runtimes needed by various grid based strategies for exact solution (without
H-boxes)

All grid algorithms were terminated after 24 hrs due to the given time
constraints. It is easy to see that the order of the nodes plays an important
role in the search for the best possible IS.

The LP algorithm provided exact solutions for a given approximation
only for small instances. Otherwise, the algorithm was stopped after 24
hours runtime. Table 2 shows that both approaches, the grid-based and
the LP-based approach, are almost equal with slight quality advantage
on the LP side. On the other hand, the grid-based algorithms are easier
to operate.

5 Summary
In this paper the trunk packing problem for the US standard SAE J1100
has been investigated. Two combinatorial approaches were presented:
First, a discretization of the space to be packed, analogous to [9, 15]
for the DIN case. Second, an approximation scheme using linear inequal-
ities. For both approaches enumerative algorithms have been described.
As shown in section 4, the brute-force algorithms suffice for the trunks
used in car design processes to enumerate all possible solutions for the
resulting Weighted Independent Set problem. This could be reached
by reducing the conflict graph and applying a property provided by in-
dependent sets.

Unfortunately, a discretization of the space leads to insufficient rep-
resentation of the SAE-boxes. So additional methods have to be used to
overcome illegal situations such as box-box intersections. These methods
include a contact simulation provided by a physics engine [5].

The LP approach needs a space consisting of few convex regions and
only few convex obstacles. So far no automated scheme is known to
provide such simplifications for a complicated geometric structure like
a trunk. Additionally, the enumerative algorithms are exponential in run-
time. This means that large instances (e.g. small boxes into a large irreg-
ular shaped container) can only be solved approximately.

Further work includes more efficient graph reduction algorithms or a
fast exact algorithm for the WIS problem capable of handling large trunk
instances and fine grids. For the LP algorithm it is necessary to find a

good approximation of the trunk to ensure the resulting packing to fit
into. Also an improved heuristic for large instances is needed.

References

[1] Tobias Baumann, Elmar Schömer, and Kai Werth. Solving geometric packing
problems based on physics simulation. Submitted for ESA’07, 2007.

[2] Piotr Berman. A d/2 approximation for maximum weight independent set in
d-claw free graphs. Nordic J. of Computing, 7(3):178–184, 2000.

[3] Jonathan Cagan and Quan Ding. Automated trunk packing with extended pattern
search. Virtual Engineering, Simulation & Optimization, SP-1779:33–41, 2003.

[4] Friedrich Eisenbrand, Stefan Funke, Andreas Karrenbauer, Joachim Reichel, and
Elmar Schömer. Packing a trunk: now with a twist! In SPM ’05: Proceedings of
the 2005 ACM symposium on Solid and physical modeling, pages 197–206, New
York, NY, USA, 2005. ACM Press.

[5] Friedrich Eisenbrand, Stefan Funke, Joachim Reichel, and Elmar Schömer. Pack-
ing a trunk. In Giuseppe Di Battista and Uri Zwick, editors, Algorithms - ESA
2003: 11th Annual European Symposium, volume 2832 of Lecture Notes in Com-
puter Science, pages 618–629, Budapest, Hungary, September 2003. Springer.

[6] Deutsches Institut für Normung e.V. DIN 70020, Teil 1, Sträı¿ 1
2
nfahrzeuge; Kraft-

fahrzeugbau; Begriffe von Abmessungen., February 1993.
[7] Akihisa Kako, Takao Ono, Tomio Hirata, and Magnús M. Halldórsson. Approxi-

mation algorithms for the weighted independent set problem. In Graph-Theoretic
Concepts in Computer Science, 31st International Workshop, WG, pages 341–350,
2005.

[8] Andreas Karrenbauer. Packing boxes with arbitrary rotations. Master’s thesis,
Universität des Saarlandes, Saarbrücken, 2004.

[9] Ulla Neumann. Optimierungsverfahren zur normgerechten Volumenbestimmung
von Kofferräumen im europäischen Automobilbau. Master’s thesis, Technische
Universität Braunschweig, Braunschweig, 2006.

[10] Society of Automotive Engineers. SAE J1100, Motor Vehicle Dimensions, Febru-
ary 2001.

[11] Joachim Reichel. Combinatorial approaches for the Trunk packing problem. PhD
thesis, Saarbrücken, 2006.

[12] Jens Rieskamp. Automation and Optimization of Monte Carlo Based Trunk Pack-
ing. Master’s thesis, Universität des Saarlandes, Saarbrücken, 2005.

[13] Shuichi Sakai, Mitsunori Togasaki, and Koichi Yamazaki. A note on greedy algo-
rithms for the maximum weighted independent set problem. Discrete Appl. Math.,
126(2-3):313–322, 2003.

[14] Jörg Schepers. Exakte Algorithmen für orthogonale Packungsprobleme. PhD the-
sis, Köln, 1997.

[15] Jeffrey S. Warren and Illya V. Hicks. Combinatorial branch-
and-bound for the maximum weight independent set problem.
http://ie.tamu.edu/people/faculty/Hicks/jeff.rev.pdf, 2006.

[16] Michael Wottawa. Struktur und algorithmische Behandlung von praxisorientierten
dreidimensionalen Packungsproblemen. PhD thesis, Köln, 1996.

[17] Al Zimmermann. Al Zimmerman’s Circle Packing Contest. Al Zimmerman’s
Programming Contests, http://www.recmath.org/contest/CirclePacking/, 2005.

