FIRST EDITION
List provided by John Dambrowski (march 2004)

eOnp 39 —0.3% i+j=p+q—(i—p+j—q = i+j =
pta+(i-p)+(G—q

Onp. 81/4.6: xFiJr — = = FiJzx

p. 81 4. 11: g(iz,ix) = g(iz,iy)

p- 336 £. 7. i¥ = —i¥

p. 336 £. -5 and below: 0, = o?

p. 337 £. 10 (oPThy* . ptlw—r=1 .A?\}[l(?—[p’w*p) should read
(oP)* + HPp—Lw—pTl A%}}(”Hp’w*p) and on ¢. 12 one should also
replace (oPT1)* by (oP)*. In accordance with the convention of using
subscripts, on pages 340 and 341 all o; should have upper scripts

Errors in Chapter 12 (noticed by C. Peters, august
2006)

On p. 327 in the statement and the proof of Cor. 12.2.3 the transpose signs
have no meaning and should be deleted: on £ -11: £* = & = ¢* = ¢, on
0-10: & = —1¢ = ¢* = —€ and in the proof, £ - 3 one has to remove twice
the transpose signs s well

Errors have been brought to our attention by Klaus
Hertling (september 2006)

e on p. 63 in the two displayed formulas "kernel” and ” cokernel” should
be switched, i.e. K= kernel [.... = K= cokernel [..., and likewise
Q=cokernel|... = Q=kernel|....

e on p. 336, in Problem 14.1.1. ii): V=VM — v = V¥V,

ep. 363, ¢-10: Cxdf = —--- = xdf = ... i.e. the C should be
dropped and the sign is +. The reason is that C' is the identity on
functions and C~! = —C on 1-forms.



Errors spotted by S. Miiller-Stach and C. Peters
(2006)

e On p. 194 the Koszul complex from Prop. 7.1.2 ends with i1 : V ®
S(—1) — S and not with V® S(—1) — C. Indeed the map i; surjects
onto ST with cokernel S/S* ~ C which shows that it gives a resolution
of C considered as an S-module. Likewise in Problem 7.2.1 (page 199)
the last item of the exact sequence should be Oy ® S*W.

e The examples on page 365. The unit ball is SU(1,n)/U(n) and not
SU(1,n)/SU(n).

C. Peters reports (2007)

e p. 311, £ -6,5. Then ¢(g) = Lypi(e) = g - exp(t§), showing that the
one-parameter group acts through right multiplication.

e p. 312 In Definition 11.3.1 on should use the right V-action. This
is consistent with viewing D as a homegeneous space under the left
G-action; indeed G — D is a principal V-bundle where V acts from
the right.

e p. 314. The formula (11.3.7) should be justified. Indeed, the Maurer-
cartan form wy is the unique v-valued 1-form on V' which on the left-
invariant vector field (Ly)<A, A € v = T,V equals A. The form Vyw
has this property since [Vp].(Ly)«A = A}, on which — by definition —
w at the point pv takes the value A.

The formula for the adjoint action is Ad(v)é = vév™! and Riw =
Ad(v—1)w which means that the value of w at p-v evaluated on (Ry)«&
equals v~ 1w, ()v.

e p. 315. The statement of Prop. 11.3.10 is confusing. A tangent vector
¢ € T,,M is the tangent at m to some curve v. A section s of [W]
determines a point s(y(t)) € [W], ) which can be represented by a
pair [py, wi], pr € Py, the fiber of P above v(t). The curve 7 has a
unique parallel lift 4 through p; defining parallel transport from the
fiber [W], to a fiber [W],,) above any other point of the curve 1.
For tg = 0 you get the isomorphism 6; : [W],4) — [W]m, and hence,
varying ¢, a curve of vectors ;[s(v(t)] € [W],,. This curve is called
S(t) in the statement. In the proof we should take a fixed basis for
[W],, and not for W. Alternatively, one has the basis free formula in
(W]pm:

[DES] (’I’)’L) — lim et[s(fY(t)] - s(m)
t—0 t




The parallel frame {w;} obtained from this should be considered as
constant, i.e. De¢w; = 0. The curve 5(t) can then be identified with
a varying column vector in R"™ and the Leibniz rule dictates that

—

d
De¢(s) € [W],, under this identification just becomes —i € R™.
=0
The ambiguities here are the choice of the curve + and the choice

of the pair (p;, w;) representing s(-y(t)). However, the curve 5(t) by
construction is not affected by the second type of ambiguity, while
differentiating at 0 eliminates the first ambiguity.

p-316. The discussion leading to the change of frame formula is a bit
ambiguous. Let m € U and § € T,, M. Then f(m) = f(m)v(m) € P.
Let + be a curve through m with tangent £&. Then

fe = Lremuem) e
= S Oum)] = + % Fm)o((0)] o
= [Rum), &) + [Vim ] (048)
and hence

frw@) = wff)
= v(m)" frw(€)v(m) + vwy(€).

Next, one has to realize V' as a matrix group through the representation
p:V — GL(W). Any choice of basis for W makes it then possible
to consider v : U — V as a matrix-valued function which one keeps
writing v. So v is the matrix-function m +— (x;;v(m)), where the x;;
are the standard coordinates on End(W) defined by the basis for W.

Since the matrix-valued 1-form v*wy at m is equal to [xij(v(m)]_l :

[d(zijov)], ., with this convention we can write v*'wy = v~ 'dv. So,
finally,
05 = v 100 + v do.

p. 324. Problem 12.1.1 Read So(a + b) (this group is already con-
nected), or alternatively, SO¢(a, b).

p- 324. Problem 12.1.3 can be solved in two ways. First note that
the isotropy group B in Gg¢ of the Hodge filtration 0 € D = Gc/B
has Lie algebra o @ m™ and hence m™ is a complement which gives
the complexified tangent space. Alternatively, one can use the char-
acterization of the period domain as an open set in a flag-variety of
(partial) flags satisfying the first bilinear relation. The flag-variety
consists of a subvariety in the product of Grassmannians of certain



subspaces F" of a fixed complex vector space Hc. At the point F? the
tangent space at the Grassmannian is Tpi = Hom(F?, Hc/F?). The
F' forming a flag translates into compatibilities between the various
X' € Hom(F', Hc/F*) which in our case are equivalent to saying that
the X; induces maps Yj; : Hiw=t 5 HIW=J with i < j. So the (Yij)
can be assembled into a map Y : Hc — He. The first bilinear relation
imposes further restrictions on Y stating that Y € gc. The upshot is
that Y € gc¢ corresponds to a holomorphic tangent vector in T,D if
and only if Y € > 7. g,

p- 326, —2C egc = C € Gg.

p- 328 In Prop.12.2.5 the metric is in fact invariant under the adjoint
action of the full group G.

p. 328. In Problem 12.2.1 the compact group is the group of complex
2n by 2n unitary matrices X.

p- 321, middle of the page: ”We have canonical identifications TBe’g“ =
£

There is something to explain here. The fibration w : G/V — G/K
can be seen concretely as follows. Let H¢e = ®p+q:w HP? be the
Hodge decomposition corresponding to o € D. Extending scalars, the
polarizing form b induces the (—1)"-hermitian form (x,y) — h(z,y) =
b(z,y) on Hc. Introduce the subspaces HY := D, =0 mod 2 H? and
He = @p=1 moa2 H"?. In the case of even weight w = 2v, the
spaces H(:CIE are complexifications of real vector spaces H* and the
form h is just the polarization on these spaces. The second bilinear
relation implies that the form (—1)Yb is positive on HT and, viewing
G/K as the set of b-isotropic real subspaces of H of dimension a =
> p=0 mod 2 P79 on which (—1)"b is positive, and we have

w(o) =[H"] € G/K.

In the case of odd weight w = 2v—1, dim H} = dim H¢ and the form
h is anti-hermitian. Since the Hodge metric ho|H* equals (—1)?(&i)h,
the hermitian form (z,y) — (—1)ib(z,y) = (—1)"ih(x,y) is positive
definite on Hg . We may identify G/K as the set of maximal bc-
isotropic subspaces of H¢ on which the latter form is positive and

w(o) = [H{] € G/K.

In both cases the complezified tangent space of G/K at the point
w(o) is isomorphic to the subspace of Home(H{, He/HE) consist-
ing of bc-preserving maps HE — Hg, ie. pc = @jzl monQ_j’j-
It is a subspace of the complexified tangent space [T,D]c mapping



isomorphically to [Tig+(G/K)]c respectively [T[Hg](G/K)](C. Its bc-
orthogonal complement =0 mod 2 g~ /J = ¢ is the kernel of the map

induced by w and thus must be the tangent space to the fiber of w,
i.e. tc = [TY"* Dlc.

e p. 330. The structure equations are completely mangled. They should
read

A6+ 506.6] = —glooP
do = —%[J,U]m.

e p. 349, / — 4 to give a V-invariant metric = to give a G-invariant
metric...

e p. 350, /1: g0 = gc-

e p. 351 in the proof of theorem 13.3.3 compactness of the fiber of
G/V — G/K does not play a role; the Hodge metric on m = TP°'D
transports to a G-invariant metric on 7P D = [m]. Since V C K and
g = €@ p is a K-invariant splitting, it is certainly V-invariant so that
the vector bundle [p] = T"°* D is well defined and G-homogeneous. To
make curvature calculations on this bundle it suffices therefore to do
this at o.

It should be noted that the curvature calculations are carried out on
the frame bundles and so, in order to get the expressions on the tangent
bundle one should replace the values in the Lie-algebra by their adjoint
actions: the tangent bundle is obtained by the adjoint representation.

e p. 351 £ — 3 A computation ... = Since h(§,n) = Tr(&on*) (this
is indeed the Hodge metric: on pc the operator 6 is multiplication
with —1, and complex conjugation is the hermitian conjugate), we
find (note the adjoint actions)

h([€, €71€], €) = Te([[€, £71, €]o€7) = Tr([€, €7]0[¢, €71) = [I€, €7l

The last equation comes from the fact that if n = [£,£*] we have
1n* = n. For the holomorphic sectional curvature we thus find

K(©) = 3 lE€ 1l <o

e p. 353 In the statement of Alhors’ Lemma the condition “Ric f*wp; >
ffwas” is missing!



SECOND EDITION

Brought to our attention by Andrew Salmon (2018)

In general, asterisks (see p. 76 for example) are rendered in a slightly strange
way.
1. p. 7 last paragraph ‘alreaddy’ is misspelled.

2. p. 33 first paragraph ‘proper action action’ is an accidentally repeated
word.

3. p. 49 Equation should read e(S) = 2¢(P?) — e(B) (overline is not over
B in text) instead.

4. p. 141 proposition 4.4.1, it should say Aut(Hc,b) instead.
5. p. 149 switches between putting the bar over the 9 and over the z.
6. p. 200 forgot a right parentheses on HP(S, A" (M)).

7. p. 202 top of the page, unmatched parenthesis on H"(I'(N, f.C"(F))).
Also, problem 6.4.3 uses f to mean both a map f: M — N and also
a map on sheaves.

8. p. 207 bottom of page skips from Ceg to Ces.
9. p. 235 Should say I'\ D instead in the equation.

10. p. 416 and 418. There is a missing ) in theorem 15.2.9 and at the
bottom of the page 418

11. p. 429 There is a repeated word ‘domain.’

12. p. 442 Gz should have a boldface Z.

C. Peters (2018)

About Lemma 13.3.1.

Note that In the statement the Higgs bundle H is the Deligne extension
of a logarithmic complex VHS over (S,3) and the holomorphic section s is
a global section of this Deligne extension, i.e. a section over the compact
curve S. In the proof the last few lines are misstated:

” Conversely, a holomorphic section ...” —  ”Conversely, a flat section
induces a holomorphic section on Hpqs and then we see that o(s) = 0 by
type considerations.



