1	
2	Technical Specification
3	
4	
5	ATLAS Level-1 Calorimeter Trigger Upgrade
6	
7	Topology Processor (L1Topo)
8	
9	
10	K. Bierwagen, J. Damp, C. Kahra, M. Palka, U. Schäfer, R.
11	Simoniello
12	
13	
14	Draft
15	Version: 1.0
16	27 October 2017
17	17:30

18 Table of Contents

19	1 Ir	ntrod	luction	4
20	2 F	uncti	ionality	4
21	2.1	R	eal-Time Data Path	5
22	2	.1.1	Input Data	6
23	2	.1.2	Input Data Rates	6
24	2	.1.3	Algorithms	6
25	2	.1.4	Data Sharing	7
26	2	.1.5	Output	7
27	2.2	E	rror Handling	7
28	2.3	La	atency	7
29	2.4	R	eadout Data Path	9
30	2.5	Т	TC and Clock	9
31	2.6	N	Iodule Control and Configuration	9
32	2.7	C	ommissioning and Diagnostic Facilities	10
33	2.8	E	nvironmental Monitoring	10
34	2.9	A	TCA form factor	10
35	3 Ir	nple	mentation details	11
36	3.1	N	Iodular Design	11
37	3.2	In	put Data Reception	11
38	3.3	Р	rocessor FPGA	12
39	3	.3.1	Resource Estimate	14
40	3.4	C	locking	14
41	3.5	н	igh-Speed signals on the PCB	15
42	3.6	F	PGA configuration	15
43	3.7	Т	he Extension Mezzanine	15
44	3.8	Т	he IPM Controller	17
45	3.9	P	ower Management	17
46	3.10) Fr	ront-panel Inputs and Outputs	
47	3.11	L R	ear-panel Inputs and Outputs	19
48	3	.11.1	ATCA Zone-1	19
49	3	.11.2	ATCA Zone-2	19
50	3	.11.3	ATCA Zone-3	20
51	3.12	2 LE	EDs	20
52	3.13	3 In	nstrument Access Points	21
53	3	.13.1	Set-Up and Control Points	21
54	3	.13.2	Signal Test Points	21
55	3	.13.3	Ground Points	21
56	3.14	4 Fl	oor plan	21
57	4 F	ront-	Panel Layout	22
58	5 S	umm	nary: Interfaces	23
59	5.1	In	ternal Interfaces	23

60	5.2	External Interfaces	23
61	5.2	2.1 Electrical TTC interface (backplane input)	23
62	5.2	2.2 Electrical DAQ interface (backplane output)	23
63	5.2	2.3 IPbus interface (backplane I/O)	23
64	5.2	2.4 DCS interfaces (backplane I/O)	23
65	5.2	2.5 Electrical CTP interface (front panel output)	24
66	5.2	2.6 Optical CTP interface (front panel output)	24
67	5.2	2.7 Optical FEX/Muon interface (rear input)	24
68	6 Ap	opendix : Data formats	
69	6.1	Real-Time Input Data	24
70	6.2	Real-Time Output Data	25
71	6.3	Backplane data formats	25
72	7 Re	elated Documents	
73	8 Glo	ossary	
74 75	9 Do	ocument History	

77 **1 Introduction**

78 This document describes the specifications for the upgrade of the Level-1 topology processor

79 module (L1Topo) of the ATLAS Level-1 Calorimeter Trigger Processor (L1Calo) [1.1] . An

80 L1Topo processor has initially been introduced into the ATLAS trigger in Phase-0 for Run-2

to improve trigger performance by correlating trigger objects (electromagnetic clusters, jets,

- 82 muons) and global quantities.
- 83 The new L1Topo will be installed in L1Calo during the long shutdown LS2, as part of the
- Phase-1 upgrade, and it will operate during Run 3 (and early-on in run 4). It is built to be

85 forward compatible to a split Level-0/Level-1 Phase-2 system and may remain in the system

- 86 after the Phase-2 upgrade in LS3, dependent on the eventual trigger architecture in Phase-2.
- 87 The ATLAS Phase-1 Level-1 Trigger system comprises eFEX [1.3], jFEX [1.4], and gFEX
- 88 [1.5] subsystems as calorimeter data sources for L1Topo. They are providing trigger object
- 89 data, "TOBs", to L1Topo via optical fibre bundles. Another source of trigger objects is the
- 90 ATLAS muon trigger subsystem.

91 L1Topo is a set of three (dual-width) ATCA [1.6] [1.7] modules, operated in a single ATCA

92 "shelf" (crate), compliant with ATLAS and L1Calo standards. Real-time data are received via

93 optical fibres exclusively. L1Topo runs a large number of concurrent and independent

algorithms on the input data, to derive a number of trigger bits, typically one result bit and
 one overflow bit per algorithm. The result bits are forwarded to the Central Trigger Processor

- 96 (CTP), which correlates these bits with further trigger and machine data to generate Level-1
- 97 Trigger and associated data words, to be transmitted back to the detector. Outputs to the CTP
- 98 are available via electrical and optical data paths.
- 99 The allocation of the three L1Topo modules (with a total of 6 L1Topo processor FPGAs) to100 trigger algorithm types is described in [1.8]

101 The non-real-time data paths of L1Topo are basically identical to the eFEX and jFEX built

- 102 for Phase-1: data are sent into the readout and the 2nd level Trigger via L1Calo RODs over
- the backplane of the ATCA shelf. The data formatting will be compatible with the already
- 104 chosen formats. Control and global timing are accomplished via the backplane as well. To
 105 that end, the L1Topo module communicates with two Hub/ROD [1.9] [1.10] modules located
- in dedicated slots of the L1Topo shelf.
- 107 The Phase-1 Level-1 trigger system and the role of L1Topo within the Level-1 Calorimeter
- 108 trigger system is described elsewhere in detail. Material on current Phase-0 L1Topo
- 109 construction and performance is available as well. References are given in section 7.

110 2 Functionality

111 Figure 1 shows a block diagram of L1Topo. The various aspects of L1Topo functionality are

- described in detail below. While the data paths are implemented unalterably on the L1Topo
- PCB, most of the functionality described here is implemented in programmable firmware
- only, and is not directly affected by hardware details. An overview of module connectivity is
- given in Table 1. Implementation details of L1Topo are given in section 3.

120

Table 1 Overview of module interconnect

121 2.1 Real-Time Data Path

122 ATCA Backplane Zone-3 of L1Topo is used for real-time data transmission. The input data enter L1Topo optically from the back. The fibres are fed via four blind-mate backplane 123 connectors (MTO-CPI) that carry 72 (or 48) fibres each. The optical signals are converted to 124 electrical signals in 12-fibre receivers. For reason of design density, MiniPOD [1.11] 125 receivers are used. The electrical high speed signals are routed into two FPGAs, where they 126 are de-serialized in MGT receivers; the parallel data are presented to the FPGA fabric. The 127 two FPGAs operate on their input data independently and in parallel. High bandwidth, low 128 latency parallel data paths allow for real-time communication between the two processors. 129 The signal results are transmitted towards the CTP on both optical fibres and electrical 130 cables. The electrical signals are routed via an Extension Mezzanine. 131

132 **2.1.1** Input Data

133 L1Topo will receive the topological output data of the sliding window processors from

134 L1Calo and data from the L1Muon system. The data format transmitted into L1Topo

135 comprises Trigger Object data for jets, clusters and muons, as well as energy sums. The data

136 will consist of a description of the position of an object (jet, e/m cluster, tau and muons)

along with some qualifying information, like the energy sum within the object.

138 **2.1.2** Input Data Rates

139 So as to be compatible to the conflicting bitrate requirements of FEXes and Muon data

sources (MUCTPI), the module will be built so as to support input data rates of either 6.4,

141 11.2 or 12.8 Gb/s on a given input channel. Since MGT input channels are organized in

quads, with all four channels sharing clock generation, it is assumed that a given quad will be

operated on one of the three bitrates only. For the relatively small number of channels that are

also used for high speed output, the input bitrate might need to be chosen for compatibility

with the output rate. That might create constraints for physical location of certain object types 146 or the EDCA (or the fibure burght).

146 on the FPGA / on the fibre bundles.

147 2.1.3 Algorithms

148 Due to the large amount of logic resources in the chosen FPGAs, a significant number of 149 algorithms is expected to be run on the real-time data in parallel.

The trigger menu will most probably be similar to the Run-2 menu and it is likely that many algorithms will be identical or very similar to the ones already introduced for Run-2.

- 152 A compact summary of all available Run-2 algorithms can be found in [1.13].
- 153 In Run-2 there are some algorithms that are instantiated multiple times with different
- 154 configurations to gather information about different cuts and being able to switch easily.
- 155 Some of these algorithms might be dropped in Run-3. On the other side, several new and
- 156 more complex algorithms can be added.
- 157 The procedure of organizing and configuring the algorithms is planned to be similar to Run-

158 2. This means that as soon as most requested algorithms and the related parameters are

159 known, a reasonable distribution of all algorithms over the available FPGAs has to be found.

160 Due to the increased number of FPGAs and algorithms and the changes in the number and

161 formats of the input TOBs it is not expected that the current distribution of algorithms can be

- 162 reused.
- 163 For finding a new configuration, the main goal is to distribute the number of instantiated
- algorithms, as well as the allocated resources, approximately evenly across all FPGAs. This is
- a non-trivial task where no strict prescription exist. As soon as most desired algorithms are
- 166 known, several configurations have to be tried so as to find the best one via trial and error.
- 167 This configuration is then specified in the trigger menu along with the configurable
- parameters of the algorithms. In the end, the final version of the algorithm firmware top
- 169 modules is generated automatically from the configuration in the trigger menu to ensure
- 170 consistency.

- 171 Some changes are expected for topological triggers using the standard jets or missing energy,
- as it is possible that the corresponding algorithms benefit from the new globally built TOBs
- and quantities from the gFEX system.
- 174 In addition to the topological algorithms, the functionality of the CMX modules in the legacy
- 175 Run-2 system (simple thresholding and multiplicity triggers) will be formed by algorithms in
- the Topological Processor. These "non-topological" triggers are based on algorithms with a
- 177 single type of input TOBs and are expected to be simple and fast.
- 178 As in the current system, the algorithms will be flexible so that triggers with different
- thresholds but the same quantity can reuse the same algorithms, though in a separate
- 180 instantiation.

181 2.1.4 Data Sharing

182 Topology data are processed in two separate FPGAs per module. There is no data duplication

implemented at hardware level. The two processors can communicate via a parallel bus to
 get access to data that cannot be received directly via the multi-gigabit links. Though

get access to data that cannot be received directly via the multi-gigabit links. I nough seconding to the device data sheets higher data rates should be possible a maximum

185 according to the device data sheets higher data rates should be possible, a maximum bit rate 186 of 640 Mb/s per differential pair is anticipated for the inter-FPGA link, which is a convenient

- multiple of the bunch clock frequency. That will limit parallel connectivity to about 64 Gb/s
- 188 of aggregate bandwidth (see section 3).

189 **2.1.5 Output**

190 The real-time output data of L1Topo to the CTP consist of individual bits indicating whether

a specific algorithm passed or not, plus an overflow bit. The resulting trigger data are

expected to exhibit a rather small volume. They will be transmitted to the CTP optically or electrically. A single fibre-optical ribbon connection per module that carries 48 fibres,

electrically. A single fibre-optical ribbon connection per module that carries 48 fibres,running through the front panel of the module, is provided for this purpose. A mezzanine

board will be required to interface L1Topo to the CTPCORE module electrically via 32

196 LVDS signals at low latency.

197 2.2 Error Handling

198 Input data are protected by several error detection schemes. The MGT hardware blocks can 199 detect link errors and code errors. Additional protection is achieved by cyclic redundancy 200 check characters included in the real-time data. Errors of all types will be monitored and the 201 error counter will be incremented for any bunch clock cycle where there is at least one error 202 in any input channel. Detailed information of the specific error will be stored in expert

registers. Detection of an error will enforce zeroing the real-time data for the affected events.

204 **2.3 Latency**

The ATLAS Level-1 Trigger is a severely latency constrained system. The overall latency
 envelope is tightly controlled.

A breakdown of the estimated latency of the real-time path of the L1Topo system is given in

- 208 the ATLAS TDAQ System Phase-1 Upgrade Technical Design Report [1.1] . Latency figures
- are kept up to date at [1.2].

	ns	BCs	Sub Total	Total
Optical Input available from CMX, eFex, jFex & Muctpi				68,9
L1Topo Input Deserialisers	50	2,0		
Synchronize to local clock - 320-> 40 MHz	25	1,0		
Algorithmic Processing	125	<u>5,0</u>		
			8 <mark>,</mark> 0	
Electrical Output to CTP (multiplexed) (if used)	25	1,0		
Electrical Cable to CTP (if used) (2m)	10	<u>0,4</u>		
			1,4	
L1Topo electrical input available at CTP				78,3
Output Multiplexers 40-320 MHz (if used)	25	1,0		
Output Serialisers for optics (if used)	50	2,0		
Fibres to CTP (if used) (2m)	10	<u>0,4</u>		
			3,4	
L1Topo Optical inputs to CTP available			11,4	80,3

- 210 211
- 211

Figure 2. Latency estimate for L1Topo

Figure 2 shows the current latency estimates for L1Topo, as extracted from this document

at the time of writing. Exact infrastructure latencies can only be measured once cabling

and infrastructure firmware are in place and implemented.

Algorithm latency is assumed to be an upper limit. This might in turn limit the complexity

of any future trigger algorithms. With an algorithmic latency of 3 LHC ticks on the

218 Phase-0 Topology Processor, the headroom of another two ticks in phase 1 seems

adequate. It should be noted that the latency critical path is assumed to be the muon

subsystem. Therefore, any algorithms requiring muon data are assumed to have their

results routed to the CTP at lowest possible latency, on electrical cables. In the current trigger menu, the most latency constrained trigger algorithm is the delayed muon trigger

which commands a latency reduction of one bunch tick, so as to get late muon signals

back into the bunch tick they are assumed to originate from. Therefore, for this specific

trigger that part of the muon algorithms had to be (successfully) squeezed to a total

algorithmic latency of two ticks.

227 Since calorimeter data are expected to arrive far earlier than muons, it is assumed that

228 only the very last stages of algorithmic processing pertaining to muons are under severe

229 latency restrictions. Any calorimeter date to be correlated with muons can be pre-

230 processed under significantly relaxed constraints.

This scheme will maximize the usable latency budget, albeit at the cost of a more

232 complex timing-in procedure.

233 2.4 Readout Data Path

Upon receipt of an L1Accept all L1Topo real-time output data will be captured and sent to 234 the DAQ. Input data capture can be made dependent on possible occurrence of reception 235 errors, or be fixed, software programmable. The number of slices worth of data per bunch 236 tick is programmable. Data are pipelined and de-randomized on the processors and then 237 serialized onto the backplane links to the ROD/Hub modules. Region-of-Interest data (RoI) 238 239 can be captured separately and made available to the higher level triggers via the RoI builder, if required. In case the ROD will assert busy signal the readout will only finish any existing 240 operations to form packets intended to be sent to the ROD. At the same time it will prevent 241 242 sending any existing packets to the ROD and it will reject all incoming data when it exceed the capability to save new events. This will happen in situation when there will be not enough 243 244 space in buffers and FIFOs.

Further details are found in section 3, the further processing of readout data in the RODs is described in [1.10].

247 **2.5 TTC and Clock**

Timing signals are received in the L1Topo shelf via the Hub [1.9] module. There, the clock is recovered and commands are decoded, before being re-encoded using a local protocol. This use of a local protocol allows the TTC interface of the shelf to be upgraded to future timing distribution schemes without any modification of the L1Topo modules.

The L1Topo module receives the clock and TTC commands from the Hub module via the ATCA backplane. It receives the clock on one signal pair and the commands on a second (see section 3.11 for details). An auxiliary crystal clock will be available as well.

255 2.6 Module Control and Configuration

An IPbus interface is provided for high-level, functional control of L1Topo. This allows, for
 example, algorithmic parameters to be set, modes of operation to be controlled and spy
 memories to be read.

259 IPbus is a protocol that runs over Ethernet to provide register-level access to hardware. Here,

260 it is run over a 1000BASE-T Ethernet link, which occupies one channel of the ATCA Base

261 Interface. On L1Topo there is a local IPbus interface in every FPGA. These interfaces contain

those registers that pertain to that device. A control FPGA, residing on a mezzanine,

263 implements the interface between the topology processors and the shelf backplane, routing

- IPbus packets to and from the other devices as required. The control FPGA also contains
 those registers which control or describe the state of the module as a whole. For those devices
- those registers which control or describe the state of the module as a whole. For those device such as MiniPODs, which have an I^2C control interface, an IPbus-I2C bridge is provided.
- 267 The processor FPGAs are configured upon power-up from flash based storage. The
- 267 The processor PPGAs are configured upon power-up from hash based storage. The 268 configuration data are clocked into the FPGAs via a parallel bus. Controller and flash
- 269 memory are located on the mezzanine. For debug purposes the processors can be configured
- and accessed (Ibert, Chipscope ILA) via their JTAG interface.

271 2.7 Commissioning and Diagnostic Facilities

To aid in module and system commissioning, and help diagnose errors, L1Topo can be
placed in Playback Mode via an IPbus command. In this mode, real-time input data to
L1Topo are ignored and, instead, data are supplied from internal scrolling memories. These
data are fed into the real-time path at the input to the algorithm logic, where they replace the
input data from the FEXes and muons.

In spy mode, also selectable via an IPbus command, the scrolling memories can be filled with
data received from the real-time inputs of L1Topo. The data captured can be read out via
IPbus.

280 On the real-time output of L1Topo towards the CTP, the same playback/spy scheme is

281 employed. By enabling the input and output play/spy scheme accordingly, it is possible to

either test the interfaces with up/downstream modules by capturing input data and streaming

output data from the memories. Alternatively, playback data injected into the input stage of

L1Topo will allow to exercise the algorithms, with algorithm results captured in the output

spy memories for subsequent readout and analysis.

286 In addition to the above facility, numerous flags describing the status of L1Topo can be read

via the IPbus control. Access points are also provided for signal monitoring, boundary

scanning and the use of proprietary FPGA tools such as ChipScope and IBERT.

289 2.8 Environmental Monitoring

L1Topo monitors the voltage and current of all critical power rails on the board. It also
 monitors the temperatures of all the FPGAs, of the MiniPOD receivers and transmitters, and

of other areas of dense logic. Where possible, this is done using sensors embedded in the

293 relevant devices themselves. Where this is not possible, discrete sensors are used.

A small set of voltage and temperature data are collected by the L1Topo IPMC, via an I^2C

bus and are made available to ATLAS DCS via the shelf manager. Supplementary

environment data are available to the control FPGA. These data can be accessed via IPbus.

297 FPGAs are protected against over temperature by internal monitoring and shutdown. This

298 provides the lowest possible reaction time. Also, if any board temperature exceeds a

299 programmable threshold set for a specific device monitored via IPMB, the IPMC powers

300 down the board payload (that is, everything not on the management power supply). The

thresholds at which this function is activated should be set above the levels at which the DCS

302 will power down the module. Thus, this staged mechanism should activate only if the DCS

fails. This might happen, for example, if there is a sudden, rapid rise in temperature to which

304 the DCS cannot respond in time.

305 2.9 ATCA form factor

L1Topo is an ATCA module, conforming to the PICMG® 3.0 Revision 3.0 specifications.

Backplane Zone-3 details are not part of the PICMG specification. Here the module design follows the L1Calo standards [1.15].

309 The modules are dual width, they occupy two adjacent slots of an ATCA shelf each.

310 3 Implementation details

311 **3.1 Modular Design**

312 L1Topo consists of an ATCA sized main board, equipped with mezzanines. The mainboard

313 mainly carries the real-time processing circuitry: Two processor FPGAs, connected up with

12 MiniPOD devices $(10 \times RX, 2 \times TX)$ each. The FPGA/MiniPOD circuitry is two exact

- 315 copies placed on the same PCB.
- 316 Module control via IPbus, and breakout of the electrical links to the CTP are implemented on
- 317 the "Extension Mezzanine". FPGA configuration memories are also located on the
- 318 mezzanine, along with the TTC/clock reception and conditioning (jitter reduction). The

319 mezzanine runs along the lower part of the front panel to allow for front panel connectivity 320 and controls.

- Further front panel connectivity and indicators are located on a separate, small front panel
 mezzanine in the upper part of the module.
- Environmental monitoring and low level control is implemented on an IPMC controllermodule (LAPP IPMC).

325 Primary power supply is via standard PIM / converter brick(s). Viable solutions can be

326 copied from either Phase-0 L1Topo or jFEX. Secondary power supplies are located on

327 mezzanines.

328 **3.2 Input Data Reception**

329 L1Topo receives data from the L1Calo processors and the Muons via optical fibres. The

bitrate is specified to 6.4, 11.2 and 12.8Gb/s, so as to be compliant with all data sources. The
data are required to be 8b/10b coded data streams. Each fibre carries a net data volume of 224
(or 256 respectively) bits of data per bunch tick.

333 The input fibres to L1Topo are organised into 4 ribbons of 72 fibres each. They are routed to

L1Topo via the rear of the ATCA shelf, where a rear transition module (RTM, [1.16])

provides mechanical support. Optical connections between the fibres and L1Topo are made

by four 72-way Multi-fibre Push-On/Pull-Off (MPO) connectors, mounted in Zone-3 of the

337 ATCA backplane. These connectors allow L1Topo to be inserted into, and extracted from,

the shelf without the need to handle individual ribbon connections.

- On the L1Topo side of the MPO connectors, 20 optical ribbons (each comprising 12 fibres)
- 340 carry the signals to 20 MiniPOD receivers. These perform optical to electrical conversion.

341 They are mounted on board, around the Processor FPGAs, to minimise the length of the

342 multi-Gb/s PCB tracks required to transmit their output.

343 3.3 Processor FPGA

344 There are two Processor FPGAs on each L1Topo module. The functionality they implement

can be grouped into real-time, readout and slow-control functions. Both FPGAs on an

346 L1Topo module have the same wiring. Differences in functionality between Processor

347 FPGAs on the same and different modules are due to different algorithms being run and are

implemented via different firmware versions only.

- 349 Every Processor FPGA performs the following real-time functions:
- It receives, from MiniPOD optical receivers, up to 118 inputs of serial data at 6.4,
 11.2 or 12.8 Gb/s per MGT link.
- It detects any data integrity issues with help of the MGT built-in error checks and with
 help of CRC checksums embedded in the user data.
 - Any errors are registered and counted,
- 355 Error counts can be read and reset via module control.
- 356 Any erroneous real-time data are zeroed.
- It allows for fine grain data alignment to word (bunch tick) boundaries.
- It allows for coarse grain data alignment in terms of full bunch ticks, up to 32 ticks.
- It runs topological algorithms on the conditioned real-time input data.
- It is able to share real-time data with the other on-board FPGA via parallel links
- It forwards the trigger results (typically a trigger bit with accompanying overflow bit) to
 the CTP.
- The CTP is fed with trigger results bits directly from each FPGA
- 364 Electrically (LVDS) via the extension mezzanine
- 365 Optically via MiniPOD
- 366 On the readout path, each Processor FPGA performs the following functions.
- The Processor FPGA records the input data and the output generated on the real-time path
 in scrolling memories, for a programmable duration of up to 10μs.
- On receipt of an L1A, it writes data from the scrolling memories to the FIFOs, for a
 programmable time frame. This is only done for those data enabled for readout by the
 control parameters.
- The Processor FPGA transmits data from the readout FIFOs to the ROD module
 (DROD), via a 6.4 Gb/s MGT backplane link.
- There is a further, equivalent data path from the Processor FPGAs to the RROD for
 purpose of RoI readout into the 2nd level trigger.

376

354

377 378 379

Figure 3. The block diagram of the L1Topo-I readout data flow.

380

Readout (Figure 3) will receive data from three different sources: input TOBs from FEXs and 381 from muon subsystem, results from algorithms intermediate stages (XTOBs) and L1Topo 382 TOBs containing RoI information. The data for each individual path (in TOBs/XTOB/TOB, 383 in 13) will be first stored in the ring buffers (Ultra RAM/BRAM). In the next stage, after 384 receiving L1A, a preselected number of these memories will be independently read out and 385 merged (Processor inputs 0 to N-1, Processor inputs N to 2N-1 ...). In next steps the data will 386 be again merged from a given number of data streams to a smaller number, when finally it 387 will be stored in one FIFO. The number of merge stages, frequencies and memory types will 388 be selected with the help of VHDL generics. This will allow to adjust the readout parameters 389 390 to meet timing constraints where at the same time assuring required latency and reasonable memory usage. In each data path one will be able to: disable channels, send pre-scaled data, 391 392 send data only on the CRC or input alignment error and select number of slices required to be 393 sent.

For module control and monitoring, each Processor FPGA contains a local IPbus interface,which provides access to registers and RAM space within the FPGAs.

- 396 The Processor FPGA footprint on L1Topo is compatible to several FPGA types from the
- Xilinx UltraScale and UltraScale+ families. They are all 2577 ball devices. XCVU9P 2FLGA2577E is envisaged for L1Topo.
- Of the 120 high speed links available in the XCVU9P, two are reserved for control purposes
- 400 (TTC data and module control).

- 401 Regarding general-purpose I/O, of the total of 448 pins available, five banks of 24 pairs each
- 402 are used for inter-FPGA data sharing. The pair count includes one pair of forwarded clock per
- 403 bank. Each one-to-one bank interconnect is meant to be operated in one direction only.
- 404 Receive and transmit lanes are not to be mixed within one bank. Inter-bank pin swapping is
- 405 not allowed during PCB routing work.

406 3.3.1 Resource Estimate

407 Based on the configuration of the current topological processor, the following resource

408 estimation is possible. The numbers are based on a synthesis of the firmware of the current

409 module Topo00_U2 adapted to the envisaged XCVU9P FPGA. To be more confident about

- the estimate, the same estimation has been done for the current processor FPGA of theVirtex-7 family.
- 412 A comparison of the resulting resource estimation yields similar resource usage for both old
- and new system in terms of absolute numbers. Since the XCVU9P provides approximately
- three times as many resources as the current Virtex-7, the relative numbers drop by a factor
- 415 of three.

416 The relative numbers of the estimated usage for the most important resources are shown in 0.417

Resource	Estimated Usage
LUTs	19 %
Flip Flops	4 %
DSP Slices	7 %
BRAMs	3 %
TIL AD	

418

 Table 2 Resource estimate

419 **3.4 Clocking**

There are two types of clock sources on L1Topo: on-board crystal clocks and the LHC TTC 420 clock, received from the ATCA backplane. These clock sources are fed via the clocking 421 circuitry to the two processor FPGAs. The 40.079MHz TTC "clean" clock has potentially too 422 much jitter to drive multi-Gb/s links directly. A PLL chip is therefore used to clean up the 423 jitter on this clock. From the input of 40.079 MHz, the PLL chip can generate clocks of 424 frequency $n \times 40.079$ MHz within a certain range. This flexibility allows the multi-Gb/s links 425 on the L1Topo to be driven at a range of different rates. The Si5345 has been tested and 426 427 verified on the jFEX prototype and will be used on L1Topo. The clock (re)generation circuitry is located on the extension mezzanine, the individual clock trees for MGT reference 428 clocks and global clocks are actively fanned out on the main board. 429

The four MGT reference clock trees are operated at CML signal level, they are AC coupled
into the FPGAs. The main clock tree supplies the real-time inputs running at 6.4 / 11.2 /
12.8Gbps. There are additional trees for real-time output (6.4/12.8Gb/s) and for backplane

- 433 output towards the RODs (6.4Gb/s). Note: According to UltraScale+ documentation it should
- be possible to derive all required MGT internal PLL frequencies from a common 160.32
- 435 MHz reference clock. Therefore, the additional clocks will probably not all be in use on the
- 436 production modules. A separate crystal clock will be available to the MGT quads carrying
- 437 IPbus links.

438 **3.5 High-Speed signals on the PCB**

439 L1Topo is a very high-speed and very high-density ATCA module, which has many optical

440 fibre links and some electrical backplane links running at a speed of up to 12.8Gb/s. In

addition, the tight ATLAS L1Calo latency margin requires a large number of parallel links

running at nominally 640Mb/s between FPGAs for data sharing on L1Topo.

443 Signal integrity is a challenge for the L1Topo design. It benefits, however from the detailed

444 PCB simulations that have been done for the jFEX prototype, from which the phase-1

445 L1Topo is being derived. Cross talk is limited by maximising differential pair pitch,

446 impedance is guaranteed (10%) by the PCB manufacturer.

447 **3.6 FPGA configuration**

448 The configuration of the two large processor FPGAs is controlled from the Extension

449 Mezzanine. To this end all signal lines required for either master SPI mode or slave450 SelectMAP are routed to the mezzanine.

451 The baseline configuration option is SPI mode. Though dual SPI mode (ie. Byte wide

452 configuration) is supported by this scheme, the mezzanine currently under construction will

453 use a single SPI flash memory chip per processor FPGA. The flash devices can be written

either via JTAG or via IPbus. The latter operation will require specific firmware and softwareto be written.

456 The configuration scheme will allow for both the current production firmware and a "golden"

457 recovery image to be stored on the SPI flash devices. Whether that feature will actually be

used is as yet undecided, since the processor FPGAs can always be configured through the

459 mezzanine-based control FPGA, even with an erased or corrupted flash chip connected up to

- the processors. Direct JTAG configuration of the processor FPGAs is an additional option fordebug purposes.

462

463**3.7The Extension Mezzanine**

464 The Extension Mezzanine module provides many of the (non-realtime) services described 465 above. It carries mainly module control, clock/control, and configuration circuitry. It also 466 provides initialization circuitry for the FPGAs and acts as an interface to environmental 467 monitoring devices. The only real-time signals running via the mezzanine are the electrical 468 outputs to the CTP.

469 The "intelligent" module controller is an FPGA from the XILINX Artix-7 family. This

470 Control FPGA handles incoming IPbus requests and forwards the data and control packets to

471 the processors on the mainboard via MGT (GTP) links. MGT links are also used to replicate

472 incoming TTC data into the two processors (see below).

473 The IPbus communicates with its control PC(s) via an Ethernet Phy chip. The chip type

474 chosen is VSC8221. It is an electrical Ethernet (1000BASE-T) to SGMII device. The SGMII

475 link is connected to an MGT link of the control FPGA. The 1000BASE-T port is linked to the

- 476 Hub/ROD module-1 via the backplane. This link is AC-coupled with series capacitors.
- 477 Magnetics (transformers) are not required due to the choice of Phy chip, which is specifically
- 478 designed (voltage mode drivers, internal biasing) to support magnetics-free links.

479 The backplane clock arriving from the Hub modules is transmitted at the LHC bunch crossing 480 frequency of 40.079 MHz and meant to be of high quality, low jitter. However, locally on the mezzanine this clock is run through a jitter cleaner / clock synthesizer chip (Si5345) where it 481 is refreshed and multiplied to higher ratios of the bunch clock. The jitter cleaner delivers four 482 483 multiples of the base frequency: x1 multiplication, just jitter cleaned for purpose of global clock into the FPGA fabric, a multiple suitable for 6.4/11.2/12.8 Gb/s real-time input 484 reference, a multiple for the backplane readout links and a separate multiple for the real-time 485 486 outputs.

- The mainboard processors are fed from the jitter cleaner outputs via clock fan-out chips. The
 global (FPGA fabric) clocks are of LVDS level, the MGT reference clocks of CML. Separate
 crystal clocks are provided for local use on IPbus/Ethernet and optionally for TTC data
 inputs.
- 491 The TTC data links are received from the backplane, one AC-coupled MGT link from each
- 492 Hub/ROD module. The data are routed into the control FPGA, where they are interpreted and
- 493 forwarded to the processor FPGAs, again on AC-coupled MGT links. The TTC data links are
- 494 synchronous to the LHC bunch clock and therefore require an LHC clock multiple for re-
- transmission to the processors on the mainboard.
- 496 While the processor FPGAs are accessible through their JTAG ports at any time, the
- 497 configuration bit stream required at any power-up is meant to be provided by local storage.
- 498 Default storage device is one large (quad) SPI flash memory per FPGA. The device chosen
- 499 for the first version of the mezzanine is MT25QU01 or MT25QU02. Different configuration
- schemes can be made available with further versions of the mezzanine card, should the
- 501 updates of the flash devices, required for any persistent processor firmware updates, be 502 considered inconveniently slow. The update process can be triggered and controlled from
- 502 considered inconveniently slow. The update process can be triggered and controlled from 503 either the control FPGA or via JTAG. The control FPGA itself will in any case be configured
- from a small SPI flash chip, which due to smaller capacity and rare updates, is assumed to be
- a rather painless update operation. For the control FPGA, in-situ (live) updates are possible
- 506 due to the use of a Xilinx-provided fall-back / golden image scheme.
- 507 Environmental data (voltages, currents, temperatures) are collected on the mainboard by I2C 508 based sensors, and routed to the mezzanine via the bidirectional I2C buses. Parameters in the
- 509 respective devices are set in the same way. Data are originating from dedicated monitoring
- 510 chips, or from monitor/control interfaces available in core functionality devices, e.g.
- 511 MiniPODs. They are routed into the control FPGA with an optional breakout onto headers.
- 512 The control FPGA allows for access to these data via IPbus. The status/control data
- exchanged that way are complementary to the IPMC data. The handling of serialized slow
- 514 control data on FPGAs and the description of the required state machines in VHDL and the
- 515 maintenance of such circuitry is not particularly efficient in terms of engineering effort. For
- this reason, an updated mezzanine with a complementary, small microcontroller for
- 517 housekeeping functionality is envisaged. Alternatively, an embedded processor might be used 518 on the FPGA.
- 519 The real-time signals forwarded to the CTP via the mezzanine are plain route-through only.
- 520 They are run via the mezzanine so as to allow for re-grouping signals from the two processor

- 521 FPGAs into a single cable port, should that be required. This scheme is taken over from the
- 522 Phase-0 Topology processor. At current the signal distribution is symmetric, same bandwidth
- from each of the processors. That's the baseline for the Phase-1 modules as well, unless
- 524 specific requirements are presented. Pinout of the VHDCI connector will be unchanged wrt.
- 525 Phase-0 L1Topo[1.12].

526 **3.8 The IPM Controller**

For the purposes of monitoring and controlling the power, cooling and interconnections of a
module, the ATCA specification defines a low-level hardware management service based on
the Intelligent Platform Management Interface standard (IPMI). The Intelligent Platform
Management (IPM) Controller is that portion of a module (in this case, L1Topo) that
provides the local interface to the shelf manager via the IPMI bus. It is responsible for the
following functions:

- interfacing to the shelf manager via dual, redundant Intelligent Platform Management
 Buses (IPMBs), it receives messages on all enabled IPMBs;
- negotiating the L1Topo power budget with the shelf manager and powering the payload
 hardware only once this is completed (see section 3.9);
- managing the operational state of L1Topo, handling activations and deactivations, hot swap events and failure modes;
- implementing electronic keying, enabling only those backplane interconnects that are compatible with other modules in shelf, as directed by the shelf manager;
- providing to the Shelf Manager hardware information, such as the module serial number
 and the capabilities of each port on backplane;
- collecting, via an I²C bus, data on voltages and temperatures from sensors on L1Topo, and optionally exchanging these data with the control FPGA;
- driving the ATCA-defined LEDs.
- L1Topo uses the IPMC module produced by LAPP as the IPM Controller [1.17] .The formfactor is DDR3 VLP Mini-DIMM.

548 3.9 Power Management

549 With regard to power, the hardware on the L1Topo is split into two domains: management 550 hardware and payload hardware. The management hardware comprises the IPM Controller

- plus the primary DC-DC converters and any non-volatile storage that this requires. By
- default, on power up, only the management hardware of L1Topo is powered (drawing no
- 553 more than 10 W), until the IPM Controller has negotiated power-up rights for the payload
- hardware with the shelf manager. This is in accordance with the ATCA specification.
- 555 However, via a hardware switch it is also possible to place L1Topo in a mode where the
- 556 Payload logic is powered without waiting for any negotiation with the shelf controller. This
- feature, which is in violation of the ATCA specification, is provided for diagnostic and
- 558 commissioning purposes.

- 559 On power-up of the payload hardware, the sequence and timing with which the multiple 560 power rails are turned on can be controlled by a programmable device.
- 561 Excluding the optional exception noted above, the L1Topo conforms to the full ATCA
- 562 PICMG® specification (issue 3.0, revision 3.0), with regard to power and power
- 563 management. This includes implementing hot swap functionality, although this is not
- 564 expected to be used in the trigger system.
- 565 Power is supplied to L1Topo on dual, redundant -48V DC feeds. A standard power input
- 566 module (eg. PIM400) and a step down convertor, both "quarter brick" sized, are employed
- 567 for power conditioning and conversion down to 12V. Alternatively a combined
- 568 PIM/converter device is considered. The 12V supply is stepped down further, by multiple 569 (secondary) switch-mode regulators, to supply the multiplicity of voltages required by the
- 570 payload hardware.
- 571 For the power supplies to the FPGA multi-Gigabit transceivers, the PCB design guidelines
- and noise requirements specified in the UltraScale+ Series FPGAs GTY Transceiver User
- 573 Guide (UG578) will be observed. The secondary convertors are located on small mezzanine
- 574 modules.
- 575 An initial power estimate has been derived from the jFEX figures, taking into account Xilinx
- 576 XPE spreadsheets and (extrapolated) measurements. The FPGA internal voltages (0.95V) are
- 577 expected not to exceed a maximum current of 45A per FPGA; MGT Voltages (1V and 1.2V)
- are expected to be loaded with less than 16 and 19 A respectively. That is a maximum of
- ⁵⁷⁹ ~80W Watt per FPGA, plus board level supplies (1.8V, 2.5V, 3.3V) of about 50W total.

580 **3.10 Front-panel Inputs and Outputs**

- 581 The following signals are, or can be, sent or received via the L1Topo front panel.
- Electrical differential (LVDS) signals are sent to the CTP via an SCSI VHDCI style
 connector, located on the mezzanine. Wiring details copied from Phase-0 L1Topo.
- Fibre-optical output to CTP via MPO/MTP connectors. A total of 48 fibres can be sent out of the front panel, largest fraction assumed to be spares for possible use at Phase-2.
- Auxiliary clock in. MMCX connector. This input allows L1Topo to be driven by an
 external 40.079 MHz clock, in the absence of a suitable clock on the backplane.
- 588 Clock out. MMCX connector
- 589
- The following bi-directional control interfaces are available on the front panel. See section3.13 for the use of these interfaces.
- 592 JTAG Boundary Scan.
- 1G Ethernet socket (optional, not to be used in production environment).

594 **3.11 Rear-panel Inputs and Outputs**

595 **3.11.1** ATCA Zone-1

- 596 This interface is configured according to the ATCA standard. The connections include
- 597 dual, redundant -48V power supplies,
- hardware address (used to derive MAC/IP addresses for IPbus)
- IPMB ports A and B (to the Hub modules),
- 600 shelf ground,
- 601 logic ground.

Figure 4 shows the backplane connections between the L1Topo and the Hub module, which
 are located in zones 1 and 2 of the ATCA backplane. See the ATCA specification for further
 details.

605 3.11.2 ATCA Zone-2

606 3.11.2.1 Base Interface

The Base Interface comprises eight differential pairs. Four of these are connected to Hub slot
 one and are used for module control (IPbus), the other four are connected to Hub slot two and
 are used to interface to the IPMC.

610 3.11.2.2 Fabric Interface

611 The Fabric Interface comprises 16 differential signal pairs, eight of which are connected to
612 Hub slot one, and eight of which are connected to Hub slot two. Those signal pairs connected
613 to Hub slot one are used as follows:

- One signal pair is used to receive the TTC "clean" clock of 40.079 MHz.
- One signal pair is used to receive decoded TTC commands, plus near real-time signals
 such as ROD busy. This lane is connected into a multi-Gigabit receiver on the extension
 mezzanine. The exact protocol is defined by the Hub module developers and is
 implemented in firmware. The link speed does not exceed 10 Gb/s.
- Six signal pairs are used to transmit readout data via MGT links. The protocol is being jointly defined by L1Topo and ROD module developers. The link speed is 6.4 Gb/s. Two out of these six signal pairs are used as receivers in standard ATCA backplanes. They are operated in inverse direction on all L1Calo modules to increase the possible readout bandwidth. These two links are considered spares on L1Topo
- 624 The same connectivity is available into Hub slot 2. For details on backplane use see [1.14].

626

Figure 4. The ATCA backplane connections between the L1Topo and the Hub module.

627

628 **3.11.3** ATCA Zone-3

ATCA Zone-3 houses four optical MPO connectors. That allows for up to 288 fibres, 629 carrying data from the feature extractors and muons to L1Topo (see section 3.1). These 630 fibres are supported in the L1Topo shelf by a (passive, mechanical) rear transition module 631 632 (RTM,[1.16]). On the L1Topo side of the connectors, fibre ribbons carry the calorimeter data to MiniPOD receivers, mounted in board. The optical connections are made on the insertion 633 of the L1Topo into the shelf, and broken on its extraction. Dependent on the requirements, 634 635 real-time output can possibly be run on otherwise dark fibres (spares). However, it is 636 anticipated that real-time optical output connection is rather made via the front panel.

637 **3.12 LEDs**

All LEDs defined in the ATCA specifications are located on the L1Topo front panel. In

addition, further status LEDs are provided on either the front panel or the top side. These

640 indicate functions like power, DONE signals, L1A receipt und further LEDs for diagnostic

641 purposes for all FPGAs.

642 **3.13 Instrument Access Points**

643 3.13.1 Set-Up and Control Points

The following interfaces are provided for the set-up, control and monitoring of L1Topo. They
 are intended for commissioning and diagnostic use only. During normal operation it should
 not be necessary to access the L1Topo via these interfaces.

- The JTAG Boundary Scan port: via this port a JTAG/boundary scan test can be conducted to check board level connectivity, all FPGAs on the L1Topo can be configured, the configuration memory of the Configurator can be loaded and the FPGA diagnostic/evaluation tool ChipScope can be run, including for IBERT tests. Form factor is Xilinx standard 14-pin, 2mm pitch. This port is on the front panel.
- The 1G Ethernet port (optional): this port provides an auxiliary control interface to L1Topo, over which IPbus can be run, should there be a problem with, or in the absence of, an IPbus connection over the shelf backplane. It is on the front panel and located on the extension memory This is an entired funct panel part
- the extension mezzanine. This is an optional front panel port.

656 3.13.2 Signal Test Points

657 Due to the sensitive nature of multi-Gb/s signals, no test points are provided on PCB tracks 658 intended to carry multi-Gb/s data. If such signals need to be examined, this must be done via 659 firmware. Test points are placed on a selection of those data and control tracks that are not 660 operating at multi-Gb/s.

For each FPGA, a few spare, general-purpose IO pins are routed to 2.54mm headers.

662 Furthermore, spare multi-Gb/s links are routed to MMCX sockets. With appropriate firmware

these connections allow internal signals, or copies of data received, to be fed to an

oscilloscope, for example, or driven from external hardware.

The exact number of test connections, and those signals on which a test point can be placed most usefully, are to be determined in the final stage of module layout.

667 **3.13.3 Ground Points**

668 At least six ground points are provided, in exposed areas on the top side of the module, to 669 allow oscilloscope probes to be grounded.

670 **3.14 Floor plan**

Figure 5 shows a preliminary floor plan of the L1Topo module. This will be used as a guidefor the layout process; the exact location of components may change.

673 The routing of c. 300 signals at multi-Gb/s presents a significant challenge for the design of

the L1Topo PCB. In order to minimise track lengths and routing complexity for these signals,

the Avago MiniPOD receivers are placed around the Processor FPGAs. However, this creates

an additional constraint on the layout: the need to accommodate routing paths for the fibre-

- optic ribbons carrying the data to these receivers. To connect the MPO connectors to the
- receivers the ribbons need to twist, curve and bypass large heat sinks on the FPGAs. The
- 679 Extension Mezzanine is shown bottom left, the IPMC along the Zone-3 connectors.

In addition to those components shown in Figure 5, glue logic is placed on the underside ofthe module.

Figure 5. Sketch of L1Topo, showing a preliminary placement guide.

684 **4 Front-Panel Layout**

685 686

Figure 6. Preliminary front panel layout.

Figure 6: A drawing of the front panel will be added once the component placement is final
and the panel design has been made. For the time being only the front panel elements are
listed: ATCA specific LEDs, LEDs for FPGA DONE, IPbus activity, L1A, power status.
Optional RJ45s for IPbus and IPMC, clock monitor, external clock, CTP electrical out, CTP

- 691 optical out (MPO/MTP), JTAG
- 692

693 **5 Summary: Interfaces**

Some important details of interfaces to external systems as described above are summarizedin this section.

696 5.1 Internal Interfaces

The Extension Mezzanine is connected to the L1Topo main board via a large 1mm pitch connector. The pinout will be documented as soon as the design is finalized.

699 5.2 External Interfaces

700 **5.2.1** Electrical TTC interface (backplane input)

- A clean clock of 40.079MHz is received as a differential electrical signal via the ATCA
- backplane. The signal is AC-coupled on the extension mezzanine and routed into an "any-in"
 differential receiver or directly into the jitter cleaner
- The clock is accompanied by a TTC data signal, differential, AC coupled on the mezzanine, electrically compatible to Xilinx MGT. The data rate is assumed to be 3.2Gb/s, 8b/10b
- roce encoded. Format being defined by the Hub designers.
- 707 Data paths supported from both Hub slots 1 and 2.

708 5.2.2 Electrical DAQ interface (backplane output)

- Readout data are sent to the DAQ/2nd level trigger via the ATCA backplane on 6 links to each
 Hub/ROD, LHC bunch clock synchronous, AC coupled on L1Topo, Xilinx MGT compatible,
- at 6.4Gb/s. Data paths are supported into both Hub slots 1 and 2. The data formats are being
- defined together with the Hub/ROD community. Readout/RoI paths are supported from both
- 713 FPGAs to both Hub slots, i.e. a total of 4 times 2+1spare link.

714 **5.2.3** IPbus interface (backplane I/O)

- 715 Module control links are standard Gigabit Ethernet via the backplane from/to Hub slot 1. The
- phy chip is located on the extension mezzanine. The envisaged phy chip (VSC8221) allows
- 717 for magnetics-free, capacitive coupling, which will be the baseline.

718 5.2.4 DCS interfaces (backplane I/O)

- The IPMC module is linked to the outside world via an I2C (IPMB) bus in ATCA Zone-1,
- and a standard Ethernet link to Hub slot 2 via the base interface.

721 5.2.5 Electrical CTP interface (front panel output)

722 The Central Trigger Processor is interfaced electrically via a VHDCI SCSI style connector.

Pinout is unchanged with respect to the Phase-0 L1Topo module. Signals level is LVDS. All

signal pairs can be driven from the two processor FPGAs. The allocation of pairs to

individual FPGAs is implemented on the extension mezzanine. The interface is assumed to be

data lines only, though parity and clock signals could be generated in FPGAs if required. The

727 signal level is LVDS.

728 5.2.6 Optical CTP interface (front panel output)

729 The Central Trigger Processor is interfaced fibre-optically via an MTP/MPO connector on the

front panel. Up to 48 total fibres can be driven from the two processor FPGAs through

MiniPODs. The maximum bitrate is 14Gb/s, the CTP interface is assumed to run at 6.4 Gb/s,

spare links 12.8Gb/s, synchronous to the LHC clock. Data encoding is 8b/10b.

733 5.2.7 Optical FEX/Muon interface (rear input)

The calorimeter FEXes (e/j/g-FEX) and the muon trigger are fibre-optically interfaced via the
backplane, on 72-way MTP/MPO connectors. The mechanical interface to the RTM is Molex
MTP-CPI. Four of these shrouds are available in ATCA Zone-3. The signals are routed
through MiniPODs (up to 14 Gb/s) and received into FPGAs via MGT links. Encoding is
8b/10b. Data rate is specified for mixed operation 6.4/11.2/12.8Gb/s. Signal rates are not to
be mixed in same quad.

740 6 Appendix : Data formats

The formats of the data received and generated by L1Topo are about to be finalised. Details
 are found in separate documents. Tables can be added once formats are final. This section

743 gives a coarse overview only.

744 6.1 Real-Time Input Data

Real-time input from FEXes and Muon Trigger is 8b/10b-encoded at 6.4, 11.2 or 12.8 Gb/s.

This yields a line capacity of 224 or 256 bits total per bunch crossing. The raw data are

accompanied by a CRC check sum and by comma characters, required for line

synchronization. Comma characters are sent upon link start-up and either in regular intervals,

or in place of otherwise empty data fields, replacing 0x00 data bytes. Comma characters are

- in either case injected in fixed and unique positions within a full-BC data word only. For
- purpose of overall alignment and monitoring, bunch count information will be embedded into
- the data stream. Detailed formats are currently being finalized together with the L1Calo

754 6.2 Real-Time Output Data

755 The Real-time output of L1Topo into the CTP is composed of trigger information,

accompanied by overflow information. On the electrical interface this information is sent

757 without any further formatting, as an 80Mb/s stream. On the optical interface the raw data

will be protected by a CRC check sum and aligned with help of embedded comma characters,

759 plus overall alignment with embedded bunch count information.

760 6.3 Backplane data formats

761 Readout streams into DAQ and RoI systems are routed through the two Hub/ROD modules in

the shelf. The formats on the data links are being defined together with the ROD community.

763 It should be noted that it will not be possible to run all DAQ or RoI output in a channel

bonded scheme, since it is actually two separate streams from distinct sources, the two

processor FPGAs. Detailed data contents might partially be modelled on the existent Phase-0

L1Topo protocol, though eFEX protocol details (headers/trailers) will be employed where

767 possible, to simplify ROD firmware production and maintenance.

The TTC data running on the backplane from the Hub modules to the L1Topo modules are re-coded on the Hub. The exact protocol is being defined by the Hub designer community.

770

771 7 Related Documents

- 772 [1.1] ATLAS TDAQ System Phase-I Upgrade Technical Design Report,
- 773 CERN-LHCC-2013-018, http://cds.cern.ch/record/1602235/files/ATLAS-TDR-023.pdf
- Phase-I Latency Envelopes for the Level-1 Trigger, https://edms.cern.ch/document/1256858/
- 776 [1.3] L1Calo Phase-I eFEX Specification, <u>https://edms.cern.ch/document/1419789</u>
- [1.4] L1Calo Phase-I jFEX Specification <u>https://edms.cern.ch/document/1419792</u>
- 778 [1.5] L1Calo Phase-I gFEX Specification https://edms.cern.ch/document/1425502
- 779 [1.6] ATCA Short Form Specification,
 780 <u>http://www.powerbridge.de/download/know_how/ATCA_Short_spec.pdf</u>
- [1.7] PICMG 3.0 Revision 3.0 AdvancedTCA Base Specification, <u>http://www.picmg.com/</u>
- [1.8] L1Topo requirements,
 https://indico.cern.ch/event/638444/contributions/2639285/attachments/1490897/
- [1.9] L1Calo Phase-I Hub Specification, <u>https://edms.cern.ch/document/1415974</u>
- 785 [1.10] L1Calo Phase-I ROD specification, <u>https://edms.cern.ch/document/1404559</u>

- [1.11] Foxconn 14Gb/s MiniPOD devices,
 http://www.fit-foxconn.com/Product/ProductDetail?topClassID=Electronic
 Module&&PN=AFBR-822VxyZ
- 789 [1.12] Phase-0 L1Topo module, <u>http://esimioni.web.cern.ch/esimioni/TPF/TP_mainh.html</u>
- [1.13] Phase-0 L1Topo algorithms/firmware,
 <u>https://gitlab.cern.ch/sartz/L1TopoFirmwareDocumentation/blob/master/L1TopoFirmw</u>
 are.pdf
- [1.14] L1Calo usage of ATCA backplane, see <u>https://edms.cern.ch/file/1492098</u>
- [1.15] L1Calo 8U front board form factor, see <u>https://edms.cern.ch/file/1492098</u>
- 795 [1.16] L1Calo 8U RTM form factor, see https://edms.cern.ch/file/1492098
- 796 [1.17] LAPP IPMC module, see http://lappwiki.in2p3.fr/twiki/bin/view/AtlasLapp/ATCA
- 797

798 8 Glossary

ATCA	Advanced Telecommunications Computing Architecture (industry standard).
BC	Bunch Crossing: the period of bunch crossings in the LHC and of the clock provided to ATLAS by the TTC, 24.95 ns.
DAQ	Data Acquisition.
DCS	Detector Control System: the ATLAS system that monitors and controls physical parameters of the sub-systems of the experiment, such as gas pressure, flow-rate, high voltage settings, low-voltage power supplies, temperatures, leakage currents, etc.
DROD	Data ROD (Data into DAQ) in Hub slot 1
ECAL	The electromagnetic calorimeters of ATLAS, considered as a single system.
eFEX	Electromagnetic Feature Extractor.
FEX	Feature Extractor, referring to either an eFEX, gFEX or jFEX module or subsystem.
FIFO	A first-in, first-out memory buffer.
FPGA	Field-Programmable Gate Array.
gFEX	Global feature extractor
HCAL	The hadronic calorimeters of ATLAS, considered as a single system.
IPbus	An IP-based protocol implementing register-level access over Ethernet for module control and monitoring.

IPMB	Intelligent Platform Management Bus: a standard protocol used in ATCA shelves to implement the lowest-level hardware management bus.
IPM Controller	Intelligent Platform Management Controller: in ATCA systems, that portion of a module (or other intelligent component of the system) that interfaces to the IPMB.
IPMI	Intelligent Platform Management Interface: a specification and mechanism for providing inventory management, monitoring, logging, and control for elements of a computer system. A component of, but not exclusive to, the ATCA standard.
jFEX	Jet Feature Extractor.
JTAG	A technique, defined by IEEE 1149.1, for transferring data to/from a device using a serial line that connects all relevant registers sequentially. JTAG stands for Joint Technology Assessment Group.
LOA	In Run 4, the Level-0 trigger accept signal.
L0Calo	In Run 4, the ATLAS Level-0 Calorimeter Trigger.
L1A	The Level-1 trigger accept signal.
L1Calo	The ATLAS Level-1 Calorimeter Trigger.
LHC	Large Hadron Collider.
MGT	As defined by Xilinx, this acronym stands for Multi-Gigabit Transceiver. However, it should be noted that it denotes a multi-gigabit transmitter– receiver pair.
MiniPOD	An embedded, 12-channel optical transmitter or receiver.
MicroPOD	An embedded, 12-channel optical transmitter or receiver, smaller compared to the MiniPOD.
MMXC	Sub-Miniature coaxial RF connector.
MPO	Multi-fibre Push-On/Pull-Off: a connector for mating two optical fibres.
PMA	Physical Media Attachment: a sub-layer of the physical layer of a network protocol.
ROD	Readout Driver.
RROD	ROI ROD (Data into 2 nd level trigger), in Hub slot 2
RoI	Region of Interest: a geographical region of the experiment, limited in η and ϕ , identified by the Level-1 trigger (during Run 3) as containing candidates for Level-2 trigger objects requiring further information.
RTM	Rear Transition Module, module in the back compartment of a shelf, allowing for connections to the front module. Here: passive fibre coupling mechanics.
Shelf	A crate of ATCA modules.
TOB	Trigger Object.
TTC	The LHC Timing, Trigger and Control system.

XTOB Extended Trigger Object. A data packet passed to the readout path, contained more information than can be accommodated on the real-time path.

799 **9 Document History**

Version	Comments
0.7	Internal circulation without mezzanine section
0.8	Added mezzanine section
0.9	Draft for initial distribution
1.0	Draft circulated for review

800